$\begin{aligned} & \overline{\overline{\underline{E}} \overline{\underline{\underline{E}}} \overline{\bar{E}}} \\ & \text { Maintenance } \\ & \text { Handbook }\end{aligned}$

IBM 3270 Information Display System

IBM 3271 Control Unit
IBM 3272 Control Unit
IBM 3275 Display Station
IBM 3277 Display Station
IBM 3284 Printer
IBM 3286 Printer
IBM 3288 Line Printer

S229-7037-4

Handbook

IBM 3270 Information Display System

IBM 3271 Control Unit
18間3272 Control Unit
IBR 3275 Display Station
18M 3277 Display Station
IBM 3284 Printer
IBM 3286 Printer
IBM 3288 Line Printer

Preface

This handbook brings together reference and unique maintenance information that is pertinent to the maintenance of the 3270 Information Display System. For the purposes of this handbook, the IBM 3270 Information Display System is considered to consist of only the following units:

IBM 3271 Control Unit
IBM 3272 Control Unit
IBM 3275 Display Station
IBM 3277 Display Station
IBM 3284 Printer
IBM 3286 Printer
IBM 3288 Line Printer
This publication does not replace existing MLTGs, but does provide the following quick reference material:

- 3270 Symptom Fix Lists
- 3270 Block Diagrams
- 3270 Gate Card Layouts
- 3270 Card Substitution Lists
- 3270 Service Aids

This handbook contains eight sections and two appendixes. Each section has its own contents table.

Fifth Edition (September 1980)

This is a major revision of, and obsoletes, S229-7037-3, with changes in all sections. Information in this publication is subject to change. Any such change will be reported in subsequent revisions or Technical Newsletters.

A form is provided at the back of this publication for readers' comments. If the form has been removed, comments may be addressed to IBM Corporation, Department R20, Neighborhood Road, Kingston, N.Y. 12401.

Contents

Section 1. General Reference

Contents

3270 Control Unit to Device Interface 1-3
3270 Control Unit to Device Interface for RPQ AB4820 $1-4$
Coaxial Cąbles and BNC Connectors 1.5
Power Súpply Ripple $1-5$
Logic Levels - 3270 VTL 1 -6
Missidg Grounds 1.7
Groand Loops 1.7
Fatilities Error Recognition System (FERS) 1.9
Display Exception Monitoring Facility (DEMF) $1-10$
FERS and DEMF User's Guide 1-11
3270 Service Aids 1-14
3270 CEM/Service Aid Index $1-15$
3270 Coax Cable Check 1-15
AMP Tool 1-17
Power Supply Mounting 1-17
Card Swapping 1-17
Logic Manual IR Pack and MLTG Storage $1-17$
3270 Card Holder Part Numbers 1-17
Test Request Function for 3270s Using BTAM 1-17
Individual LED Replacement $1-20$
CE General Logic Probe Use on 3270 1.20
Control Unit Sequence Latches and Tables of Sequences 1-21
Sequence Latches 1.21
Table of Sequences $1-21$
Scoping Procedure to Determine Device Condition $1-25$
Display or Printer Status Word Detected on 3271 CU $1-26$
Display or Printer Status Word Detected on 3272 CU 1-27
CU CW1 Detected on 3277 Device $1-27$
3277 Connected to 3271 CU $1-27$
3277 Connected to 3272 CU 1-28
CU CW1 Detected on Printer 3284/3286/3288 1.28
3284/3286 Connected to 3271 CU 1-28
3284/3286 Connected to 3272 CU 1-29
Visual Verification of Correct AID Encoding $1-31$
Status Word and CU CW1 Scoping Points on Unique 3270 Box 1-31
CU Data Words $1-33$
CU Control Words $1-33$
Message Buffer Bit Assignment $1-35$
Character Code Assignments $1-36$
3270 Commands $1-43$
3270 Commands, AIDs, CCs, Orders, Addressing, and Status and Sense 1-44
Indicators and Controls. 1-67
Sequences and Responses 1.70

Figures
Figure 1-1. Power Supply Ripple $1-6$
Figure 1-2. 3270 System Grounding 1.8
Figure 1-3. (Deleted)
Figure 1-4. (Deleted)
Figure 1-5. Waveforms of Various Cable Conditions 1-16
Figure 1-6. Attribute Character Bit Definition $1-24$
Figure 1-7. Status Word Waveform $1-29$
Figure 1-8. Display Status Word 1-29
Figure 1-9. Printer Status Word $1-29$
Figure 1-10. Status/Control Word (3272) $1-30$
Figure 1-11. Status/Control Word (3271) $1-30$
Figure 1-12. Status Word Waveform 1-30
Figure 1-13. CU CW1 Detected on 3284/3286/3288 1-30
Figure 1-14. CU CW1 Detected on 3277 $1-30$
Figure 1-15. CU Data Word Formats 1-33
Figure 1-16. CU Control Word Formats 1-33
Figure 1-17. Device Buffer Transfer (Data Words) to CU $1-35$
Figure 1-18. Status Word Sent by Device 1-36
Figure 1-19. United States I/O Interface Code - EBCDIC 1-37
Figure 1-20. United States I/O Interface Code - ASCII 1-38
Figure 1-21. Variant of EBCDIC for Text Print Feature 1-39
Figure 1-22. 3288 Text Print Feature Restricted Character Set (Copy Command) 1-39
Figure 1-23. Data Analysis - APL Feature Character Interchange Codes (2 parts) 1-40
Figure 1-24. Assignments for Internal 6-Bit Structured Data $1-42$
Figure 1-25. Local and Remote Command Codes 1-43
Figure 1-26. Attention ID (AID) Configurations $1-45$
Figure 1-27. Write Control Character (WCC) $1-46$
Figure 1-28. Copy Control Character (CCC) 1-47
Figure 1-29. Sense Bit Description 1-48
Figure 1-30. Buffer Control Orders and Order Codes $1-49$
Figure 1-31. 3272 and Device Addressing - 16 or Fewer Devices per 3272 $1-50$
Figure 1-32. 3272 and Device Addressing - 17 or More Devices per 3272 1-50
Figure 1-33. Status Byte Bit Assignments 1-51
Figure 1-34. Initial Status and Sense Conditions - Local 1-52
Figure 1-35. Ending Status and Sense Conditions - Local (2 parts) 1.53
Figure 1-36. Asynchronous Status and Sense Conditions - Local (3 parts) $1-55$
Figure 1-37. Remote Control Unit and Device Addressing (3 parts) $1-58$
Figure 1-38. Remote Status and Sense Byte Definitions (2 parts) 1-61
Figure 1-39. Remote Error Status and Sense Responses (4 parts) 1-62
Figure 1-40. Remote Status and Sense Conditions 1-66
Figure 1-41. Indicators and Controls $1-68$
Figure 1-42. General Poll and Specific Poll, Sequence/Response Diagram (2 parts) 1-70
Figure 1-43. $\quad 3270$ CU Message Response to Polling or Read Modified Command (2 parts) 1.72
Figure 1-44. Selection Addressing, Sequence/Response Diagram (2 parts) 1.74
Figure 1-45. Write-Type and Control-Type Commands, Sequence/Response Diagram (2 parts) $1-76$
Figure 1-46. Read-Type Command, Sequence/Response Diagram (2 parts) 1-78
Figure 1-47. 3275-Initiated Transmission, Sequence/Response Diagram - Dial Feature (2 parts) $1-80$
Figure 1-48. TCU-Initiated Transmission, Sequence/Response Diagram - Dial Feature (2 parts) $1-82$
Figure 1-49. Example of Maintained Connection, Sequence/Response Diagram - Dial Feature (2 parts) $1-84$
Figure 1-50. Status Message Transmission with Dial Feature, Sequence/Response Diagram $1-86$

3270 CONTROL UNIT TO DEVICE INTERFACE

The 3270 Control Unit to device interface is a single wire type RG62AU coax, characteristic impedance 93 ohms, with serial-by-bit data transferred in either direction, but only one direction at a time. The control unit operates as the primary station and the attached device as a secondary station. Each device, attached directly to the control unit, receives and sends data addressed to that device only.

The following conditions for the coaxial cable must be observed:

1. DC and frame ground must be isolated (coaxial cable shield in dc return).
2. Thirteen cable splices are maximum (with compatible coaxial cable connectors). The outside of the connection is to be insulated by shrink fit tubing or equivalent to

- prevent accidental short to earth ground.

3. The inner conductor and outer shield of coaxial cable can be shorted without circuit damage at the control unit or device (Fault Condition).
4. A maximum of 20 ma of current can flow in the center conductor of the coaxial cable (Non-short condition) with power off at one end. This current will not trigger the control unit receiver.
5. Device power-up and down sequences must not introduce noise on the coaxial cable center conductor that might be interpreted as data (regardless of validity).
6. Shield currents on the coaxial cable will not cause more than $\pm 20 \mathrm{~ns}$ pulse width modulation.

Bits on the coaxial cable center conductor appear as negative-going pulses. The center conductor of the coaxial cable, when measured at the control unit with reference to the outer conductor (shield), will be +7.4 nominal $(+1.1-2.2)$ volts with no signal present and power on at each unit. For maximum coaxial cable length (2000 feet or 610 m) the signal from the control unit on the coaxial cable center conductor will appear at the device as follows:

Bit timings from the device to the control unit will meet the same requirements as from control unit to device except for bit rate. The bit rate from the device will be 630 ns (min) to 1.050 usec (\max) per bit. The minimum duration of the Up level, after crossing the 10% point going in the positive direction for a 1 or 0 bit until the start of the next consecutive bit, will be 30 ns .

3270 CONTROL UNIT TO DEVICE INTERFACE FOR RPQ AB4820 (5000 FT OR 1524 m)

Bits on the coaxial cable center conductor appear as negative-going pulses. The center conductor of the coaxial cable, when measured at the control unit with reference to the outer conductor (shield), will be 0 volts with no signal present and power on at each unit. The minimum cable length is 2000 feet (610 m). The maximum coaxial cable length is 5000 feet (1524 m). The signal from the control unit on the coaxial cable center conductor will appear as follows at the device:

The pulse amplitude, as referenced to dc return (outer conductor of coaxial cable), will be as follows for a control unit or device:

The minimum pulse amplitude at the receiving end is therefore 0.5 V .
Bit timings from the device to the control unit will meet the same requirements as from control unit to device except for the bit rate. The bit rate from the device will be 630 ns minimum to 1.050 usec maximum per bit. The minimum duration of the "Up" level after crossing the 10% point going in the positive direction for a 1 or 0 bit until the start of the next consecutive bit will be 100 ns .

Up to 16 devices with greater than 2000 -foot (610 m) capability may be attached to one control unit.

COAXIAL CABLES AND BNC CONNECTORS

Standard

- Coaxial cable (cable only)
- BNC (male) connector

PN 323921 (RG 62 A/U)

- BNC (female) adapter (extender)

PN 5214874
(UG-260 B/U)

Coax and BNCs (fitted)

- Kit of qty 2 BNC (male) connector

PN 5252643
(UG-914 U)

B/M 1836418

Underground

- Coaxial cable (cable only)

PN 5252750

- BNC (male) connector PN 5252758
- BNC (female) adapter extender)

PN 5252764
(UG-492 A/U)

- Coax and BNCs (fitted) PN 1833108
- Kit of qty 2 BNC (male) connector

B/M 1836419

POWER SUPPLY RIPPLE

I/O errors, data checks, and various other problems which are intermittent and hard to define may be caused by excess ripple on the power supply voltages. Check all power supply capacitor screws for tightness. See Figure 1-1 for maximum ripple values.

$\begin{aligned} & 3271^{*} \text { and } 3272 \\ & \text { DC Power } \\ & \text { Supply Voltage } \\ & +5 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & +8 \mathrm{~V} \end{aligned}$	Maximum AC Ripple Voltage 200 mv peak to peak 36 mv peak to peak 300 mv peak to peak
3275^{*} DC Power Supply Voltage $\begin{array}{r} +5 \mathrm{~V} \\ -12 \mathrm{~V} \\ +8 \mathrm{~V} \\ +34 \mathrm{~V} \end{array}$	Maximum AC Ripple Voltage 200 mv peak to peak 36 mv peak to peak 300 mv peak to peak 750 mv peak to peak
3277 DC Power Supply Voltage $\begin{array}{r} +5 \mathrm{~V} \\ -12 \mathrm{~V} \\ +8 \mathrm{~V} \\ +34 \mathrm{~V} \end{array}$	Maximum AC Ripple Voltage 200 mv peak to peak 10 mv peak to peak 300 mv peak to peak 750 mv peak to peak
$3284 \text { and } 3286$ DC Power Supply Voltage $\begin{array}{r} +5 \mathrm{~V} \\ +24 \mathrm{~V} \\ -12 \mathrm{~V} \end{array}$	Maximum AC Ripple Voltage 160 mv peak to peak 1 V peak to peak 10 mv peak to peak
3288 DC Power Supply Voltage $\begin{array}{r} +24 \mathrm{~V} \\ -12 \mathrm{~V} \\ +8.5 \mathrm{~V} \\ -5.0 \mathrm{~V} \\ +5.0 \mathrm{~V} \end{array}$	Maximum AC Ripple Voltage 1 V peak to peak 40 mv peak to peak 150 mv peak to peak 60 mv peak to peak 200 mv peak to peak

*Ripple values shown are for Models 1 and 2. For Models 11 and 12 (SDLC), see Section 8.

Figure 1-1. Power Supply Ripple

LOGIC LEVELS - 3270 VTL

The switching levels for the 3270 VTL logic are as follows:

Up (+) Level	+2.4 to +5.5 V
Down $(-)$ Level	0 to +0.4 V
Floating Level	+1.0 to +2.0 V

It is acceptable to "tie down" circuits to signal ground (D08). No signal should ever be "tied up" directly to a +5 V pin (D03). There are specific "tie up" points shown in the FEALDS that allow signals to be tied up. Instead of using a "tie up" point, a 750- to 1000 -ohm resistor can be attached in series with a D03 pin and the signal to be tied up. This will only tie up a floating level line. There is no way to tie up a line that is at a down level without damaging components.

MISSING GROUNDS (Fig. 1-2)

DANGER
A missing AC ground and leakage in the power supply of a unit will cause a shock hazard to exist.

GROUND LOOPS (Fig. 1-2)

Ground loops can cause hard-to-define problems on a 3270 system. Some symptoms resulting from ground loops are:

1. Timeouts.
2. False status indications.
3. Hanging in transmit.
4. Data checks (with or without unit specify).
5. Equipment checks.
6. Intervention required.
7. Holding up request to send (3872).
8. Channel errors.
9. Hang conditions.
10. Control checks.
11. Extraneous device ends.

Signal ground and frame should be tied together only in the channel, external modem or modem cable. If these grounds are tied together at any other place, a ground loop condition can occur. The most common areas to find ground loops are in the keyboard (3277 ECA number 035 corrects this problem) and coaxial cable connections. Check for all ground loops while at the control unit by doing the following:

1. For control units (with the control unit not connected to a CPU or modem and all coaxial cables disconnected) the following resistance values should be measured between any D08 pin and frame ground.

Control Unit	Resistance
3271	Infinity (open circuit)
3272	Infinity (open circuit)
3275	7K to 10K ohms (minimum)

2. For devices, disconnect one coaxial cable at a time from the Control Unit and measure between the outer shield of the coaxial cable and frame ground of the control unit.

Device
3277
3284
3286
3288

Resistance
7K to 10K ohms (min)
Infinity (open circuit)
Infinity (open circuit)
Infinity (open circuit)

Figure 1-2. 3270 System Grounding

FACILITIES ERROR RECOGNITION SYSTEM (FERS)

The IBM 3270 Information Display System user can display error information on the entire local or remote teleprocessing network from any 3270 display station in that network using 3270 FERS (FACILITY ERROR RECOGNITION SYSTEM).

The current version of FERS requires a DOS, OS, or VS operating system which will execute CICS (OS V2.3 - DOS Standard V1.2) supporting 3270 under BTAM. FERS traps the sense and status data from the TEP of CICS and records the data on a disk record. The user, SE, CE, or PSR can obtain an overview of the entire error activity on his TP network. He may then assess the efficiency of his TP network and use the resulting sense and status data for problem determination.

The program may be installed by either the customer's programmer or the PSR and is estimated to require two hours to install, which includes preparation and machine run time. The Service Aid is distributed on a DTR tape with a description manual. The tape is in source code with utility control cards to update an existing partitioned library.

Highlights

- FERS is a self-teaching program so no formal training is required to use it effectively.
- To begin operation, clear the screen of a 3270 display unit, type FERS, and depress ENTER.
- The user can select from the first FERS screen the following display options:

Terminal - detail on a specific terminal error.
Control Unit - error count by terminal on a specific control unit.
Line - error count by control unit on a specific TP line.
All Lines - a recap of all TP lines on the system.
Describe - describe functions to aid the new user to operate FERS effectively.
FERS Info - optional data describing each terminal.

- Specific errors may be expanded to display the following:
Channel Status Word
3270 status and sense
Response field and DEC flags
ECB completion code
BTAM OP code
Data length and residual byte count
Channel command
TP, OP code, time of day, and date
- The status and sense data is displayed in a hexadecimal form. Additional data (display screens) can be selected to provide a definition of the hex error data to eliminate the need for a reference manual at the terminal.
- All errors are time-stamped as they are recorded by FERS allowing correlation of type and frequency to be used in PROBLEM DETERMINATION.
- To aid in system coordination between the host and remote sites, the optional FERS INFO file is provided to display the location, name and type of all devices in the system, phone numbers and/or responsible personnel as needed.
- The first screen of the FERS display provides the symbolic address and polling address of the terminal being used.

Ordering Information

FERS is available from Mechanicsburg and should be ordered using the following form numbers:

DOS - 1600 BPI 9 Trk, 229-7030
OS - 1600 BPI 9 Trk, 229-7029
Service Aid Description and Operations Manual, G229-7031

DISPLAY EXCEPTION MONITORING FACILITY (DEMF)

DEMF enhances the support of 3270 display terminals and their associated networks.

DEMF should be installed in every account in which the system environment
is appropriate; e.g., OS/VS, CICS/IMS, BTAM/TCAM, BSC, and 270X or 370X
in EP mode.

For detailed information, see the F.E.R.S. and D.E.M.F. User's Guide, G226-3546,
page 1-11.

Field Engineering Education

User's guide

PREFACE
This handbook provides a quick reference to
information needed for the use of This handbook provides a quick reference to
information needed for the use of DEMF and informat
FERS.
Inform
Information herein is extracted from:
(FM 3270 Facility Error Recognition System, (FERS) Service Aid Description. G 229-7031 Facility (DEMF), User's Guide. G C $34-2003$

Second Edition (February 1979)
This edition is a reprint of but does not replace This edition is a reprint of but does not replace
G $7902-140-0$, a WT publication. It has been renumbered G226-3546-0 for distribution in IBM U.S.A.
This user's guide will be updated from time to time; however, the basic documents information is the authoritative source and will be the first to reflect changes.
Address any comments concerning the contents of this publication to:
FE Network Project Office
Dept 956/B626-2
PO Box 12195
Research Triangle Park, NC 27609
© IBM Corp 1979
G226-3546-0

FERS
HOW TO USE FERS FOR NETWORK MANAGEMENT

Ner of errors per contra
UNIT, ON A IIVEN LINE

IF A REMOTE LLCATION ASKS
FOR INFO FOR A SPECIFIC TERMINAL
N

EERMNAL. ERRORS LESS THEN
24 HOURS OLO ARE HIGHLIGHTED

FERS
HOW TO USE FERS FROM A SUSPECTED

DETALILED INF
A GIEN ERRO

FERS

DEMF
HOW TO USE DEMF FOR NETWORK MANAGEMENT (check network or isolate unknown problem)

DEMF

HOW TO USE DEMF FROM A SUSPECTED

DEMF

STATUS/SENSE BYTES BITS MEANING

CHANNEL ATTACHED UNIT			
TPPE	BrTE	Bit	meanimg
$\begin{aligned} & \text { s } \\ & \text { T} \\ & A \\ & \tilde{u} \\ & \text { s } \end{aligned}$			ATTENTION STATUS MOOIFIER CONTROL UNIT END BUSY CHANNEL END DEVICE END UNIT CHECK UNIT EXCEPTION PROGRAM CONTROL INTERRUPT PROOGRAM CHECK PROTECTION CHECK CHANNEL DATA CHECK INTERFACE CONTROL CHECK CHAINING CHECK
CONTROLLER (370X ¢ 270X)			
TPE	ETE	Bit	meaning
		$\begin{aligned} & 3 \\ & \hline \\ & \hline \end{aligned}$	COMMAND REJECT NTERVENTION REQUIRED EOUIPMENT CHECK DATA CHECK OVERRUN TIME OUT
LOCAL 327X			
${ }^{\text {TPE }}$	Bme	віт	meaning
S $\stackrel{\mathrm{E}}{\mathrm{N}}$ $\stackrel{\mathrm{S}}{\mathrm{E}}$ E		$\begin{aligned} & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	COMMAND REJECT NTERVENTION REQUIRED BUS OUT CHECK DATA CHECK UNIT SPECIFY CONTROL CHECK CERATIO CHECK
REMOTE 327X			
TYPE	BTE	${ }^{\text {Bit }}$	meanimg
¢			IGNORE ALWAYS A" "" óvice busr UNIT SPECIFY DEVICE END TRANSMISSION CHECK IGNORE ALWORE COMMAND REJECT INTERVENTION REQUIRED EOUPMENT CHECK CONTROL C OPERATION CHECK

(This page intentionally blank)

3270 SERVICE AIDS

3270 CEM/Service Aid Index

1. 3270 System ECAs
2. 3270 Coax Cable Check
3. 2260-to-3270 Cable Conversion
4. AMP Tool
5. Facilities Error Recognition System (FERS)
6. Safety - Power Supply Mounting
7. Card Swapping
8. Safety - Logic Manual IR Pack and MLTG Storage
9. 3270 Publications (Cancelled 317/04-02-76 - see SA 19)
10. 3270 Card Holder Part Numbers
11. Test Request Function for 3270s Using BTAM
12. Individual LED Replacement
13. 3270 Recommended Card Caddy Lists
14. 3270 VTL (Cancelled 310/12-19-75)
15. CE General (Universal) Logic Probe Use on 3270
16. 3270 Switch Indicating Unit (SIU)
17. 3270 FERS
18. 3270 Publications
19. 3270 Maintenance Handbook
20. SIU Parts
21. ASCII Translation Table
22. Card Insertion
23. Ground Loops
24. SIU Overlays
25. Quick Ground Check for 3270
26. 3270 Card Jumpers
27. 3270 SDLC
28. 3270 Card List
29. 3270 APL Board P/N
30. Wire Nut Part Numbers
31. Availability of Micro Fiche for 3270 Products
32. Keyboard Insulator Bushing
33. Scoping Procedure to Determine Device State
34. 3270 Pivot Assembly
35. 3270 Card Holder Part Numbers
36. 3270 Safety Procedures
37. Procedure for Diagnosing Single Display or Coax Problem
38. Card Substitution - Card Caddy Considerations
39. Coaxial Cable/Power Line Separation Data Sheet

Note: Check for additional Service Aids released beyond the last number in this Index.

3270 Coax Cable Check

The only cables supported for 3270 use are:
RG62A/U - (indoors)
RG62A/U special - (outdoor, underground)
2260 cable converted

The most effective procedure for checking coax cables is the reflectometry procedure titled: An Oscilloscope Measurement Procedure for Twisted and Coax Cables, S226-3913.

The following procedure can be used for checking coax cables for 3270 via the use of the 2790 Line Tester. (The Bi Polar test is to be used).

1. Disconnect the coax cable being checked at both ends and leave unterminated.
2. Set counter test switch to off position.
3. Set mode switch to Bi Polar pulse.
4. Connect center conductor of coax to high side location on tester.
5. Connect shield to low side location on tester.
6. 453 scope settings should be as follows:
. 5 usec time base
1V per division
7. Probe center conductor at the 2790 tester end. Waveforms for various cable conditions (Figure 1-5) are as follows:
(5) - $1500 \mathrm{ft}(457 \mathrm{~m})$ of good coax cable.
(2) - Defective coax at beginning of $1500 \mathrm{ft}(457 \mathrm{~m})$.
(3) - Defective coax at end of $1500 \mathrm{ft}(457 \mathrm{~m})$
(45) - Defective coax at approximately $1000 \mathrm{ft}(305 \mathrm{~m})$.

Note 1: Approximate cable length can be determined by 2.5 usec per $1000 \mathrm{ft}(305 \mathrm{~m})$ of cable.
Note 2: Pictures shown are approximately $200 \mathrm{ft}(61 \mathrm{~m})$ per division.
Note 3: Pictures 2, 3 \& 4 are only samples of defective cables.
1

(2)

(3)

(4)

Figüre 1-5. Waveforms of Various Cable Conditions

AMP Tool

The AMP extraction tool, PN 452815, commonly used in repairing 029 and 059 machines, can be used successfully in removing AMP contacts found in the 3270 SIU (Switch Indicator Unit) and the power supply cables in the 3270 products. This tool may be ordered through the parts distribution center.

Power Supply Mounting

DANGER
When replacing the Low-Voltage Power Supply in the 3271, 3272, 3284, and 3286, tighten the two upper mounting screws in the machine frame. Failure to do this can result in injury if the power supply drops after removal of the front cover.

Card Swapping

Power should be shut off when swapping cards in 3270 products.
Analysis of failure mechanisms in VTL cards returned from the field indicates a possible cause of failure was removing or inserting cards with power up.

Power should be shut off before replacing cards or any Field Replaceable Unit in 3270 products ($3271,3272,3275,3277,3284,3286,3288$, or 5275).

Logic Manual IR Pack and MLTG Storage

CAUTION
Corporate Safety Standards prohibits storage of combustible material inside machines unless there is an approved storage compartment provided. Due to physical limitations on the 3270 products, there are no storage compartments provided. Therefore, IR packs, logics, and manuals must be stored elsewhere.

If there are no logic carts at the customer location and it is necessary to provide a cart for 3270 manual storage, it is recommended that a mini logic cart PN 453644 be ordered. Wheels for this cart are not included and must be ordered under BM 1749000. This cart will hold 16 B size logic binders. Other carts that may be available in the branch office are the small system cart PN 453699, microfiche viewer carts PN 453195, and the 1401 small system scope carts.

3270 Card Holder Part Numbers

Part Number	Description
819407	Holds four cards, three high one wide (3271, 3272 buffer card holders)
819408	Holds one card, three high four wide (3271, 3272, 3275, 3277, $3284,3286,3288)$
818002	Holds two cards, three high two wide (3271, 3272 device adapter card)
819295	Holds one card, two high four wide (3277) Holds one card, three high two wide, and two cards, three high one wide (3284, 3286, 3288)
8568970	Holds one card, three high two wide (9600 bps RPQ)

Test Request Function For 3270s Using BTAM

The test request key function enables a CE to quickly check out a 3275 or 3277 . They also provide an excellent means for operator familiarization.

It is recommended that the Request for Test (RFT) be installed in all 3270 installations. This is especially true for remote installations. There are a number of PTFs available to insure the successful installation of the RFT module. In addition the remote input message format has been changed.

Listed below are:

- A summary of all PTFs by system and release which contain all known RFT fixes.
- The release level of the format change.
- An example of the old and new format.

$\begin{array}{r} \text { Release } 21.0 \\ 21.6 \end{array}$	OS BTAM	
	apply all fixes in	
	list beginning here \longrightarrow	US02384
21.7	apply all fixes from here	US02187
		US03116
		US03057
		US01528
		US03386
		US03737
		US04119
		US04260
		US04625
		US05096
		US04773
21.8	apply all fixes from here \longrightarrow	US05501
		US05502
	(Note: The US0550x PTFs can and should	US05503
	be applied to release 21.0, 21.6, and 21.7	US05508
	systems, although the cover letter specifies	
	only release 21.8).	

Release 21.8 contains the RFT changes requiring a new format.
PTFs are forthcoming for all releases which will supersede the above PTFs and they will contain the fix for the 301 Abend problem and the new format change.

OS/VS1 BTAM
Release 2.0 apply all fixes in list beginning here \longrightarrow UX00191 UX00302 UX00418

2.6 apply all fixes from here \longrightarrow\begin{tabular}{c}
UX00497

UX00569
UX00859

UXO
\end{tabular}

3.0 apply all fixes from here \longrightarrow UX01551 UX01543 UX01111 UX01426 UX01687 UX00812
3.1 apply all fixes from here \longrightarrow UX01064*

UX01064 contains the fix for 301 Abends and the new RFT format.

	OS/VS2 (SVM) BTAM	
Release 1.0	apply all fixes in list beginning here \longrightarrow	UY70008
		UY70032
		UY70035
		UY70069
1.6	apply all fixes from here \longrightarrow	UY70285
		UY70286
1.7	apply all fixes from here \longrightarrow	UY70557
		UY70787
		UY70927
		UY70689*

UY700689 contains the fix for 301 Abends and the new RFT format change.
*Not yet available.
OS/VS2 (MVM) BTAM
Release 2.0 apply all of these PTFs \longrightarrow UZ00014 UZ00017 UZ00021*

PTF UZOOO21 and release 3.0 will contain the 301 Abend fix and the new RFT format change.
*Not yet available.

DOS BTAM

Release 27.1 37ON-469-02009
(this PTF has the new RFT format)

DOS/VS BTAM

Release 28 5745-00800
Release 29 5745-01604
Release 30 5745-02601
PTFs are forthcoming against Release 29, 30, and 31 to provide the new RFT format.
RFT Format and Invoking Procedure:
REMOTE:
Old Format: $\quad X X$ YY N MMDD
Where: $X X$ is a number specifying the desired test (23 through 28 for EBCDIC or 29 through 34 for ASCII).
YY is from 01.99 specifying the number of times the test shall be executed.
(01 is recommended; the test will be sent to the printer only once regardless of the $Y Y$ specification).
N is the number 4 (0 if system has the Dial feature).
MMDD is a sequence of four alphameric characters representing the hexadecimal addresses of the control unit and device. (This sequence is not required if your system has the Dial feature.)
Example: Run test 23, to control unit 2 device 3, Run test only once.
Type in 23014SSCC
+14 Shift key must be held.

New Format: The MMDD format is all that has changed. Using the example above
Type in 23014E2C3
$\xrightarrow[4]{ }$ Shift key must be held.
Press the Test Request Key.

LOCAL: Position the cursor at position 0 on the unformatted screen. (Press the CLEAR key; then press the RESET key.)

Key in the RFT message in the format XX YY N CUU
Where: XX is a number specifying the desired test (23 through 28 for EBCDIC or 29 through 34 for ASCII).
$Y Y$ is any number from 01.99 specifying the number of times the test shall be executed. (01 is recommended.)
N is the number $3-$ (specifies a 3 byte address follows)
CUU is the channel and unit address of the device (display or printer) to which the test is to be sent.

Note: Alphabetic characters must be entered in upper case.
Example: 230131E3
LShift key must be held down.

Press the Test Request key.
The desired test should appear on the screen within a reasonable amount of time.
Note: Refer to "A Guide to Using the Test Request Feature" (GA27-2774-2) for details of additional testing. The new format will be included in the next update to this manual.

Individual LED Replacement

PN 2391842 is now available for individual LED replacement for the Switch and Indicator Unit (SIU), 3271s and 3275s. If difficulty is experienced installing the leads through the guide on the 3275 LED card, they may be run over the card.

CE General (Universal) Logic Probe Use On 3270

Logic Probe PN 453212
Instruction Manual SY27-0113

To use on 3270 products, proceed as follows:

1. Power leads (black \& red)
a. Black lead 0 volts (or most negative voltage). Any D08 pin (ground).
b. Red lead 4 to 12 volts positive in relation to the black lead. Any D03 pin (+5 volts).
2. Test Probe Leads

Note: Signal and power leads are not common so it is necessary to use a signal ground lead.
a. Signal probe - connect to signal source
b. Signal ground - any D08 pin
3. Technology Switch Multi
4. Latch Switch None (unless used as babysitter)
5. Gate Ref Switch Not used
6. Level Indications
a. Both lights on Oscillating signal
b. Up light 2.0 to 60.0 volts
c. Down light 0.0 to 1.0 volts
d. No level :- 1.0 to 2.0 volts

Note: Voltage greater than 60 V (multi) or greater than 14 V (MST 1,2, or 4) will damage the probe.

CONTROL UNIT SEQUENCE LATCHES AND TABLES OF SEQUENCES

Sequence Latches

Sequence 2 - Device Polling.
a) Write Poll
b) Read Poll
c) Idle Poll

Sequence 3 - Sending data to a device, also backward tag flush.

Sequence 4 - Waiting for response from a device. e.g., Status, or Data in response to a Read Poll.

Sequence 5 - Receiving WCC or CCC.
Sequence 6 - Waiting for interface action.
Sequence 7 - Forward Tag flush also resetting modified data tags.

Sequence 8 - Reading or writing with interface.

Table of Sequences

Write (Buffer Not Valid)

Sequence	6	From selection	
Sequence	2	\{ Initial poll	
Sequence	4	\{ and response from the device	
Sequence	6	Wait for interface	
Sequence	5	Store WCC (Write Control Character)	
Sequence	2	Read poll (if data or reset modify data tags)	
Sequence	4	Receive 480 or 1920 characters	
Sequence	2	\{ Poll after fetch from buffer	
Sequence	4	\{ and wait for response from the device	
Sequence	7	Move data tags forward or reset	
Sequence	8	Receive data (Only if data is from local or remote interface)	
Sequence	6	No more data	
Sequence	2	Write poll (Signals device that control unit will transfer buffer to the device)	Only if the buffer has been
Sequence	3	Send 480 or 1920 by tes to the device	modified.
Sequence	2	(Ending poll	
Sequence	2	Unlock keyboard and sound alarm or start print send both control words	
Sequence	4	Response from the device	
Sequence		Wait for the interface	

Copy

Sequence	6 From selection or succeeding command
Sequence	2 \{ Initial poll (Only if not chained)
Sequence	4 \{ and wait for response from the device
Sequence	6 Wait for the interface
Sequence	5 Store CCC (Copy Control Character) and get from address (device address to be copied)
Sequence	2 \{ Initial poll (to from address)
Sequence	4 and wait for response from the device
Sequence	2 Read poll (to from address)
Sequence	4 Receive 480 or 1920 characters
Sequence	2 \{ Poll after fetch of buffer (to from address)
Sequence	4 \{ and wait for response from the device
Sequence	5 Erase last 1440 bytes (Only if a copy 480 to 1920)
Sequence	7 Move tags forward
Sequence	2 Write poll
Sequence	3 Send 480 or 1920 bytes
Sequence	2 Poll (send CCC)
Sequence	4 Wait for response from the device
Sequence	6 Wait for the interface

Read Buffer Or Read Modified

Sequence	From initial selection or succeeding command
Sequence	2 \{ Initial poll (only if not chained)
Sequence	4) and wait for response from the device
Sequence	6 Wait for the interface
Sequence	2 Read poll (if the buffer is not valid)
Sequence	4 Receive 480 or 1920 characters
Sequence	2 \{ Poll after fetch of the buffer
Sequence	4 and wait for response from the device
Sequence	7 Move tags forward
Sequence	8 Send data to the interface (channel or remote)
Sequence	6 End of data or stop, wait for the interface

Erase All Unprotected

Sequence	6	From selection or succeeding command
Sequence	2	Initial poll (Only if not chained) Sequence
	and wait for response from the device	
Sequence	6	Wait for the interface

Sequence 4
Sequence 6 Wait for the interface

Select

Sequence 6 From selection or succeeding command
Sequence $2\{$ Initial poll (Only if not chained)
Sequence 4 and wait for response from the device
Sequence 6 Wait for the interface
Sequence 2 Read poll (if buffer is not valid)
Sequence 4 Receive 480 or 1920 characters
Sequence $2\{$ Poll after fetch of the buffer
Sequence 4 and wait for response from the device
Sequence 7 Move tags forward
Sequence 6 Wait for the interface

Erase/Write

Sequence 6 From selection or succeeding command
Sequence 2 \{ Initial poll (Only if not chained)
Sequence 4 and wait for response from the device
Sequence 6 Wait for the interface
Sequence 5 Store WCC (Write Control Character) and erase the buffer
Sequence 8 Receive data (Only if data follows)
Sequence 6 No more data
Sequence 2 Write poll (Signals device that control unit will transfer the buffer to the device)
Sequence 3 Send 480 or 1920 bytes to the device
Sequence 2 Ending poll
Sequence $2\left\{\begin{array}{l}\text { Unlock keyboard and sound alarm or start print; } \\ \text { send }\end{array}\right.$
send both control words
Sequence 4 Response from the device
Sequence 6 Wait for the interface

Attribute Characters, How to Enter and Display

To enter Attribute characters from the keyboard:

1. Jumper J2U02 (inhibit device check) to ground (D08).
2. Ground C 2 BO 08 while entering attributes.
3. If protected attributes have to be inserted, then all attributes have to be entered from the end of the display format to the beginning.
4. Remove all jumpers.

To display Attribute characters, jumper J2M13 or H2D07 to ground (D08).
(See Figure 1-6.)

Attribute character bit assignments are summarized as follows:

Note: Bits 0 and 1 are not decoded when received by the 3270 . When transferring characters to the CPU, bit 1 is a 1 and bit 0 is set (as shown in Figure 1-25) depending upon the character being transferred. All attribute characters are part of the defined character set. The default option (bits 2 through 7 all set to 0) results in an unprotected, alphameric, displayed, nondetectable field.

Figure 1-6. Attribute Character Bit Definition

SCOPING PROCEDURE TO DETERMINE DEVICE CONDITION

This procedure is used when a device will not operate online, but no trouble can be found on the device. In this procedure, you do not have to take the system away from the customer to do the scoping. You will not interfere with the customer's use of the rest of the devices attached to the 3271 or 3272 in any way. Refer to Status Word and CU CW1 Scoping Points on Unique 3270 Box, in this section.

3271/3272 Poll Poll, and Display or Printer Status Detected at Device

1. 3277 poll poll
a. Sync plus on oscilloscope.
b. Use $.2 \mathrm{~V} / \mathrm{div}$. and $2 \mu \mathrm{~s} / \mathrm{div}$. uncalibrated sweep rate to shrink the display down to fit the screen.
c. Probe G2J12.
(1) The first bit (bit 1) of CU CW1 is the 14 th bit shown and bit 13 is the 26 th (rightmost on the oscilloscope). This is because the actual CU CW1 is preceded by a dummy CU CW of all zeros (all bits off).
(2) To determine the status of the bits displayed (on/off), see Figure 1-14 (which shows the normal CU CW1 poll poll signal that will be seen) and Figure 1-16 for more information on the CU CW.
2. 3277 status word
a. Sync plus on oscilloscope.
b. Use $50 \mathrm{mV} / \mathrm{div}$. and $1 \mu \mathrm{~s} / \mathrm{div}$. uncalibrated sweep rate to shrink the display down to fit the screen.
c. Probe G2P12.
(1) The last bit on the right of the screen is bit 13. Count the bits from the right to the left to determine which bits are on or off. Refer to Figure 1-8 to see what the trace will look like, and to Figure 1-16 (display station status word) to determine what each bit is used to indicate.
(2) The busy bit will always be on.
(3) The trace for displays is inverted in relation to the trace for the printers.
3. $3284 / 3286$ Mod. $1 / 2$ poll poll
a. Sync minus on oscilloscope.
b. Use $.2 \mathrm{mV} / \mathrm{div}$. and $2 \mu \mathrm{~s} / \mathrm{div}$. uncalibrated sweep rate, and shrink the display down to fit the screen.
c. Probe E2J13.
(1) The scope trace should look like Figure 1-13. The first bit (bit 1) of CU CW1 is the 14th bit shown, and bit 13 is the 26th (rightmost on the oscilloscope). This is because the actual CU CW1 is preceded by a dummy CU CW of all zeros (all bits off).
(2) To determine the status of the bits displayed (on/off), see Figure 1.13 (which shows the normal CU CW1 poll poll signal that will be seen) and Figure 1-16 for more information on the CU CW.
4. 3284/3286 Mod. 1/2 status word
a. Sync minus on oscilloscope.
b. Use $.2 \mathrm{~V} / \mathrm{div}$. and $1 \mu \mathrm{~s} / \mathrm{div}$. uncalibrated sweep rate, and shrink the display down to fit the screen.
c. Probe C2D12.
(1) The last bit on the right of the screen is bit 13. Count the bits from the right to the left to determine which bits are on or off. Refer to Figure $1-9$ to see what the trace will look like and to Figure $1-16$ (printer status word) to determine what each bit is used to indicate.
(2) The busy bit and bit 1 will always be on, but you may not always see the busy bit on the oscilloscope.
(3) The trace for the printers is inverted in relation to the trace for the displays.
5. 3288 poll poll
a. Sync minus on oscilloscope.
b. Use $.2 \mathrm{~V} / \mathrm{div}$. and $2 \mu \mathrm{~s} /$ div. uncalibrated sweep rate, and shrink the display down to fit the screen.
c. Probe G2J13.
(1) The scope trace should look like Figure 1-13. The first bit (bit 1) of CU CW1 is the 14th bit shown, and bit 13 is the 26th (rightmost on the oscilloscope.) This is because the actual CU CW1 is preceded by a dummy CU CW of all zeros (all bits off).
(2) To determine the status of the bits displayed (on/off), see Figure 1.13 which shows the normal CU CW1 poll poll signal that will be seen and Figure 1-16 for more information on the CU CW.
6. 3288 status word
a. Sync minus on oscilloscope.
b. Use $.2 \mathrm{~V} / \mathrm{div}$. and $.5 \mu \mathrm{~s} / \mathrm{div}$. uncalibrated sweep rate, and shrink the display down to fit the screen.
c. Probe F2M04.
(1) The last bit on the right of the screen is bit 13. Count the bits from the right to the left to determine which bits are on or off. Refer to Figure 1.9 to see what the trace will look like and to Figure 1-16 (printer status word) to determine what each bit is used to indicate.
(2) The busy bit and bit 1 will always be on, but you may not always see the busy bit on the oscilloscope.
(3) The trace for the printer is inverted in relation to the trace for the displays.

DISPLAY OR PRINTER STATUS WORD DETECTED ON 3271 CU (Figure 1-7 through 1-10)

Note: Connect one device at a time (other devices must be disconnected via coaxial cables or powered off).

1. If a previous detection was done for another device, proceed to step 6.
2. Power on the 3271 CU (SYNC SEARCH MUST LIGHT). If you use the SIU tool, plug it as per overlay " 3271 - MPLXR CTRLS/10 REG \& SR" and make following switch setup:
```
ON LINE/OFF LINE . . . . . . . . . . . OFF LINE
IND . . . . . . . . . . . . . . . . . UP POSITION
```

If you do not use the SIU, disconnect the cable to modem.
3. SYNC minus on oscilloscope.
4. Use 2 usec and 5 V per division.
5. Probe on 3271 CU the line "GTD DATA TO SR FROM DEVICE" PIN 01A-A1N2S11.
6. Connect to CU side the coaxial cable of device or printer (3284/3286) to be analyzed and power it on.
7. For waveshape shown on the oscilloscope, refer to Fig. 1-8 for the display or Fig. 1-9 for the printer.

Note 1: The first bit (on the left side of oscilloscope screen) is the "bit 1" of the status word and the last one (the rightmost one) is bit 13.
Note 2: To determine the status of bits (on/off), refer to Fig. 1-7. For repetition cycle of status word, refer to Fig. 1-10.
Note 3: Odd parity must be maintained for bits 1 through 12 only.

DISPLAY OR PRINTER STATUS WORD DETECTED ON 3272 CU

Note: Connect one device at a time (other devices must be disconnected via coaxial cables or powered off).

1. If a previous detection was done for another device, proceed to step 7.
2. ENABLE/DISABLE switch on 3272 CU must be positioned to ENABLE (CPU must be powered on) or plug the SIU tools, and, with ENABLE/DISABLE switch on DISABLE, raise (on SIU) the OPER OUT switch.
3. Power on 3272 CU .
4. SYNC minus on oscilloscope
5. Use 2 usec and 5 V per division.
6. Probe on 3272 CU the line "GTD DATA TO SR FROM DEVICE" PIN 01A-A1N2S11.
7. Connect to CU side the coaxial cable of device or printer $(3284 / 3286)$ to be analyzed and power it on.
8. For waveshape shown on the oscilloscope, refer to Fig. 1-8 for the display or Fig. 1-9 for the printer.

Note 1: The first bit (on the left side of oscilloscope screen) is bit 1 of the status word and the last one (the rightmost one) is bit 13.
Note 2: To determine the status of bits (on/off), refer to Fig. 1-7. For repetition cycle of status word, refer to Fig. 1-10.
Note 3: Odd parity must be maintained for bits 1 through 12 only.

CU CW1 DETECTED ON 3277 DEVICE (Figures 1-11 through 1-14)

Note: Connect one display device at a time (repetition cycle of CU CW1 reduces while increasing the number of devices connected).

3277 Connected to 3271 CU

1. Power on the 3271 CU (SYNC SEARCH MUST LIGHT). If you use the SIU tool, plug it as per overlay " $3271 \cdot P$ " LXR CTRLS/ 10 REG \& SP" and make the following switch setup:
ON LINE/OFF LINE
IND

If you do not use the SIU, disconnect the cable to modem.
2. SYNC oscilloscope on plus.
3. Use 5 usec and 5 V per division.
4. Probe on 3277 the line "+ data" pin 01A-A1G2 J12.
5. For waveshape shown on the oscilloscope, refer to Fig. 1-14.

Note 1: The first bit (bit 1) of CU CW1 is the 14 th bit shown and bit 13 is the 26 th (rightmost on the oscilloscope). This is because the actual CU CW1 is preceded by a dummy CU CW1 of all ZEROES (all bits off).
Note 2: To determine the status of bits (on/off), refer to Fig. 1-12. For repetition cycle of CU CW1, refer to:
3272 .
Fig. 1.10

3271
Fig. 1-11

Note 3: Odd parity must be maintained for bits 1 through 12 only.

3277 Connected to 3272 CU

1. ENABLE/DISABLE switch on 3272 CU must be positioned to ENABLE (CPU must be powered on) or plug the SIU tool, and, with ENABLE/DISABLE switch on DISABLE, raise (on SIU) the OPER OUT switch.
2. Power on the 3272 CU.
3. SYNC plus on oscilloscope.
4. Use 5 usec and 5 V per division.
5. Probe on 3277 the line "+ data" pin 01A-A1G2 J12.
6. For waveshape shown on the oscilloscope, refer to Fig. 1-14.

Note 1: The first bit (bit 1) of CU CW1 is the 14 th bit shown and bit 13 is the 26 th (rightmost on the oscilloscope). This is because the actual CU CW1 is preceded by a dummy CU CW1 of all ZEROES (all bits off).
Note 2: To determine the status of bits (on/off), refer to Fig. 1-12. For repetition cycle of CU CW1 refer to:

```
3272.
Fig. 1-10
3271.
Fig. 1-11
```

Note 3: Odd parity must be maintained for bits 1 through 12 only.

CU CW1 DETECTED ON PRINTER 3284/3286/3288

Note: Connect one device at a time (repetition cycle of CU CW1 reduces while increasing the number of devices).

3284/3286 Connected to 3271 CU

1. Power on the 3271 CU (SYNC SEARCH MUST LIGHT). If you use the SIU tool, plug it as per overlay " 3271 -MPLXR CTRLS/ 10 REG \& SP" and make following switch set-up:
```
ON LINE/OFF LINE . . . . . . . . OFF LINE
IND . . . . . . . . . . . . . . UP POSITION
```

If you do not use the SIU, disconnect the cable to modem.
2. SYNC minus on oscilloscope.
3. Use 5 usec and 5 V per division.
4. Probe on $3284 / 3286$ the line "-Coax data input" pin 01A-A1E2 J13. 3288 probe point is G2J13.
5. For waveshape shown on the oscilloscope, refer to Fig. 1-13.

3284/3286 Connected to 3272 CU

1. ENABLE/DSIABLE switch on 3272 CU must be positioned to ENABLE (CPU must be powered on) or plug the SIU tool, and, with ENABLE/DISABLE switch on DISABLE, raise (on SIU) the OPER OUT switch.
2. Power on the 3272 CU .
3. SYNC minus on oscilloscope.
4. Use 5 usec and 5 V per division.
5. Probe on 3284/3286 the line "-Coax data input" pin 01A-01E2 J13. 3288 probe point is G2J13.
6. For waveshape shown on the oscilloscope, refer to Fig. 1-13.

Note 1: The first bit (bit 1) of CU CW1 is the 14 th bit shown and bit 13 is the 26 th (rightmost on the oscilloscope). This is because the actual CU CW1 is preceded by a dummy CU CW1 of all ZEROES (all bits off).
Note 2: To determine the status of bits (on/off), refer to Fig. 1-12. For repetition cycle of CU CW1, refer to:
3272
Fig. 1.10
3271
Fig. 1-11

Note 3: Odd parity must be maintained for bits 1 through 12 only.

Figure 1-7. Status Word Waveform

Bits On 1,
13 (On if 1920 characters buffer)
13 (Off if 480 characters buffer)

Figure 1-8. Display Status Word

Figure 1-9. Printer Status Word

Repetition cycle for status/control word on 3272 CU

Figure 1-10. Status/Control Word (3272)

Repetition cycle for status/control word on 3271 CU

Figure 1-11. Status/Control Word (3271)

Figure 1-12. Status Word Waveform

Figure 1-13. CU CW 1 Detected on 3284/3286/3288

Figure 1-14. CU CW 1 Detected on 3277

Visual Verification of Correct AID Encoding

The following setup enables the CE to visually verify the correct encoding of attention identification (AID) characters when operating the AID-generating keys on a keyboard attached to a 3277 display head or using Selector Pen.

Oscilloscope Setup	3270 Unit Involved	Probed Pin	Word Shown On The Oscilloscope
Channel 1	3277	01 A-A1G2J12	CU CW 1
Channel 2	3271	01 A-A1N2S11	Display Status Word
Sync +			
Channel 1 Only			
5μ sec/div			
$5 \mathrm{~V} / \mathrm{div}$			

Display Status Word

When operating the CLEAR, ENTER, PA, and PF keys, or using the light pen selector on a detectable field with immediate interrupt designator, the status of bits of the status word shown on channel 2 will vary according to related AID code.

Status Word and CU CW 1 Scoping Points on Unique 3270 Box

$3271 / 3272$	
Xmit	Rec
A1-N2S09	A1-N2S11

3277	
Xmit	Rec
A-G2P12	A-G2J12

$3284 / 3286$	
Xmit	Rec
A-C2D12	A-E2J13

3288	
Xmit	Rec
A-F2M04	A-G2J13

CU Data Words

Figure 1.15 shows the formats for CU data words. The formats
for transfer to the display station and to the printer are identical
a. Character Format

b. Attribute Format

$$
\begin{array}{ll}
\text { Bit } 10 \text { (Escape) } & =\text { This bit is not decoded. } \\
\text { Bit } 11 & =0 \text { Field data not modified } \\
\text { (Modified Data } &
\end{array}
$$

$$
\begin{array}{lll}
\text { Tag) } & =1 \text { Field data modified }
\end{array}
$$

Bits 5.11 all zeros - Default option
Unprotected, A/N, normal intensity nondetectable data.

Figure 1-15. CU Data Word Formats

CU Control Words

Note: Either or both control words may be transmitted to
a selected Display Station or Printer.

Figure 1-16. cu Control Word Formats

Message Buffer Bit Assignment (Figures 1-17 and 1-18)

Bit		Attribute Byte	
0	Parity		Character Byte (EBCDIC)
1	Always = 1	Parity (does not include cursor bit)	
2	Prot/Unprot	Data 1 (high order)	
3	Alpha/Numeric	Data 2	
4	Intensity/Sel Pen Detect	Data 3	
5	Intensity/Sel Pen Detect	Data 5	
6	Escape	Data 6	
7	Modified Data Tag (MDT)	Data 7 (low order)	
8	Control =1	Control = 0	
9	Cursor	Cursor	

MLPXR Shift Register Bits

Busy Bit	2	鲁	CtI	1	2	3	4	5	6	7

Device SERDES is a 12 Position Shift Register

Figure 1-17. Device Buffer Transfer (Data Words) to Control Unit

Device SERDES is a $\mathbf{1 2} \cdot$ Position Shift Register

Figure 1-18. Status Word Sent by Device

Character Code Assignments

Figures 1-19 through 1-24 give the character code assignments.

$\begin{aligned} & \text { Bits } \\ & 4567 \end{aligned}$		00				01				10				11				$7 \longleftarrow \begin{gathered} \text { Bits } \\ -0,1 \end{gathered}$
		00	01	10	11	00	01	10	11	00	01	10	11	00	01	10	11	- 2,3
		0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	-Hex 0
0000	0	NUL	DLE			SP	\&	-									0	
0001	1	SOH	SBA					1		a	j			A	J		1	
0010	2	STX	EUA		SYN					b	k	s		B	K	S	2	
0011	3	ETX	IC							c	1	t		C	L	T	3	
0100	4									d	m	u		D	M	U	4	
0101	5	PT	NL							e	n	v		E	N	v	5	
0110	6			ETB						f	-	w		F	0	w	6	
0111	7			ESC	EOT					g	p	\times		G	P	X	7	
1000	8									h	q	y		H	Q	Y	8	
1001	9		EM							i	r	2		1	R	z	9	
1010	A					¢	!	I	:									
1011	B					.	\$,	\#									
1100	c	FF	DUP		RA	<	*	\%	@									
1101	D		SF	ENO	NAK	1	1	-	,									
1110	E		FM			+	;	>	$=$									
1111	F		ITB		SUB	1	\square	?	"									

Figure 1-19. United States I/O Interface Code - EBCDIC

Notes

1. Character code assignments other than those shown with in all outlined areas of this chart are undefined. If an undefined character code is programmed, the character that will be displayed is not specified. The character displayed by the 3277 or 3275 for a given undefined character code may be different for other devices. IBM reserves the right to change at any time the character displayed for an undefined character code.
2. Lowercase alphabetic characters (shown within the dotted outlined area) are converted to uppercase by the display station or printer and displayed or printed as uppercase characters.
3. NL, EM, FF, DUP, and FM control characters are displayed or printed as $5,9,<$, * and ; characters, respectively, except by the printer under format control, in which case NL and EM do not result in a character being printed.
4. Bit 0 is assigned and bit 1 is always a 1 for the following characters: attribute, write control (WCC), copy control (CCC), CU and device address, buffer address, sense, and status. Bit 0 is assigned so that each character can be presented by a graphic character within the solid outlined areas of the chart. See Figure 1-24.
5. This table also applies for Belgian, French, and Italian monocase I/O interface codes and graphics.
6. The : character (hex 6A) is not displayed and is printed by the 3288 only.

					${ }^{0} 0$	${ }^{0}{ }_{0}$	$\begin{array}{ll}0 \\ & \\ & 1 \\ & 0\end{array}$	$\begin{array}{ll}0 & \\ & 1 \\ & 1\end{array}$	${ }^{1} 0$	${ }^{1} 10$	${ }^{1} 10$	$\begin{array}{ll}1 \\ \\ & 1 \\ & 1\end{array}$
$\begin{aligned} & \mathrm{b}_{4} \\ & 1 \end{aligned}$	${ }_{1}^{b_{3}}$	$\stackrel{1}{2}^{b_{2}}$	$\stackrel{1}{1}_{1}$		0	1	2	3	4	5	6	7
0	0	0	0	0	NUL	DLE	SP	0	@	P		p
0	0	0	1	1	SOH	SBA	$1!$	1	A	0	a	q
0	0	1	0	2	STX	EUA	"	2	B	R	b	r
0	0	1	1	3	ETX	IC	\#	3	C	S	c	s
0	1	0	0	4	EOT	RA	\$	4	D	T	d	t
0	1	0	1	5	ENo	NAK	\%	5	E	U	e	u
0	1	1	0	6		SYN	\&	6	F	V	f	v
0	1	1	1	7		ETB	-	7	G	w	9	w
1	0	0	0	8			1	8	H	X	h	\times
1	0	0	1	9	PT	EM	1	9	1	Y	i	y
1	0	1	0	A	NL	SUB	*	:	J	z	j	z
1	0	1	1	B		ESC	+	;	K	[k	
1	1	0	0	c	FF	DUP	,	<	L	1	1	
1	1	0	1	D		SF	-	=	M]	m	
1	1	1	0	E		FM		>	N	ᄀヘ	n	
1	1	1	1	F		ITB	1	?	0		-	

Figure 1-20. United States I/O Interface Code - ASCII

Notes:

1. Character code assignments other than those shown within all outlined areas of this chart are undefined. If an undefined character code is programmed, the character that will be displayed is not specified. The character displayed by the 3277 or 3275 for a given undefined character code may be different for other devices. IBM reserves the right to change at any time the character displayed for an undefined character code.
2. Lowercase alphabetic characters (shown within the dotted outlined area) are converted to uppercase by the display station or printer and displayed or printed as uppercase characters
3. NL, EM, FF, DUP, and FM control characters are displayed or printed as $5,9,<,{ }^{*}$, and ; characters, respectively, except by the printer under format control, in which case NL and EM do not result in a character being printed.
4. Attribute, write control (WCC), copy control (CCC), CU and device address, buffer address, sense, and status characters are assigned as specified in Figure 1-24 so that each character can be represented by a graphic character within the solid outlined portion of this chart
5. ASCII A option displays and prints \mid and \neg for interface codes 21 and 5E (hex), respectively. ASCII B option displays and prints ! and for codes 21 and 5E (hex), respectively.

LEGEND:

\square For ease of using ASCII characters with the SIU or the B-TDAT, the blocks with shaded corners indicate that the associated hex character needs "odd" parity and the high-order bit must be on. For example, 3 should be converted from hex 33 to hex B3 to maintain odd parity.

Notes:
the 64-ch pal Emacters shown
2. NL, EM Duarar FMCDIC print bett. 2. NL, EM, DUP, FM, and SI control characters are printed as $5,9, \cdots ;$ and space characters, respectively, except when line length format is
3. Hex $6 A$; superscript 9 shown above. causes a broken vertical bar ($\{$ () to be printed when using the 64 -character EBCDIC print belt

Figure 1-21. Variant of EBCDIC for Text Print Feature

A	1	1	a	1
B	2	@	b	1
c	3	\#	c	\geqslant
D	4	\$	d	\#
E	5	\%	e	NULL
F	6	ξ	f	FF
G	7	*	9	DUP
н	8	-	h	FM
1	9	1	i	NL
J	0	1	;	EM
k		-	k	
$\stackrel{\square}{\square}$	$=$	+	1	
м	\neg	1	m	
N	;	:	n	
-	.	"	-	
P	,	<	p	
-		>	q	
R	1	?	r	
s	SPACE		s	
u			t	
U			u	
$\stackrel{\text { v }}{\text { w }}$			w	
x			w	
Y			y	
z			z	

Notes:

1. Duri
During execution of a copy command, only
. Id using the 120 -character TN print belt.

installed.
2. When additional character
printer operation reswls.

Figure 1-22. 3288 Text Print Feature Restricted Character Set (Copy Command)

	$\int^{\text {Hex }} 1$	00				01				10				11				1
		00	01	10	11	00	01	10	11	00	01	10	11	00	01	10	11	2,3
4567		0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	Hex 0
0000	0	NUL	DLE			SP	\&	-			\square	-	a				0	
0001	1	SOH	SBA					1		a	j		ϵ	A	J		1	
0010	2	STX	EUA		SYN					b	k	s	て	B	K	s	2	
0011	3	ETX	IC							c	1	t	ρ	C	L	T	3	
0100	4									d	m	u	ω	D	M	U	4	
0101	5	PT	NL							e	n	v		E	N	V	5	
0110	6			ETB						f	-	w	χ	F	0	w	6	
0111	7			ESC	EOT					g	p	\times	\downarrow	G	P	x	7	
1000	8									h	q	v	\div	H	0	Y	8	
1001	9		EM							i	r	z		1	R	z	9	
1010	A					ϕ	$!$:	\uparrow	\supset	\cap	∇					
1011	B					-	\$,	\#		\subset	\cup	\triangle					
1100	C		DUP		RA	<	*	\%	@	\leqslant		\perp	T					
1101	D		SF	ENO	NAK	1	1	-	,	Γ	\bigcirc	[]					
1110	E		FM			+	;	$>$	$=$	L		\geqslant	\neq					
1111	F		ITB		SUB	1	\square	?	"	\rightarrow	\leftarrow	-	1					

Figure 1-23 (Part 1 of 2). Data Analysis - APL Feature Character Interchange Codes

Note:

1. NL, EM, DUP, and FM control characters are displayed or printed as $5,9,{ }^{*}$, and ; characters, respectively, except by the printer under format control, in which case NL and EM do not result in a character being printed.

$\begin{aligned} & \text { Bits } \\ & 4567 \end{aligned}$		00				01				10				11				0,1
		00	01	10	11	00	01	10	11	00	01	10	11	00	01	10	11	2,3
		0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	Hex 0
0000	0										\{	\}	\bigcirc					
0001	1									A	J	0	1					
0010	2									B	K	S	2	\downarrow	I	θ		
0011	3									C	ㄴ,	I	3	.	!	\because		
0100	4									D	M	U	4					
0101	5		5							E	N	\underline{V}	$>$					
0110	6									F	O	W	6	$\widetilde{\nabla}$	∇	Φ		
0111	7									G	P	\underline{x}	7	\otimes	4	\pm		
1000	8									H	Q	\underline{Y}	8					
1001	9		9							$\underline{1}$	R	\underline{z}	5					
1010	A					$\widetilde{\wedge}$	\square	\wedge		1	2	3	-					
1011	B					$\widetilde{\mathrm{v}}$	\bigcirc	V	\sim		口	L	\downarrow					
1100	C									-			7					
1101	D										1		T					
1110	E		\pm			ϕ	1			$+$			1					
1111	F					Q	+			+		-	-					

Figure 1-23 (Part 2 of 2). Data Analysis - APL Feature Character Interchange Codes

Notes:
These codes, preceded by a hex ID control character, transmit the graphics shown.
\square Codes which are not directly entered from Data Analysis - APL keyboard.
\triangle Codes B5, B9 \& 9E may be used in program-to-terminal messages in lieu of codes $15,19, \& 1 E$ for characters $5,9, \& \pm$.

Bits 2-7	Graphic	EBCDIC	ASCII	Bits 2-7	Graphic	EBCDIC	ASCII
000000	SP	40	20	100000	-	60	2D
000001	A	C1	41	100001	1	61	2 F
000010	B	C2	42	100010	S	E2	53
000011	C	c3	43	100011	T	E3	54
000100	D	C4	44	100100	u	E4	55
000101	E	C5	45	100101	v	E5	56
$00 \quad 0110$	F	C6	46	$10 \quad 0110$	w	E6	57
000111	G	C7	47	100111	X	E7	58
001000	H	C8	48	101000	Y	E8	59
001001	1	C9	49	101001	z	E9	5A
001010	¢, [4A	5B	101010	! (EbCDIC)	6 A	7 C
001011	.	4B	2 E	101011	, ,	6 B	2 C
001100	$<$	4 C	3 C	101100	\%	6 C	25
001101	1	4D	28	101101	-	6 D	5F
001110	+	4 E	2B	101110	>	6 E	3 E
001111	1, !	4F	21	101111	?	6 F	3 F
010000	\&	50	26	110000	0	Fo	30
010001	J	D1	4 A	110001	1	F1	31
010010	K	D2	4B	110010	2	F2	32
010011	L	D3	4 C	110011	3	F3	33
010100	M	D4	4 D	110100	4	F4	34
010101	N	D5	4E	110101	5	F5	35
010110	0	D6	4F	110110	6	F6	36
010111	P	D7	50	110111	7	F7	37
011000	0	D8	51	111000	8	F8	38
011001	R	D9	52	111001	9	F9	39
011010	!,]	5A	5 D	111010	:	7A	3 A
011011	\$	5B	24	111011	\#	7B	23
011100	*	5 C	2 A	111100	@	7 C	40
011101	1	5D	29	111101	,	7 D	27
011110	;	5E	3B	111110	=	7E	3 D
011111	\neg, \wedge	5F	5 E	111111	"	7F	22

Note: The following characters are internally handled as 6 -bit structured data: graphic, attribute, AID, write control (WCC), copy control (CCC), CU and device address, buffer address, status, and sense. When any of these characters is received by the CU, only the low-order 6 bits are used and the rest are ignored. When any of these characters is transmitted to the program, the CU assigns the appropriate EBCDIC code. If transmission is in ASCII, the CU translates the EBCDIC code to ASCII code prior to transmission.

For example, to use this table to determine the hex code transmitted for an attribute character, first determine the values of bits $2-7$. Select this bit configuration in the table under "Bits 2-7". The hex code that will be transmitted (either in EBCDIC or ASCII) is to the right of the bit configuration.

Use this table also to determine equivalent EBCDIC and ASCII hex codes and their associated graphic characters. See Figure 1-20, Note 5, for ASCII A and B graphic character differences for ASCII codes 21 and 5E (hex).

Graphic characters for the United States I/O interface codes are shown. Graphic characters for EBCDIC 4A, 5A, 5B, 7B, 7C, and 7F might differ for particular World Trade I/O interface codes.

Figure 1-24. Assignments for Internal 6-Bit Structured Data

3270 COMMANDS (Figure 1-25)

Four basic types of commands are executed by the 3270 systems:

1. Write commands, which are used to transfer data and orders from main storage to the 3270 system.
2. Read commands, which transfer 3270 buffer data, keyboard key data, and, for remote configurations, status information to main storage.
3. Control commands, which cause certain printer or display station operations.
4. Sense commands (local configurations only), which transfer to main storage a byte of sense data that reflects certain control or check conditions existing in the device or control unit to which the command was addressed.

	Local Command	Remote EBCDIC		
		ASCII Hex	Graphic	
Write	01	F1	31	1
Erase/Write	05	F5	35	5
Read Buffer	02	F2	32	2
Read Modified	06	F6	36	6
Copy	N/A	F7	37	7
Select	OB	N/A	N/A	N/A
Erase All				
\quad Unprotected	$0 F$	6F	$3 F$	$?$
No Operation	03	N/A	N/A	N/A
Sense	04	N/A	N/A	N/A

Figure 1-25. Local and Remote Command Codes

3271 and 3275 Remote Commands (EBCDIC only)

Initial Selection	General Poll	Specific Poll
$32 . \mathrm{SYN}$	32 - SYN	$32 \cdot \mathrm{SYN}$
32 - SYN	$32 \cdot \mathrm{SYN}$	$32 \cdot \mathrm{SYN}$
60 - Cu Add.	40 - CuP Poll	40 - Cu Poll
60 - Cu Add.	40 - Cu Poll	40 - Cu Poll
40 - Dev Add.	7F - Gen Poll	40 - Dev Add.
40 . Dev Add.	7F - Gen Poll	40 - Dev Add.
2D - ENO	2D - ENO	2D - ENO
Blank - End Pad	Blank - End Pad	Blank - End Pad
Turnaround (Rcv)	Turnaround (Rcv)	Turnaround (Rcv)
55 - Start Pad	55 - Start Pad	55 - Start Pad
32 - SYN	32 - SYN	32 - SYN
32 - SYN	$32 \cdot \mathrm{SYN}$	$32 \cdot \mathrm{SYN}$
10 - DLE	37 - EOT	37 - EOT
70 - ACK 0	FF - End Pad	FF - End Pad
FF - End Pad		

Specific Poll w/Status Msg
Write from Init Selection
Init Selec w/Error Status

32	SYN	32	SYN	32		SYN
32	SYN	32	SYN	32		SYN
40	Cu Poll	02	STX	60		Cu Add
40	Cu Poll	27	ESC	60		Cu Add
40	Dev Add	F1	Write	40		Dev Add
40	Dev Add	40	WCC	40		Dev Add
2D	ENO	Data		2D		ENQ
	End Pad	03	ETX	Bla		End Pad
	ound (Rev)	03	- BCC			und (Rcv)

3271 and 3275 Remote Commands (EBCDIC only) (cont)

Specific Poll w/Status Msg	Write from Init Selection	Init Selec w/Error Status
55 - Start Pad	03 - BCC	55 - Start Pad
$32 \cdot \mathrm{SYN}$	Blank. End Pad	32 - SYN
$32 \cdot \mathrm{SYN}$	Turnaround (Rcv)	$32 \cdot \mathrm{SYN}$
$01 \cdot \mathrm{SOH}$	55 - Start Pad	$10 \cdot$ DLE
6C - \%	32 - SYN	7C - RVI
D9 - R	$32 \cdot \mathrm{SYN}$	FF . End Pad
02 - STX	10 - DLE	
$40 \cdot \mathrm{Cu}$ Poll	61 - ACK 1	
40 - Dev Add	FF - End Pad	
40 - S/S 0		
C1 - S/S 1		
03 - ETX		
CRC 1 - BCC		
CRC 2 - BCC		
FF - End Pad		

Read Modified From Initial Selection

32 - SYN	Mod Field Address
$32 \cdot \mathrm{SYN}$	Mod Field Address
02 - STX	Data
27 - ESC	03 - ETX
F6 - Read Mod	CRC 1 - BCC
03 - ETX	CRC 2 - BCC
CRC 1 - BCC	FF - End Pad
CRC 2 - BCC	Turnaround (Xmit)
Blank - End Pad	32 - SYN
Turnaround (Rcv)	$32 \cdot \mathrm{SYN}$
55 - Start Pad	10 - DLE
32 - SYN	61 - ACK 1
32 - SYN	Blank - End Pad
02 - STX	Turnaround (Rev)
40 - Cu Add	55 . Start Pad
40 - Dev Add	32 - SYN
AID Char. - AID	$32 \cdot \mathrm{SYN}$
Cursor Add	37 - EOT
Cursor Add	FF - End Pad
11 - SBA	

3270 COMMANDS, AIDs, CCs, ORDERS, ADDRESSING, AND STATUS AND SENSE

See Figures 1-26 through 1-40.

AID	Hex Character (EBCDIC)	Hex Character (ASCII)	Graphic Character	Read Modified Command Operation	Resultant Transfer to CPU
No AID generated (Display or Display Station) No AID generated (Printer)	60 E8	$2 D$ 59	Y	Rd Mod Rd Mod	If performing a remote polling operation, no read operation occurs; otherwise, field addresses and text in the modified fields are transferred.
ENTER key	7D	27	,	Rd Mod	
PF 1 key	F1	31	1	Rd Mod	
PF 2 key	F2	32	2	Rd Mod	
PF 3 key	F3	33	3	Ra Mod	
PF 4 key	F4	34	4	Rd Mod	AID code and cursor
PF 5 key	F5	35	5	Rd Mod	address, followed by an
PF 6 key	F6	36	6	Rd Mod	\rangle address +1 , and text for
PF 7 key	F7	37	7	Rd Mod	each modified field. Nulls
PF 8 key	F8	38	8	Rd Mod	are suppressed.
PF 9 key	F9	39	9	Rd Mod	
PF 10 key	7 A	3 A	:	Rd Mod	
PF 11 key	7 B) See	23	\#	Rd Mod	
PF 12 key	7C) note.	40	@	Rd Mod	
Operator Identification Card Reader	E6	57	w	Rd Mod	
Selector Pen Attention	7E	3D	=	Rd Mod	AID code, cursor address, and field addresses only; no data.
PA 1 key	6C	25	\%	Short Rd	
PA 2 (CNCL) key	6 E	3E	>	Short Rd	AID code only
PA 3 key	6B	2 C	,	Short Rd	
CLEAR key	6D	5 F	-	Short Rd	
TEST REQ key	FO	30	0	Tst Req Rd	A test request message. AID transferred on Read Buffer only.

Note: Graphic characters for the United States I/O interface codes are shown.
Figure 1-26. Attention ID (AID) Configurations

Bit	Explanation
0	Determined by the contents of bits 2-7 as shown in Figure 1-24.
1	Always a 1.
2, 3	Define the printout format, as follows: $=00$ - The NL order in the data stream determines print line length. $=01$-Specifies 40-character print line. $=10$-Specifies 64 -character print line. $=11$-Specifies 80 -character print line.
4	Start Printer bit. When set to 1 , initiates a printout operation at completion of the write operation.
5	The Sound Alarm bit. When set to 1 , sounds the audible alarm at the selected device at the end of the operation if that device has an audible alarm.
6	The Keyboard Restore bit. When set to 1, restores operation of the keyboard by resetting the INPUT INHIBITED indicator. It also resets the AID byte at the termination of the I/O command.
7	Reset MDT bits. When set to 1 , all MDT bits in the selected devices' existing buffer data are reset before any data is written or orders are executed.

Figure 1-27. Write Control Character (WCC)

Bit	Explanation
0	Determined by the contents of bits 2-7 as shown in Figure 1-24.
1	Always a 1.
2,3	Define the printout format as follows: $=00$ - The NL order in the data stream determines print line length. $=01$ - Specifies a 40 -character print line. $=10$-Specifies a 64 -character print line. $=11$-Specifies an 80 -character print line.
4	The Start Printer bit. When set to 1 , initiates a printout operation at the "to" device after buffer transfers are completed.
5	The Sound Alarm bit. When set to 1 , sounds the audible alarm at the "to" device after buffer transfers are completed if that device has an audible alarm.
6,7	Define the type of data to be copied as follows: $=00$ - Only attribute characters are copied. $=01$ - Attribute characters and unprotected alphameric fields (including nulls) are copied. Nulls are transferred for the alphameric characters not copied from the protected fields. $=10$ - All attribute characters and protected alphameric fields (including nulls) are copied. Nulls are transferred for the alphameric characters not copied from the unprotected fields. $=11$. The entire contents of the storage buffer (including nulls) are copied.

Figure 1-28. Copy Control Character (CCC)

Bit	Name	Significance
0	Command Reject (CR)	Set if the 3272 has received an invalid command; the valid commands are listed in Figure 1-25.
1	Intervention Required (IR)	Set if a command, other than Sense, was addressed to a device that is unavailable or is in the "not ready" condition.
2	Bus Out Check (BOC)	Set if the 3272 has detected bad parity on any command or data byte received from the channel.
3	Equipment Check (EC)	Set if: (1) the 3272 has asynchronously detected a parity check on data received from a device in response to an internal poll for attention status (the internal poll is tried twice before EC is set), (2) a printer error occurs. If this is a device-detected condition, Unit Specify is also set.
4	Data Check (DC)	Set if: (1) the 3272 or a device has detected bad parity on data transferred internally or between the 3272 and a device during command operations, (2) a 3277 has detected a cursor check, or (3) a device has detected a buffer check. If this is a device-detected condition, Unit Specify is also set.
5	Unit Specify (US)	Set if the sense bits resulted from a device-detected error.
6	Control Check (CC)	Set when the 3272 has detected a timeout condition. (The addressed device fails to perform a specified operation or respond to the 3272 within a specified period of time.)
7	Operation Check (OC)	Set when the 3272 has received a valid command or order that it cannot execute, as follows: 1. SBA, RA, or EUA order specifies an illegal buffer address. 2. Write data stream ends before all required bytes of SBA, RA, EUA, or SF order sequence are received. 3. Write, or Erase/Write with Start Print bit set in WCC, is chained to the next command; the print operation is suppressed.

Figure 1-29. Sense Bit Description

Notes:

1. Figure $1-6$ shows attribute byte and Figure $1-24$ shows coding of this byte.
2. Figures $1-19$ and 1.20 show coding of this byte.
3. ASCII requires odd parity to be maintained.

Figure 1-30. Buffer Orders and Order Codes

3272 No.	8-bit Local Address Byte		Device No.	$\begin{gathered} 4567 \\ (X X X X) \end{gathered}$
	3272	Device	0	0000
	0123	4567	1	0001 0010
			3	0011
0	0000	XXXX	4	0100
1	0001	$\underline{x} \times \times \times$	5	0101
2	0010	$\underline{x} \times x \times$	6	0110
3	0011	XXXX	7	0111
4	0100	$\underline{X X X X}$	8	1000
5	0101	XXXX	9	1001
6	0110	X XXX	10	1010
7	0111	X XXX	11	1011
8	1000	X XXX	12	1100
9	1001	XXXX	13	1101
10	1010	XXXX	14	1110
11	1011	XXXX	15	1111
12	1100	XXXX		-
13	1101	X \times XX		
14	1110	X \times X \times		
15	1111	XXXX		

Figure 1-31. 3272 and Device Addressing - 16 or Fewer Devices per 3272

3272 No.	8-bit Local Address Byte	
	3272	Device
	012	34567
0	000	$x \times \times \times \times$
2	001	X \times X \times X
4	010	X $\times \times \times \times$
6	011	X \times X \times X
8	100	X $\times \times \times \times$
10	101	$x \times \times \times \times$
12	110	X \times XXX
14	111	X \times X $\times \mathrm{X}$

Device No.	$\begin{gathered} 34567 \\ (X \times \times X) \end{gathered}$
16	10000
17	10001
18	10010
19	10011
20	10100
21	10101
22	10110
23	10111
24	11000
25	11001
26	11010
27	11011
28	11100
29	11101
30	11110
31	11111

Note: 3272 CU Nos. 1, 3, 5, 7, 9, 11, 13, and 15 cannot be assigned when attached devices are assigned Device No. 16 or greater.

Figure 1-32. 3272 and Device Addressing - 17 or More Devices per 3272

Bit	Name	Condition
0	Attention (A)	Indicates a request for service from a 3277 attached to 3272 . Set as result of certain keyboard, selector pen, or card reader activity at 3277 (see Figure 1-26). Program should respond by issuing a Read Modified command (chained from a Select command if multiplexer channel) to the 3277 requesting attention. Attention bit is also set with Unit Check bit as result of asynchronously detected equipment malfunction; in this case, program should respond by issuing a Sense command.
1	Status Modifier (SM)	Is set, with Busy bit, in initial status byte to indicate that there is pending status for a device other than the one selected.
2	Control Unit End (CUE)	Is set following a busy condition, after pending status is cleared or when control unit is no longer busy, to indicate that 3272 is now not busy and is free to accept a new command.
3	Busy (B)	Is set alone in initial status byte when addressed device is busy because it is performing a print operation or an Erase All Unprotected command. Set with SM when addressed 3272 is busy. When the channel addresses a device other than the one that is busy and control unit is not busy, addressed device becomes selected and the command is honored. Busy bit is also set with pending status if addressed device has such status; if pending status is for a device other than the one addressed, Status Modifier bit is also set.
4	Channel End (CE)	Indicates 3272/channel data transfer operations are completed. Is set alone (1) in initial status for Select or Erase All Unprotected command, or (2) as ending status for Write or Erase/Write command; in both cases, Device End status is sent asynchronously when device operations (command execution or 3272 -to-device buffer transfer) are completed. Is set with Device End, to indicate that 3272 and device operations (except printing) are completed (1) in initial status for No Operation command, (2) in ending status for Read Buffer, Read Modified, or Sense command, or (3) asynchronously, if only Channel End status was pending and the device operation is completed before the channel accepts status. Is set with Device End and Unit Exception in initial status for Read or Write command if addressed device is busy executing another command.
5	Device End (DE)	Indicates that 3272 and device have completed all command operations and are free to execute another command. Is set (1) in initial status for No Operation command, (2) in ending status for Read Buffer, Read Modified, or Sense command, and (3) in asynchronous status for Write, Erase/Write, Select, or Erase All Unprotected command.
6	Unit Check (UC)	Is set when an irregular program or equipment condition is detected by 3272 or the device. Program should always respond to Unit Check status by issuing a Sense command for further definition of condition.
7	Unit Exception (UE)	Is set in ending status (synchronous or asynchronous) when 3272 has attempted to execute a command but has found, after initial status was returned, that addressed device was busy.

Figure 1-33. Status Byte Bit Assignments

Status ${ }^{1}$ (Hex)	$\begin{aligned} & \text { Sense } \\ & \text { (Hex) } \end{aligned}$	Display	Printer	Error Recovery Procedure	Condition
All Zeros (00)		x	x		Normal status for any command other than No Operation, Select, or Erase All Unprotected.
CE (08)		x	x		Normal status for a Select or Erase All Unprotected command.
CE, DE (OC)		x	x		Normal status for a No Operation command.
UC (02)	$\begin{aligned} & \mathrm{BOC} \\ & (20) \end{aligned}$	x	x	1	A parity check was detected on the command byte.
UC (02)	$\begin{aligned} & \text { IR } \\ & (40) \end{aligned}$	X	X	2	A command other than Sense was addressed to a device that the 3272 has recorded as "unavailable" or "not ready".
UC (02)	$\begin{aligned} & \text { CR } \\ & (80) \end{aligned}$	x	x	3	An invalid command was issued to 3272.
$\begin{aligned} & \mathrm{B} \\ & (10) \end{aligned}$		X	x		Response to a command addressed to a device which is being serviced by 3272 or which is completing a previously issued command.
$\begin{aligned} & \text { B, SM } \\ & (50) \end{aligned}$		x	x		Response to a command addressed to a device other than device whose status is pending or device being serviced by 3272.

Note 1. If a SIOF is executed by the channel, unchained initial status becomes ending status.
Figure 1-34. Initial Status and Sense Conditions - Local

$\begin{aligned} & \text { Status } \\ & (\mathrm{Hex}) \end{aligned}$	$\begin{aligned} & \text { Sense } \\ & \text { (Hex) } \end{aligned}$	Display	Printer	Error Recovery Procedure	Condition
$\begin{aligned} & \mathrm{CE}^{2} \\ & \text { (08) } \end{aligned}$		X	X		Sent at end of data stream on a Write or Erase/Write command.
$\begin{aligned} & C E, D E^{1,2} \\ & \text { (OC) } \end{aligned}$		X	X		Sent at end of data stream on a Read Buffer, Read Modified, or Sense command or when channel byte count goes to zero on a Read Modified or Read Buffer command.
$\begin{aligned} & C E, D E, U C^{1} \\ & (O E) \end{aligned}$	$\begin{aligned} & \text { BOC } \\ & \text { (20) } \end{aligned}$	X	X	10	The 3272 detected a parity error on a character in data stream of a Write or Erase/Write command.
$\begin{aligned} & \text { CE, DE, UC }{ }^{1,2} \\ & (O E) \end{aligned}$	$\begin{aligned} & \text { DC, US } \\ & \text { (OC) } \end{aligned}$	X	X	1	Addressed device detected a parity or cursor check during a Write, Read Buffer, or Read Modified command.
$\begin{aligned} & \text { CE, DE, UC }{ }^{1,2} \\ & (O E) \end{aligned}$	$\begin{aligned} & \text { DC } \\ & \text { (08) } \end{aligned}$	X	X	1	The 3272 detected a cursor or parity check during receipt of data stream on a Write or Erase/Write command.
$\begin{aligned} & \text { CE, DE, UC }{ }^{1,2} \\ & \text { (OE) } \end{aligned}$	$\begin{aligned} & \text { DC } \\ & \text { (08) } \end{aligned}$	X	X	10	The 3272 detected a cursor or parity check during transmission of data stream on a Read Buffer or Read Modified command.
$\begin{aligned} & \text { CE, DE, UC }{ }^{1,2} \\ & (O E) \end{aligned}$	$\begin{aligned} & C C \\ & \text { (02) } \end{aligned}$	X	X	10	Addressed device failed to respond in a specified period of time to an Erase/Write command or an unchained Read Buffer, Read Modified, or Write command.

Figure 1-35 (Part 1 of 2). Ending Status and Sense Conditions

Status (Hex)	Sense (Hex)	Display	.Printer	Error Recovery Procedure	Condition
CE, DE, UC (OE)	OC (O1)	\times	x	3	The 3272 received an illegal buffer address in data stream of a Write or Erase/Write command, or data stream ended before providing all characters required for an SBA, RA, SF, or EUA order on a Write or Erase/Write com- mand.
CE, DE, UE 1,2 (OD)	x	x	9	The 3272 attempted to perform a Read Buffer, Read Modified, Write or EraseWrite command but found, after returning initial status, that the addressed device was "busy".	

Notes:

1. If this status is stacked by the channel, CUE could be generated and combined with it before the stacked status is accepted by the channel.
2. Occurs if a Start 10 Fast Release (SIOF) is executed by the channel for Select, Erase All Unprotected, or No Operation.

Figure 1-35 (Part 2 of 2). Ending Status and Sense Conditions - Local

Figure 1-36 (Part 1 of 3). Asynchronous Status and Sense Conditions - Local

$\begin{aligned} & \text { Status }{ }^{1} \\ & \text { (Hex) } \end{aligned}$	$\begin{aligned} & \text { Sense } \\ & \text { (Hex) } \end{aligned}$	Display	Printer	Error Recovery Procedure	Condition
A, UC (82)	DC, US (0C)	X	X	1	An idle device detected a parity check or cursor check in its buffer.
A, DE, UC (86)	DC, US (OC)	X	X	4 or 8	A device changes from "not available" to "available" or from "not ready" to "ready" and has detected a parity check or cursor check in its buffer or a printer detected parity check while printing.
A, DE, UC (86)	$\begin{aligned} & \text { IR } \\ & (40) \end{aligned}$		x	6	The addressed printer became Not Ready (out of paper or cover open) before completion of a print operation.
DE, UC (06)	$\begin{aligned} & \text { IR } \\ & (40) \end{aligned}$		x	6	A command attempting to start a printer found it Not Ready.
A, DE, UC (86)	IR, EC, US (54)		x	6	A printer became mechanically disabled during a printout and an automatic recovery was not successful, the printer CARRIAGE MOTOR POWER switch was off, or the switch fuse was blown.
$\begin{aligned} & D E, U C \\ & (06) \end{aligned}$	IR, EC, US (54)		x	6	A command attempted to start a print operation, but the printer CARRIAGE MOTOR POWER switch is turned off.
A, DE, UC (86)	EC, US (14)		x	7	A printer character generator or sync check error occurred or the printer became mechanically disabled during printout, but restored itself.

Figure 1-36 (Part 2 of 3). Asynchronous Status and Sense Conditions - Local

$\begin{aligned} & \text { Status }{ }^{1} \\ & (\mathrm{Hex}) \end{aligned}$	$\begin{aligned} & \text { Sense } \\ & \text { (Hex) } \end{aligned}$	Display	Printer	Error Recovery Procedure	Condition
DE, UC (06)	$\begin{aligned} & \text { DC } \\ & \text { (08) } \end{aligned}$	X	X	10	During a Select or Erase/ Write command the 3272 (1) detected a parity or cursor error, or (2) detected a parity check on data received from the addressed device in response to an internal poll during a command.
DE, UC (06)	$\begin{aligned} & \text { DC } \\ & (08) \end{aligned}$	x	x	1	During a Write command, the 3272 (1) detected a parity or cursor error, or (2) detected a parity check on data received from the addressed device in response to an internal poll during a command.
$\begin{aligned} & D E, U C \\ & (06) \end{aligned}$	DC, US (OC)	x	x	1	The addressed device detected a parity or cursor check while executing a Select, Write, Erase/ Write, or Erase All Un. protected command.
DE, UC (06)	$\begin{aligned} & O C \\ & (01) \end{aligned}$	x	x	3	A Write or Erase/Write command, containing a WCC with a Start Print bit, is chained to a subsequent command.
DE, UC (06)	$\begin{aligned} & \text { CC } \\ & (02) \end{aligned}$	x	x	10	The addressed device failed to respond in a specified period of time to a Select, Write, Erase/ Write, or Erase All Unprotected command.
DE, UE (05)		x		9	The 3272 attempted to perform a Select or Erase All Unprotected command, but found, after returning initial status, that the addressed device was busy.
$\begin{aligned} & \text { CUE } \\ & \text { (20) } \end{aligned}$		x	X		The 3272 had been addressed while busy, but is now not busy and is free to accept a new command.

Note 1: If this asynchronous status is stacked by the channel, an asynchronous CUE could be generated and combined with it before the stacked status is accepted by the channel.

Figure 1-36 (Part 3 of 3). Asynchronous Status and Sense Conditions - Local

Column 1 Use this column for: - Device Selection, - Specific Poll, - General Poll, and - Fixed Return Addresses				
CU or Device Number	EBCDIC I/O Char.	EBCDIC Hex (Note 3)	ASCII I/O Char.	ASCII Hex
0	SP (Note 1)	40	SP	20
1	A	C1	A	41
2	B	C2	B	42
3	C	C3	C	43
4	D	C4	D	44
5	E	C5	E	45
6	F	C6	F	46
7	G	C7	G	47
8	H	C8	H	48
9	1	C9	1	49
10	ξ	4A	[5B
11		4 B		2E
12	<	4 C	$<$	3 C
13	1	4D	1	28
14	+	4 E	+	2B
15	1	4F	I or!	21
16	\&	50	\&	26
17	J	D1	J	4A
18	κ	D2	K	4 B
19	L	D3	L	4 C
20	M	D4	M	4D
21	N	D5	N	4 E
22	0	D6	0	4F
23	P	D7	P	50
24	Q	D8	0	51
25	R	D9	R	52
26	!	5A]	5D
27	\$	5B	\$	24
28	*	5 C	*	2A
29	1	50	1	29
30	;	5E	:	38
31	7	5 F	\cdots or \wedge	5 E

Figure 1-37 (Part 1 of 3). Remote Control Unit and Device Addressing

Column 2 Use this column for: - 3270 CU Selection Addresses - Test Requests				
Cu Number	$\begin{aligned} & \text { EBCDIC } \\ & \text { l/O } \\ & \text { Char. } \end{aligned}$	$\begin{aligned} & \text { EBCDIC } \\ & \text { Hex } \\ & \text { (Note 3) } \end{aligned}$	$\begin{aligned} & \text { ASCII } \\ & \text { I/O } \\ & \text { Char. } \end{aligned}$	ASCII Hex
0	-	60	-	2 D
1	1	61	1	2 F
2	S	E2	S	53
3	T	E3	T	54
4	U	E4	U	55
5	v	E5	v	56
6	w	E6	w	57
7	X	E7	X	58
8	Y	E8	Y	59
9	z	E9	z	5A
10	1	6 A		7 C
11	1	6 B	.	2 C
12	\%	6C	\%	25
13	-	6 D	-	5 F
14	$>$	6 E	>	3 E
15	?	6 F	?	3 F
16	0	FO	0	30
17	1	F1	1	31
18	2	F2	2	32
19	3	F3	3	33
20	4	F4	4	34
21	5	F5	5	35
22	6	F6	6	36
23	7	F7	7	37
24	8	F8	8	38
25	9	F9	9	39
26	:	7A	:	3 A
27	\#	78	\#	23
28	@	7 C	@	40
29	,	70	,	27
30	$=$	7E	$=$	3D
31	" (Note 2)	7F	"	22

Figure 1-37 (Part 2 of 3). Remote Control Unit and Device Addressing

Examples:

3271 Addressing			
		EBCDIC	ASCII
	CU	$\left\{\begin{array}{l}\text { C5 } \\ \text { C5 }\end{array}\right.$	45
	Address	$\left\{\begin{array}{l}7 F \\ 7 F\end{array}\right.$	45
	Device		
Address			

Notes:

1. I/O character address (SP) is always used as the device address when selecting a 3275.
2. I/O character address (') is used as the device address to specify a General Poll operation.
3. Graphic characters for the United States I/O interface codes are shown. Graphic characters for EBCDIC 4A, 5A, 5B, 7B, 7C, and 7F might differ for particular World Trade I/O interface codes.

Figure 1-37 (Part 3 of 3). Remote Control Unit and Device Addressing

$\begin{aligned} & \text { Bit } \\ & \text { No. } \end{aligned}$	Bit Definition
	S/S Byte 0:
0	Use bits 2 through 7 and Figure 1-24 to determine translation.
1	Always a 1.
2	Reserved.
3	Reserved.
4	Device Busy ($D B$) . This bit indicates that the addressed device is busy executing an operation or that a busy detection was previously made by a command or Specific Poll. The device is busy when it is executing an Erase All Unprotected command or a print operation, accepting data from the Operator Identification Card Reader, or performing various keyboard operations (Erase Input, Backtab, and Clear). This bit is set with Operation Check when a Copy command is received which specifies a "busy" device with its "from" address. This bit is set with Unit Specify when a command is addressed to a busy device. This can occur by chaining a command to a Write, Erase/Write, or Copy command which started a Printer or by chaining a command to a Specific Poll addressed to a busy device.
5	Unit Specify (US) - This bit is set if any S / S bit is set as a result of a device-detected error or if a command is addressed to a busy device.
6	Device End (DE) . This bit indicates that the addressed device has changed from unavailable to available and not ready to ready, or busy to not busy. This bit is included during a Specific or General Poll but is not considered pending status by a Selection Addressing sequence. If a Selection Addressing sequence detects that the addressed device has pending status and also detects one of the above status changes that warrants a Device End, then the Device End bit is set and preserved along with the other pending status, and an RVI response is made.
7	Transmission Check (TC) - Not used by the 3271. This bit is set when the 3275 detects a BCC error on the TCU transmission.
	S/S Byte 1:
0	Use bits 2 through 7 and Figure 1-24 to determine translation.
1	Always a 1.
2	Command Reject (CR). This bit is set upon receipt of an invalid 3270 command (or Copy command if this feature is not installed).
3	Intervention Required (IR) - This bit is set if:
	- A Copy command contains a "from" address in its data stream which specifies an unavailable device.
	- A command attempted to start a printer but found it not ready. The printout is suppressed.
	- The 3271 receives a Selection Addressing sequence or a Specific Poll sequence for a device which is unavailable or which became not ready during a printout. A General Poll sequence does not respond to the unavailable/not ready indication and proceeds to determine the state of the next device.
	- The 3271 receives a command for a device which the 3271 has logged as unavailable or not ready.

Figure 1-38 (Part 1 of 2). Remote Status and Sense Byte Definitions

Bit No.	Bit Definition
4	Equipment Check (EC) - This bit indicates a printer character generator or

5 Data Check (DC) - This bit indicates the detection of a parity or Cursor check in either the 3271 or a device buffer or in the 3275 buffer, or 3271 detected bad parity from the device.
6 Control Check (CC) - This bit is not used by the 3275. For the 3271, this bit indicates a timeout check. A timeout check occurs when a device fails to respond to 3271 communications within a specified time period or when a device fails to complete an operation within a specified time period.
Operation Check (OC) - This bit, when set alone, indicates one of the following:

- Receipt of an illegal buffer address or of an incomplete order sequence on a Write or Erase/Write command.
- The device did not receive a CCC or a "from" address on a Copy command.
- Receipt of an invalid command sequence. (ESC is not received in the second data character position of the sequence.)
- An I/O Interface "overrun" is detected. This occurs during a command when a data byte (Character or Order) is presented to the device by the TCU before the operation required by the previous data byte has been completed.

This bit is set with Control Check, Intervention Required, Data Check, Device Busy, or Data Check with Unit Specify to indicate that the errors that set these sense bits were detected while the 3271 was executing an operation with the "from" device during a Copy command. This bit is set with Unit Specify to indicate that the "from" address on a Copy command specified a device with a "locked" buffer (the device data is secure).

Figure 1-38 (Part 2 of 2). Remote Status and Sense Byte Definitions

Device Response	Command	S/S Explanation
RVI	Selection	Outstanding Status - Pending information from a previous operation with the same device. (If the addressed device is busy, WACK is sent to the TCU instead of RVI, and no S/S bit is set.) Note: A Selection Addressing sequence does not recognize a Device End as pending status. If there is no other pending status, it resets this bit and proceeds with the selection. If the addressed device has other pending status, Device End remains set with it, and the RVI response is made as usual. CC - A timeout check is caused by the addressed device. The operation is tried twice before this bit is set.
IR - The addressed device is unavailable.		
DC, EC (either or both) - The 327 1 detects bad parity on		
data received from the addressed device.		
DE, EC, US - A character generator or sync check error		
has occurred, or the printer was mechanically disabled		
but the condition has been corrected.		

Figure 1-39 (Part 1 of 4). Remote Error Status and Sense Responses

Device Response	Command	S/S Explanation
RVI	Selection	$D E, I R$ - The addressed printer is out of paper, its power has been turned off, or its cower is open. $D E, I R, E C$, US - The addressed printer is mechanically disabled and cannot recover. DE, DC, US - A parity error is detected at the printer. DC, US . A parity check or cursor check is detected by the addressed device on the data it is sending to the control unit.
EOT	Read Commands	CR - Invalid or illegal 3270 command is received at the 3271 or 3275. OC - Invalid command sequence (ESC is not in the second data character position), or data follows the command in the data stream received at the device. DB, US - The addressed device is busy. The command was chained to a Write, Erase/Write, or Copy command which started a print, or it was chained to a Specific Poll. DB, US, DE - The addressed device becomes not busy before a Specific Poll is issued to retrieve the DB, US status. IR - A command is addressed to an unavailable device. (This is not applicable to the 3275 .) DC - (1) A cursor check is detected at the 3271 before data transmission starts. The 3271 detects bad parity on data received from the addressed device. The operation is tried twice before this bit is set. No data is transmitted. (2) A parity check is detected by the 3271 before it is transferred to the TCU. A SUB character is substituted for the error character during transmission. When the transmission is completed, the 3271 sends ENO to indicate an error. When the TCU responds NAK, the 3271 responds EOT. (3) A cursor check is detected by the 3271 during transmission to the TCU. When the trans mission is completed, the 3271 sends ENQ to indicate an error. When the TCU responds NAK, the 3271 responds EOT. DC, US - A parity check or cursor check is detected by the addressed device on the data it is sending to the control unit. TC - A BCC error is detected at the 3275.
EOT	Write Commands	$C R$ - An invalid or illegal 3270 command is received. OC - An invalid command sequence (ESC is not in the second data position), an illegal buffer address or an incomplete order sequence is received, or a data byte was sent to the device during the Write command before the operation required by the previous data byte was completed. TC - A BCC error is detected at the 3275 .

Figure 1-39 (Part 2 of 4). Remote Error Status and Sense Responses

Device Response	Command	S/S Explanation
EOT	Write Commands	DC - The 3271 detects a parity or cursor check on its buffer during command operation. The 3271 detects bad parity on data received from the addressed device. The operation is tried twice before this bit is set. DC, US - The device detects a parity or cursor check on its buffer during the command operation. CC - The device fails to complete an operation or respond to the 3271 in a certain time (timeout check). DB, US - The addressed device is busy. The message is accepted but not stored in the 3271 or 3275 buffer. The command is aborted. DE, DB, US - The addressed device becomes not busy before a specific poll is issued to retrieve the DB, US status (described above).
EOT	Copy Command	CC, OC - The "from" device fails to complete an operation or respond to the 3271 in a certain time (timeout check). DB, OC - The "from" device is busy. (The device is busy executing an operation, a printout, reading data from the Operator Identification Card Reader, or performing a keyboard operation.) The Copy command is aborted. IR, OC - The device is not available. OC, US - The device has a locked buffer. OC - The data stream contains other than two bytes (the CCC and the "from" address). The command is aborted. DC, OC - The 3271 detects a parity check on the data transferred from the "from" device. DC, OC, US - Set when "from" device detects an internal parity or cursor check. DB, US - The addressed "to" device is busy. DB, US, OC - The addressed "to" device is also specified as the "from" device and is busy. DB, US, OC, DE - The addressed device becomes not busy before a specific poll is issued to retrieve the DB, US, OC status (described above).
EOT	Write, Erase/Write, Copy Commands	IR . Addressed device is not available, or addressed printer is not ready. IR, EC, US - A command attempted to start a print operation, but the printer CARRIAGE MOTOR POWER switch (a CE service switch) is turned off.
EOT	Erase All Unprotected Command Specific and General Poll	OC - One or more data bytes followed the command (buffer overrun). $D E, I R, E C, U S$ - An unrecoverable mechanical failure is detected at the printer. DE, EC, US - A character generator or sync check error or a mechanical failure is detected at the printer but then recovered from.

Figure 1-39 (Part 3 of 4). Remote Error Status and Sense Responses

Device Response	Command	S/S Explanation
EOT	Specific and General Poll	DC, US - A parity check or cursor check is detected by the addressed device on the data it is sending to the control unit. DC - (1) A parity error is detected by the 3271 on data to be transferred to the TCU. A SUB character is substituted for the error character during transmission. The transmission is completed, and ENO is sent by the 3271 . When the TCU responds NAK, the 3271 responds EOT. (2) A cursor check is detected at the 3271 before data transmission starts. (No data is transmitted.) (3) A cursor check is de ected by the 3271 during transmission to the TCU. The tiansmission is completed, and the 3271 sends ENQ. When the TCU responds NAK, the 3271 responds EOT. DC, EC (either o: both) - The 3271 detects a parity check on data received from the device. DE - The poll finds a device (1), previously recorded as busy, now not busy or, (2), previously recorded as unavailable or not ready, now available and ready. (The 3271 record is updated.) Note: When 3271 power is turned on, the DE bit is set for every available and ready device that is attached. IR, DE - The poll finds a device, previously recorded as ready, available, and busy, now not ready and not busy, or the printer went not ready during a printout. (The 3271 record is updated.) DC, US, DE - A parity error is detected at printer. CC (Specific Poll only). The poll finds a device, previously recorded as unavailable, still unavailable (timeout check). DC, DE - 3275 (only) detects an internal parity or cursor check on its buffer when the printer goes "Not Busy". IR, EC, DE (3275 only) - The printer CARRIAGE MOTOR POWER switch (a CE service switch) is turned off, or a mechanical "hang" condition is detected. EC, DE (3275 only) - Character generator readout error.
	Specific Poll	CC . The poll finds a device, previously recorded as available and ready, now unavailable (timeout check). (The 3271 record is updated.) DB - The addressed device is busy.
NAK	Read and Write Commands	NAK is transmitted by the 3271 when it detects a Block Control Character (BCC) error on the TCU transmission. A BCC error has priority over all other detectable error conditions. If, for example, a BCC error and a parity error are detected during the same command transmission, the parity error condition is reset, and a NAK response is set by the 3271 .

Figure 1-39 (Part 4 of 4). Remote Error Status and Sense Responses

Sense/ Status Bits	Detected during 3270 Operation						Transmitted in Response to:	
	Hex		Selection Addressing Seq	SpecificPollSeq	General Poll Seq	A 3270 Command	Specific Poll	General Poll
	EBCDIC	ASCII						
CR	4060	20 2D				D, P	D, P	
OC	40 C1	2041				D. P	D. P	
OC, US	C4 C1	4441				D. P	D, P	
CC	$40 \quad$ C2	2042	D, P	D, P		D, P	D, P	
CC, OC	$40 \quad$ C3	2043				D, P	D. P	
IR	$40 \quad 50$	$20 \quad 26$	D, P	D, P		D, P	D, P	
IR, OC	40 D1	20 4A				D. P	D. P	
DC	40 C4	2044	D, P	D, P	D, P, I	D, P	D. P	D, P, I
EC	40 C8	2048	D, P	D, P	D. P	D. P	D, P	D, P
DC, EC	40 4C	20 3C	D, P	D. P	D. P	D. P	D, P	D, P
DC, OC	40 C5	2045				D. P	D, P	
DC, US	C4 C4	4444	D, P					
DC, OC, US	C4 C5	4445				D, P	D, P	
DC, DE	C2 C4	4244		P	P			P
DC, US, DE	C6 C4	4644		P	P		P	P
IR, DE	C2 50	$42 \quad 26$		P	P		P	P
IR, EC, DE	C2 D8	4251		P	P		P	P
EC, DE	C2 C8	4248		P	P		P	P
EC, US, DE	C6 C8	4648		P	P		P	P
IR, EC, US								
DE	C6 D8	$46 \quad 51$		P	P		P	P
DB	C8 40	$48 \quad 20$	D. P	D, P			D, P	
DB, DE**	4A 40	5420					D	
DB, US*	4C 40	3C 20				D. P	D, P	
DB, US, DE	4E 40	2B 20				D. P	D, P	
OC, DB*	C8 C1	$48 \quad 41$				D, P	D, P	
TC	C1 40	4120				D	D	
TC, OC	C1 C1	4141				D	D	
TC, CR	C1 60	41 2D				D	D	
TC, DC	C1 4	4144				D		
DE	C2 40	$42 \quad 20$		D, P	D, P		D, P	D, P
IR, EC, US	C4 D8	4451				P	P	

Note: The 3271-attached device errors that are detected asynchronously do not cause a 3271 Sense bit to set until the device is polled for status during a Selection Addressing, Specific Polt, or General Poll sequence. Those error S / S bit combinations that contain $D E$ were detected during a printout.
*The DB, US, and OC S/S bits will be combined if a Copy command is addressed to a busy "to" device and the command also specifies the "from" device the same as the "to" device.
**The DB and DE S/S bits can occur together in response to a Specific Poll to a formatted 3277 if the operator has performed Backtab or Erase Input operations in rapid succession. Ignore Device End and treat as Device Busy only.

Legend

> D - Display (3277 or 3275)
> P - Printer
> 1 - 3275 Only

Figure 1-40. Remote Status and Sense Conditions

INDICATORS AND CONTROLS

The indicators and controls associated with each 3270 unit are listed in Figure 1-41 and are described below:

OFF-PUSH: This triple-function concentric switch/control is used to control the application of power to the unit, and also to control the brightness (outer knob) and contrast (inner knob) of the displayed image.

BIT RATE: This two-position toggle switch, added by the Dial feature, allows the 3275 model 1 or 2 operator to select a transmission rate of 600 or 1200 bps .
DISCONNECT: This momentary-contact toggle switch, added to the 3275 model 1 or 2 by the Dial feature, is used by the 3275 operator when terminating a call.
INSERT MODE: This indicator is turned on by the keyboard INS MODE key to show that the unit is in Insert Mode of operation. It is turned off by the keyboard RESET key.

INPUT INHIBITED: When lighted, this indicator shows that manual input to the unit from the keyboard, Selector Pen, or Operator Identification Card Reader is inhibited.

It is turned on by:

1. Operation of any program attention key.
2. A selector-pen-attention operation that caused an I/O interruption to occur.
3. An operator-identification-card-reader operation that caused an I/O interruption to occur.
4. Turning the Security Key Lock to the OFF position if the Security Key Lock feature is installed.
5. Initiation of a printout at an unbuffered printer attached to the 3275 Display Station.
6. A system-initiated I/O operation addressed to that unit.
7. Operation of any alphameric key, the DUP, FIELD MARK, ERASE EOF, or DEL keys when the cursor is in a protected field.
8. Operation of any alphameric key not included in the numeric key grouping when the cursor is in a numeric field, without simultaneously operating either the ALPHA or NUMERIC shift key, when the Numeric Lock special feature is installed.
9. Detection of a parity or Cursor Check in the device buffer.

It is turned off by:

1. Receipt and execution of a WCC with the Keyboard Restore bit set.
2. Receipt and execution of an Erase All Unprotected command.
3. Turning the Security Key Lock to the On position (if it was turned on because the Security Key Lock was in the Off position).
4. Operation of the keyboard RESET key, with the following exceptions;
a. The device is selected and executing a command from the control unit.
b. The display station is in the process of reading a magnetic card from the Operator Identification Card Reader.
c. A printout is in process at the attached 3284 Printer Model 3.
d. A parity or Cursor Check has been detected.
5. Termination of an unbuffered printer printout (if it was turned on because an unbuffered printer printout was initiated).
6. Correction of a parity or Cursor Check condition and resetting of the error status by a Write or Erase/Write command addressed to that device.

SYSTEM AVAILABLE (3275, models 1 and 2, 3277), Sys Avl (3288): When lighted, this indicator shows that the unit has had successful communication with the system and is available to accept an operator-initiated transmission to the system.

It is turned on by:

1. Successful completion of a Write, Erase/Write, Erase All Unprotected, Copy, Read Modified, or Read Buffer command, in local or remote operation.
2. On a 3275 (models 1 and 2), receipt of an ACK from the TCU in response to an ETX at the completion of a General or Specific Poll sequence.

	3270 Unit					
Indicator or Control	3277	3275	3272	3271	$\begin{aligned} & \hline 3284, \\ & 3286 \end{aligned}$	3288
OFF-PUSH (Sw, CtI)	X	\times				
BIT RATE (Sw)		D				
DISCONNECT (Sw)		D				
INSERT MODE (Ind)	x	X				
INPUT INHIBITED (Ind)	\times	\times				
SYSTEM AVAILABLE (Ind)	X	x				x
Sys Aul (Ind)						x
SYSTEM READY (Ind)		x		x		
SYNC SEARCH (Ind)		x		x		
SELECTED (Ind)		x		\times		
FLAG DETECT		S		S		
CU ACTIVE		S		S		
OFF HOOK (Ind)		D				
TRANSMIT (Ind)		X		x		
STATUS (Ind)		x		x		
POWER ON LOCAL MODE (Sw)			x			
POWER OFF LOCAL MODE (Sw)			X			
MAIN LINE ON/OFF (Sw)			X			
LOC/REM (Sw)			X			
ON LINE/OFF LINE (Sw)			x			
1/O INTF DSBLD (Sw)			X			
POWER ON/OFF (Sw)				x	x	x
Power On (1)/Power off (O) (Sw)						x
Carriage Restore (Pb)						x
Start Test (Sw)						x
VFC Selector (Sw)						x
POWER ON (Ind)			X			
Ready (Ind)						x
Ops Chk (Ind)						x
Address I.D. (Label)	x	X			X	X

Figure 1-41. Indicators and Controls
It is turned off by:

1. Any operator-generated I/O interrupt.
2. A parity or cursor check and resulting I/O interrupt.
3. Turning the Security Key Lock to the Off position.

SYSTEM READY: When lighted, this indicator shows that the Data Set carrier is on and that the TCU is online. With the Dial feature installed, this indicator lights when a transmission is first sent or received and extinguishes when a disconnect sequence is sent or received.

SYNC SEARCH (3271 and 3275 models 1 and 2 only): When lighted, this indicator shows that the unit is attempting to establish line synchronization.

SELECTED (3271 and 3275 models 1 and 2 only): When lighted, this indicator shows that the unit has been selected; i.e., it is in the process of executing a command or a chain of commands.

CU ACTIVE (3271 and 3275 models 11 and 12 only): The indicator lights after selection, and remains set until the operation is complete.

FLAG DETECT (3271 and 3275 models 11 and 12 only): This indicator lights when a valid flag character (7 E) is received.
OFF HOOK/AUTO ANSWER: This indicator replaces the SELECTED indicator when the IBM Line Adapter or external modem with Auto Answer feature is installed. When lit, it indicates that a communications link to the 3275 (models 1 and 2) is active (that is, the data access arrangement is "off hook"). When the Auto Answer feature is not installed, the OFF HOOK/AUTO ANSWER indicator is always lit during unit operation.

TRANSMIT: When lighted, this indicator shows that the unit is transmitting to the TCU.

STATUS: When lighted, this indicator shows that an error status condition exists within the unit.

POWER ON LOCAL MODE: This momentary-contact switch is used to turn on dc power for a 3272.
POWER OFF LOCAL MODE: This momentary contact switch is used to turn off dc power for a 3272.

MAIN LINE ON/OFF: This two-position toggle switch is used to turn on and turn off ac power for the 3272 .

LOC/REM: This two-position rotary switch on the 3272, when placed in the REM (remote) position, gives control of the power supply activation to the CPU to which the control unit is attached. When placed in the LOC (local) position, power is controlled at the 3272 by using the POWER ON LOCAL MODE and POWER OFF LOCAL MODE switches.

ON LINE/OFF LINE: This two-position toggle switch, when placed in the ON LINE position (the operating position) connects the 3272 to the channel interface.

I/O INTF DSBLD: This indicator lights when the ON LINE/OFF LINE switch on the 3272 is in the OFF LINE position.
POWER ON: When lighted, this indicator shows that power has been turned on for a 3272.

POWER ON/OFF: This two-position toggle switch is used to turn on and turn off power for 3271 control units and all printers.
READY: When lighted, this indicator shows that the 3284,3286 , or 3288 Printer is ready to receive transmissions from the control unit. It is turned on after a successful power-on sequence, when the belt is up to speed and the printer is ready to print data.

It is turned off by:

1. Open machine covers.
2. Open print unit.
3. Running out of forms.
4. A paper motion failure (forms jam, torn forms, or missing feed holes).
5. An overheated printer mechanism
6. A hardware failure requiring a repair action.

Ops Chk: When blinking, this indicator shows that the 3288 Line Printer Not Ready condition (shown by the Ready indicator being off) can be corrected by the operator.

It is turned on by:

1. Open machine covers.
2. Open print unit.
3. Running out of forms.
4. A paper motion failure.
5. The TEST switch (on test switch panel) in other than the ON LN (On Line) position.

It is turned off when the condition that caused it to light is corrected.
Address Identification: Provision is made on each display station and printer to identify both the physical (hexadecimal) and symbolic addresses assigned to that unit at installation time.
VFC Selector: The VFC Selector switches on the 3288 Line Printer are set (00-99) by the operator to determine the number of lines skipped in a VFC operation.

Carriage Restore: The Carriage Restore pushbutton on the 3288 Line Printer advances the forms to a predetermined print line established by the initial forms positioning and the settings of the VFC selector switches.

Power On/Power Off (Coded I and O): This two-position rocker switch is used to control power to the 3288 Line Printer.

Start Test: This switch on the 3288 is used in conjunction with the test switches located on the test switch panel under the top cover to initiate offline test printouts.

SEQUENCES AND RESPONSES

Figures $1-42$ through 1-50 are sequence and response diagrams.

1 O Supervisor Access Method	CCW	TCU Write Data (From Channel Program)	TCU Read Data (Generated by 3270 CU)

Figure 1-42 (Part 1 of 2). General Poll and Specific Poll, Sequence/Response Diagram

Notes：
远 The 3270 CU will fail to respond to the addressing or polling sequence，causing a TCU timeout， for any of the following reasons：
－The 3270 CU is＂unavailable＂（has power off，is＂offline＂，or is not attached）．
－The 3275 is＂unavailable＂to a Specific Poll sequence because the Security Lock is in the ＂off＂position．
－Any character in the polling sequence is invalid．
－The characters in the polling sequence are out of order．
－The polling sequence is incomplete（less than seven characters）．
－The 3270 CU address is incorrect in the write data stream．
－The addressed 3270 CU was left selected from the previous transmission．
2．There is no I／O pending nor pending status．For General Poll，the CU sends EOT only after polling all devices．
3 The devise response is a function of the kind of device and its status．Types of responses include： Text，Status，and Test Request messages．（Refer to Figure 1－43．）

3271：For General Poll，the search for a response starts at some random device address and continues sequentially（as long as ACKs are received in response to text transmissions） until all devices are given the opportunity to respond．
44 Upon detection of an internal parity check or a cursor check，the $3270 \mathrm{CU}(1)$ substitutes the SUB character for the character in error，（2）records Data Check status，and（3）transmits an ENO in place of ETX（or ETB）and BCC at the end of the text block．The internal $3271 /$ device polling is stopped．
5 5 Mandatory program response to a text block terminated in ENQ．
6．Terminates the operation．The nature of the error（parity or cursor check）does not warrant a retry．This response indicates that status and sense information is stored and that internal 3271／device polling is stopped．The status retrieval information included in Figure 1－16，Note 2， applies．
国 ETB is used to frame each block of a blocked text message，except the last block．ETX is used to frame the last block of a blocked text message．
18月 BCC error has been detected．The program issues NAK to cause the 3270 CU to repeat its last transmission．
9月胃 Response issued by the program to terminate the operation if the TCU is unsuccessful in receiving a valid BCC following＂n＂attempts by the 3270 CU to transmit the message．This response does not cause the 3270 CU to reset its sense／status information．Therefore，the same status message will be transmitted if a Specific Poll is immediately issued to the same device．
10 This transmission must be a write or control－type command sequence（described in Figure 1－45）．A read－type command would violate BSC standards on Limited Conversational mode．

3271：For General Poll，this transmission stops the $3271 /$ device polling operation．The General Poll must be reinitiated to ensure receipt of all pending device messages．
11 Positive acknowledgment．The text block has been successfully received by the TCU．The program issues ACK 1 in response to the first and all odd－numbered text blocks and issues ACK 0 in response to the second and all even－numbered text blocks．This response to a text block terminated in ETX turns on the 3275 SYSTEM AVAILABLE indicator． Normal termination of a Specific Poll
3271：Normal termination of a General Poll．
3275：No additional response is generated by the 3275 at the end of a General Poll．
13 The second and all succeeding text blocks are framed as the first except they do not include the $3270 \mathrm{CU} /$ device address sequence．
14 RVI to terminate polling sequence．
15 Termination of polling sequence on receipt of RVI．
LEGEND：
（CC）＝Chain Command（CC）Flag in CCW is set to 1 ．
（Interrupt）$=$ TCU－generated interrupt（CE $=$ Channel End，DE $=$ Device End，UE $=$ Unit Exception， UC＝Unit Check）．
远 Reversed numbers refer to notes．
－Only the critical framing characters（sync pattern and pad）are shown．All other framing characters are also hardware－generated as required．See SL General Information－Binary Synchronous Communications，GA27－3004，for a complete description．

Figure $1-42$（Part 2 of 2）．General Poll and Specific Poll， Sequence／Response Diagram
(Note: This figure is referenced in Figures 1-42 and 1-46.)

Figure 1-43 (Part 1 of 2). 3270 CU Message Response to Polling or Read Niodified Command

Notes:
517 A A status message response is issued to a General or Specific Poll if (1) the 3270 CU has pending status (General Poll ignores Device Busy and device "unavailable" and, if 3271, continues polling of next device), or (2) if error status develops during execution of the poll. Status and Sense bit assignments are described in Figure 1-38.
[2 Test Request Message response is issued to a General or Specific Poll if a TEST REQ key is pressed at the keyboard of a polled 3275 or 3277.

81 This address is included only in the first block of a blocked text message.
48 The text portion of this message is the result of either a read-modified or short-read operation by the 3270 CU. Figure 1-26 lists each operator action and the resulting read operation that will be performed. The read operations and the resulting data are described under "Read Modified Command" in the section entitled "Commands and Orders".

LEGEND:

(Interrupt) $=$ TCU-generated interrupt.
41. Reversed numbers refer to notes.

Figure 1-43 (Part 2 of 2). 3270 CU Message Response to Polling or Read Modified Command

*Only the critical framing characters (sync pattern and pad) are shown. All other framing characters are also hardware-generated as required. See SL General Information - Binary Synchronous Communications, GA27-3004, for a complete description.

Figure 1-44 (Part 1 of 2). Selection Addressing, Sequence/Response Diagram

Notes:

4. The 3270 CU will fail to respond to the addressing or polling sequence causing a TCU timeout, for any of the following reasons:

- The $\mathbf{3 2 7 1}$ is "unavailable" (has power off, is "offline", or is not attached).
- The 3275 is "unavailable" (is not attached, has power down, or has the Security Lock in the "off" position).
- Any character in the polling sequence is invalid.
- The characters in the polling sequence are out of order.
- The polling sequence is incomplete (less than seven characters).
- The 3270 CU address is incorrect in the write data stream.
- The addressed 3270 CU was left selected from the previous transmission.

2. 3271: The addressed device has pending status (excluding Device Busy and Device End) or is unavailable, the device-to-3271 buffer transfer was unsuccessful, the 3271 detected an internal parity or cursor check, or the addressed printer became "not ready" (out of paper, unrecoverable "hang", power off, or cover open). The S / S information is stored in the 3271, and the internal 3271/device polling is stopped.
3275: The 3275 has pending status, excluding Device Busy and Device End.
[3: The addressed 3271 device or the 3275, including the 3284-3 Printer, is busy. No S/S information is stored. An RVI response takes precedence over a WACK response.
3. The address has been successfully received, no status is pending, and, in the case of the 3271, the device-to-3271 buffer transfer is successfully completed.
Termination of attempted addressing sequence:
3271: Availability of valid status and sense information cannot be ensured unless a Specific Poll is issued to the responding device as the next addressing sequence issued to this 3271 . Successful completion of a Specific Poll addressed to the responding device, a device selection addressed to any other device on the same 3271, or a General Poll addressed to the same 3271, is required to start the internal 3271 device polling operation.

3275: A Specific Poll to the 3275 retrieves the status existing at the time the RVI response was made.
Termination of attempted addressing sequence.
7. Refer to Figure 1.45 or $1-47$ for the desired command sequence.

LEGEND:

(CC) = Chain Command (CC) Flag in CCW is set to 1 .
(Interrupt) $=$ TCU-Generated interrupt $(C E=$ Channel End, DE $=$ Device End, and UC = Unit Check)

이용 Reversed numbers refer to notes.
Figure 1-44 (Part 2 of 2). Selection Addressing, Sequence/Response Diagram

Figure 1-45 (Part 1 of 2). Write-Type and Control-Type Commands, Sequence/Response Diagram

Notes:
选 No text is transmitted on an EAU command trans-s.ssion.
24 Command transmission was not successfully recei.ed because of invalid framing (STX missing). Causes timeout at TCU.
3271: The 3271 is unable to perform the operation indicated in the command transmission because of a busy/unavailable/not ready derice or one of the following 3271-detected check conditions:
a. receipt of an illegal command/order sequence,
b. failure to decode a valid command.
c. an I/O interface "overrun",
d. a parity/cursor check,
e. an illegal buffer address, or
f. a locked buffer.

In the case of the Copy command: Copy feature is not installed, "from" device is busy or has locked buffer, or CCC is missing.

The EOT response to a command transmission indicates that status information is stored in the 3271 and that internal 3271 /device polling is stopped. To ensure retrieval of valid status, the program must issue a Specific Poll (addressing the device that was selected when EOT was generated) as the next addressing sequence to this 3271 . Successful completion of a Specific Poll addressed to the responding device, a device selection addressed to any other device on the same 3271, or a General Poll addressed to the same 3271, is required to restart the internal $3271 /$ device polling operation.

3275: The 3275 is unable to perform the operation indicated in the command transmission because of (1) a BCC error, (2) a busy 3275 (including the attached 3284-3 Printer), or (3) a 3275 -detected check condition (receipt of an illegal command/order sequence, failure to decode a valid command, an I/O interface "overrun", a parity/cursor check, or missing ETX). A Specific Poll to the 3275 retrieves the status existing at the time the EOT response was made.
[6] 3271: If a transmission problem causes both a 3271 -detected check condition and a BCC error, the BCC error takes precedence over all other check conditions, and a NAK is transmitted to the TCU.
[53.3271: BCC error or missing ETX has been detected. The NAK response requests the program to repeat its last transmission.

Note: The 3275 responds with EOT if it detects a BCC error or a missing ETX.
6. Response issued by the program to terminate the operation if the 3271 is unsuccessful in receiving a valid BCC following " n " attempts by the program to transmit the message.
7 If the Start Printer bit is set in the WCC or CCC, a WACK response indicates that the text transmission was successfully received (and, if 3271 , that the 3271 -to-device buffer transfer was successfully completed) but that the printer is now busy and an additional chained command cannot be accepted.

If any of the conditions cited in Note 3 prevail, the EOT response takes precedence over the WACK response.
8. Normal termination of the operation by the program.

9 Command execution has been successfully completed and, in the case of the 3271 , the 3271 -to-device buffer transfer is successfully completed.
10 Repeat the operation shown in this figure or in Figure 1-46 for the next command sequence.
11 Example of a Temporary Text Delay (TTD) sequence.
12 Example of terminating an operation using TTD (a forward abort sequence).

LEGEND:
(CC) = Chain Command (CC) Flag in CCW is set to 1 .
(Interrupt) $=$ TCU-generated interruption (CE $=$ Channel End, DE $=$ Device End, UE $=$ Unit Exception, UC = Unit Check).

110 Reversed numbers refer to notes.
Figure 1.45 (Part 2 of 2). Write-Type and Control-Type Commands, Sequence/Response Diagram

Figure 1-46 (Part 1 of 2). Read-Type Command, Sequence/Response Diagram
71. Command transmission was not successfully received because of invalid framing (STX missing). Causes timeout at TCU.
2. 3271: The 3271 is unable to perform the operation indicated in the command transmission because of a busy/unavailable/not ready device or a 3271 -detected check condition (receipt of an illegal command/order sequence, failure to decode a valid command, or an 1/O interface "overrun"). The EOT response to a command transmission indicates that status information is stored in the 3271 and that internal $3271 /$ device polling is stopped. To ensure retrieval of valid status, a Specific Poll must be issued to the device-responding EOT as the next addressing sequence issued to this 3271 . Restarting of the internal 3271 polling operation requires the successful completion of a Specific Poll addressed to the responding device, a device selection addressed to any other device on the same 3271, or a General Poll addressed to the same 3271.

3275: The 3275 is unable to perform the operation indicated in the command transmission because it (1) has detected a BCC error, (2) is busy (includes an attached 3284-3 Printer), (3) has detected a check condition (has received an illegal command/order sequence, has failed to decode a valid command, or has detected an I/O interface "overrun" or a missing ETXI. A Specific Poll to the 3275 retrieves the status existing at the time the EOT response was made.

3271: If a transmission problem causes both a 3271-detected check condition and a BCC error, the BCC error takes precedence over all other check conditions, and a NAK is transmitted to the TCU.

3271: BCC error or missing ETX has been detected. The NAK response requests the program to repeat its last transmission.

Note: The 3275 responds with EOT if it detects a BCC error or a missing ETX.
E5 Response issued by the program to terminate the operation if the 3271 is unsuccessful in receiving a valid BCC following " n " attempts by the program to transmit the message.
6. This address sequence is included only in the first block of a blocked text message.
$77^{3 .}$ ETB is used to frame each block of a blocked text message, except for the last block. ETX is used to frame the last block of a blocked text message.
8. Upon detection of an internal parity check, the 3270 CU automatically substitutes the SUB character for the character in error. If a parity or cursor check is detected, ENQ is transmitted in place of ETX (or ETB) and BCC at the end of the text block and appropriate status and sense information is stored; also, internal $3271 /$ device polling is stopped.
9 Mandatory program response to a text block terminated in ENQ.

0 Response to terminate the operation. The nature of the error (parity or cursor check) does not warrant a retry. This response indicates that appropriate status and sense information is stored and that internal $3271 /$ device polling is stopped. The status retrieval information included in Note 2 applies.

11 BCC error has been detected. The program issues NAK to cause the 3270 CU to repeat its last transmission.

12 Positive acknowledgment. The text block has been successfully received by the TCU. The program issues ACK 1 in response to the first and all odd-numbered text blocks and issues ACK 0 in response to the second and all even-numbered text blocks. This response to a text block terminated in ETX turns on the device SYSTEM AVAILABLE indicator.
13 The second and all succeeding text blocks are framed as the first except that they do not include the $3270 \mathrm{CU} /$ device address spquence. Normal termination of the operation following transmission of the last text block.

LEGEND:
(CC) = Chain Command (CC) Flag in CCW is set to 1 .
(Interrupt) $=$ TCU-generated interrupt (CE = Channel End, DE $=$ Device End, UE = Unit Exception, UC = Unit Check)
夏 Reversed numbers refer to notes.
Figure 1-46 (Part 2 of 2). Read-Type Command, Sequence/Response Diagram

Figure 1-47 (Part 1 of 2). 3275-Initiated Transmission, Sequence/Response Diagram - Dial Feature

国農Upon correct reception of an invalid terminal ID，the computer disconnects．The TCU may optionally send DLE EOT before disconnecting．This is defined in the BSC rules as an＂unusual termination＂．

2．The 3275 retries three times．When the number of retries is exhausted，the 3275 sends DLE EOT．
E3．AID indicates which situation caused attention．
国 ETB is used to frame each block of a blocked text message，except the last block． ETX is used to frame the last block of a blocked text message．
5The remainder of this sequence／response diagram is the same as that for a General or Specific Poll，as shown in Figure 1－42．
6 The 3275 as the master station solicits a response by sending ENO．After the number of retries is exhausted，the 3275 acts as described in Note 2.

LEGEND：

［1 Reversed numbers refer to notes．

Figure 1－47（Part 2 of 2）．3275－Initiated Transmission，Sequence／Response Diagram－Dial Feature

Figure 1-48 (Part 1 of 2). TCU-Initiated Transmission, Sequence/Response Diagram - Dial Feature

Notes:

1 The 3275 is not ready to receive due to a printer, keyboard, or card reader operation.
2! The TCU should transmit DLE EOT before disconnecting. The 3275 with the Auto Answer feature will recognize DLE EOT and automatically disconnect.
3 The 3275 has status pending other than a busy printer and is not ready to receive. The 3275 monitors for EOT and prepares transmission of a status message.
48 Refer to Figure 1-45 or 1-46 for the desired command sequence.
55 Not decoded or used by the 3275.

LEGEND:
閣 Reversed numbers refer to notes.
Figure 1-48 (Part 2 of 2). TCU-Initiated Transmission, Sequence/Response Diagram - Dial Feature

Figure 1-49 (Part 1 of 2). Example of Maintained Connection, Sequence/ Response Diagram - Dial Feature

Notes:

Positive acknowledgment, when the printer bit has been set in the Write Control Word (WCC) included with the Write command issued to a 3275 with attached printer. The printer is now busy.
2 The 3275 as the master station solicits a response by sending ENO. After three retries, the 3275 that is equipped with the Auto Answer feature sends DLE EOT and disconnects automatically. The 3275 that is not so equipped sends DLE EOT. The operator should then manually disconnect.
3 The 3275 aborts because it is unable to receive or to execute the command. This condition causes status to be set and the transmission of a status message to be prepared. This situation could have been caused as the result of a command in a chain following a start-print operation or as the result of a BCC error.
[6] The connection is still maintained. The 3275 has prepared another text message and bids for the line.
55. Here, it is assumed that the 3275 cannot complete transmission because of a malfunction other than an internal parity check. A 5 -second transmission timeout becomes effective, the uncompleted text transmission is terminated by DLE EOT, and, with Auto Answer installed, the telephone is automatically hung up.
6月 Here, it is assumed that an internal parity error has been detected and the SUB character has been substituted for the character in error. The text block is terminated by ENQ. The mandatory response is NAK. In this situation, the 3275 is preparing for the transmission of a status message.

LEGEND:
国 Reversed numbers refer to notes.
Figure 1-49 (Part 2 of 2). Example of Maintained Connection, Sequence/ Response Diagram - Dial Feature

Figure 1-50. Status Message Transmission with Dial Feature, Sequence/Response Diagram

Section 2. 3271 Control Unit

Contents
3271 CEM/Service Aid Index 2.2
3271 Symptom Fix List 2.3
3271 Model 1 and 2 Card Substitution List $2 \cdot 12$
Basic Unit 2-12
Feature or RPQ Units 2-14
3271 Common Board Part Numbers 2-14
3271 Model 1 and 2 EC Cross-Reference 2-15
3271 Service Aids 2-22
Cables and Connectors $2-22$
Cards and Boards 2.22
Modems and Lines $2-22$
Programming 2.24
Power Supplies 2.25
Tools and Test Equipment 2-25
EIA Connector Layout $2-26$
Diagnostic Latch for Intermittents 2.27
Figures
Figure 2-1. 3271 CU Functional Block Diagram (4 parts) 2.7
Figure 2-2. 3271 A-Gate Card Layout by Function 2-11
Figure 2-3. 3271 Models 1 and 2 EC Cross-Reference Chart (7 parts) 2-15

3271 CEM/SERVICE AID INDEX

1. TDAT Tape Speed (Cancelled - see SA 28)
2. 3271 Data Check
3. Card Jumpering (Cancelled - see SA 21)
4. ASCII SIU Test
5. Parts Catalog
6. Address Card ASCII
7. Cabling Error
8. 3271 Part Substitution (Cancelled - see SA 26)
9. SIU Byte Fails (Byte Mode Failure Using SIU)
10. Heat Sink Short to Ground
11. Line, Modem Scoping Procedure
12. Quick Checkout of TDAT and Cassette Tape (Cancelled - see SA 28)
13. Lost Device End
14. Temporary Cable
15. Loose Coax Ends
16. 3271 Models 1 and 2 EC Cross-Reference Table
17. EC 739540 ECA 018 Information (Rework Errors)
18. EC 739540 Net Image
19. System/3 8K BPS
20. Voltage Jumpers
21. Card Jumpering
22. Diagnostic Errors
23. +5 Volt Fuse
24. Ops Checks at 7200 bps
25. 3271 MLTG Revision
26. 3271 Card Sub List
27. VTL Logic Levels
28. Sense and Status Retrieval
29. TDAT Tips
30. Line Error - Engineering Changes
31. Lightning Protection
32. ASCII Card Jumpering
33. SIU Switches Incorrectly Labeled in Troubleshooting Guide
34. 3271 - Models 1 and 2 Ship Group
35. Field Engineering Handbook for SNA
36. 3271 Hang
37. OLT/FLT Information
38. Update to TSR-1 Troubleshooting Procedure - Diagram 8-11
39. Recommendation to Replace Cards, Board and Power Supply (in that order)
40. 3271 Diagnostic Latch Circuit

Note: Check for additional Service Aids released beyond the last number in this Index.

Section 2. 3271 Control Unit

Figures 2-1 and 2-2 give the locations for the 3271 Control Unit.

3271 SYMPTOM FIX LIST

The following Symptom Fix List should be used to supplement the existing troubleshooting procedures in the MLTG.

CAUTION

Turn Power Off. Do not attempt to swap cards or cables with Power On.

Symptom

ACK - incorrect or out of sequence
AID- character wrong
Attribute not recognized
Attribute displayed as character
"Bad Data" displayed on 3277
"Bad Data" on Buffer Transfer
"Bad Data" transmitted

BCC Character failure

Byte count hang in Poll-Poll
Byte counter will not step

Cannot communicate with host
Carrier (unsolicited) comes up
Check Routine 04 failure
Continuous carrier or 4C04 status
Control Unit hangs with Device Busy
Copy command failure

Cursor Checks
Data Changes on Devices
Data Checks

Data Checks (all attached devices)
Data Check and Unit Specify

Data Check on Initial Selection
Data or Unit Check

Fix

Install EC 740861.
Replace A1M2 card.
Replace A1M2 card.

Replace A 1 H 2 card.
Replace A1N2 or A1C2 card.
Replace A1M2 card.

Replace A1D2 card.
Replace A2D2 card

Replace A1M2 card.
Reseat or replace cable from A1Z3 to A 2 H 2 .

Replace A1G2 card.
Reseat or replace cable in position A2J2.
Replace A1L2 card.
Replace A1G2 card.
Replace A1J2 card.
Install ECA 027 (EC 740022) or replace A1C2 card.

Install EC 740398.
A2S4 card.
Replace -12 V regulator card or F 2 (-12 V fuse), or replace A1M2 card.

Replace A1D2 card.
Replace A1D2 and/or A1F2 card in the 3277.

Replace A1K2 or A1G2 card.
New Sync not optioned at CPU, defective turnaround in data set, loose EIA cable, or A2E2, A1D2 card.

Data Check on status message of Device End
Data errors with or without Data Checks
Data mixed up on screen
Data transfer to or from any device fails
Device End presented erroneously
Display size of Model 2 reduced to Model 1
size
Drops bits on Read command

Drops characters of Receive Data (no errors)
Drops data on all displays
Drops text character on Read Modified
Drops bytes of data (randomly)

Erase/Write Sequence 5 failure
Erase/Write Sequence 8 failure
EOT instead of ACK
EOT reply missing after RVI from Host
EOT response to Write command (any device)
ETB sent at wrong time
ETX invalid
Extra characters (9600 baud)
Extra cursor sent (9600 bps)
Extra spaces on 3277
Failure after installing 9600 baud

General Poll failure
Hangs in Transmit
Hot Bit in SERDES
Incorrect (bad) data transmitted
Initial Selection failure

Intervention Required

Intervention Required (all devices)
Intervention Required (status on first device address)

Replace A1G2 card.
Tighten capacitor screws on power supply.
Replace A1P2 and/or A1D2 card.
Replace A1F2 card.
Replace A1N2 card.
Replace A1J2 card.

Reseat or replace cable from A1Z2 to A2J2.

Replace A1F2 card.
Replace A1E2 card.
Replace A1C2 card.
Install jumper from A1F2D06 pin to ground. (EC 742201)

Replace A1M2 card.
Replace A1D2 card.
Replace A1E2 card.
Replace A2F2 card.
Replace A1C2 card.
Check for missing jumper on A2E2 card.
Replace A2E2 card.
ECAO54.
ECA A2J4 to P/N 8563031.
Replace A1E2 card.
Wire from A2E2B09 to A2A2D05 missing.

Check jumpers on A2F2 card.
Missing 5 volts.
Replace A2G2 card.
Replace A2E2, A1N2, or A1F2 card.
Replace A1P2 or A1B2 or Device Adapter card.

Replace fuse F3 or replace A1N2 or A1J2 or A1P2 card.

Replace A1B2 or A1P2 card.
Replace Device Adapter card.

Symptom
10 Register Loaded failure
IO Register Loaded light after POR

Locks up

Lost data

Lost information
Loses bytes of data (randomly)

Missing characters
Modified data sent twice (Int.)

Poll Poll fails
Poll Poll inoperative
Poll Poll not running

Poll failure (all units)
Poll failure (no response)
Poll response correct, unable to transmit
Poll response slow
Power on reset failure, timeout
Random data on displays
Read command failure
Read Modified failure from SIU
Receives correctly, will not transmit
Repeat to address order failures
Request to Send up solid

SERDES cannot be reset
SERDES resets on first Device Address
SERDES resets on second Device Address
Set Buffer Address Sequence Repeat
Short on board
Specific Poll failure
Start Pad character incorrect
STATUS indicator on

Status of Data Check
Status of OP check on Write from SIU

Fix
Replace A1E2 card.
Baud Feature card in A 2 H 4 instead of A2J4.

Replace A1G2 card.
5 volts low.
Replace A1H2 or A1D2 card.
Install jumper from A1F2D06 to ground. (EC 742201)

A1G2 card.
Burnt or dirty PWR/S connector or poor connection on board.

Replace buffer card.
Replace A1C2 card.
Reseat or replace cable between position A 2 H 1 and A 123 or replace A 1 N 2 or A1M2 card.

Check jumpers on A2F2 card.
Replace A2E2 card.
Replace A1K2 card.
Check for short in interface cable.
Replace A1B2 card.
Replace A1E2, A1P2 card.
Replace A2G2, A2B2 card.
Replace A1D2 card.
Replace A2J4 card.
Replace A1D2 card.
Replace A2G2 or A2B2 card or replace +5 V fuse.

Replace A1K2 card.
Reseat or replace cable in position A 2 H 3 .
Replace A1F2 card.
Floating or ripple on 5 -volt return.
Replace defective board voltage jumper.
Check jumpers on A2F2 card.
Replace A2G2 card.
Replace A1E2 or A1P2 or A1J2 or A2D2 card.

Replace A1F2 card.
Replace A2J4 card (high bps only).

Fix

Figure 2-1 (Part 1 of 4). 3271 CU Functional Block Diagram

Figure 2-1 (Part 2 of 4). 3271 CU Functional Block Diagram

Figure 2-1 (Part 4 of 4). 3271 CU Functional Block Diagram

3271 MODEL 1 AND 2 CARD SUBSTITUTION LIST

The following is a card substitution list approved only for use in the United States on 3271 Control Units.

Key
FO = Factory Only
NA $=$ Not Available
CC $=$ Needs Companion Card
BW = Needs Board Wiring
$M R=$ Minimum Rework - Functionally equivalent to the PN listed immediately below it.
The Underlined PN is the latest level card.
Cards may be substituted up or down as long as board wiring (BW) is not required.
Basic Unit

Loc PN	Key	ECA/EC	Function/Comments
A1B2--- 8522126	MR	003/717489	Sequence 6
8522840		FO/718543	
8523624		FO/718975	
8523659		026/739559	
8564141		055/747005	
A1C2--- 8522107	MR	003/717489	Sequence 5
8521829			
8522841		FO/718546	
8522861		007/718942	
8524587		027/740022	
A1D2--. 85		003/717489	BAC/Order Decode
A1E2--. 8521725		003/717489	Sequence 8 Read
8522830	BW,CC	005/717956	
8524319		019/739278	
8563022		051/745462	
A1F2-... 8521990	MR	003/717489	Sequence 8 Write
8521523		FO/718543	
8524575	CC*	FO/739265	
		*CC for Kataka	WTC) only
8527304		FO/741773	
8564142		056/747006	
A1G2-... 8521969		003/717489	Clock
8523635	CC	FO/738655	
A1H2-... 8522129		003/717489	Sequence 2, 3, and 7
8522834	MR	006/718544	
8522839			
8523634	CC	FO/738655	
A1J2--. 8522119		003/717489	Sequence 4
8522152	CC	004/717949	
8522858		FO/718940	
A1K2---8522009		003/717489	Sequence 4
8522139		004/717949	
8565011	BW	063/747509	

Basic Unit (cont)			
Loc PN	Key	ECA/EC	Function/Comments
A1L2-... 8521414		003/717489	Buffer Parity
8523655		FO/739553	
8526057		029/740398	
A1M2-..-8521852		003/717489	I/O Reg
8526062		FO/740393	
A1N2 \cdots - 8522138		003/717489	Shift Reg
8522831	CC	005/717956	
A1P2 \cdots - 8522124		003/717489	Priority Ctr
A104/5			
A1R4/5-8521985		003/717489	Buffer
A1S4-... 8521508	MR	003/717489	Device Adapter
8522141			
8522147	CC	004/717949	
A2B2.... 8521516		003i717489	EIA Driver/Receivers
8523640		FO/738653	
8523658		FO/739558	
8526047	MR	032/740036	
8523662*	BW	032/740036	
8527981		042/742873	
A2C2-... 8521978		003/717489	Init. + Unit Selection
8528269	MR	046/744154	Message Switching
8528270	BW	046/744154	
A2D2 \cdots - 8521967		003/717489	T-Clock
A2E2-... 8521712		003/717489	Status and Sense Regs
8522868		010/718947	
8523645		017/739064	
8526059	BW	033/740861	
8527916		NA/742861	
A2F2-..- 8521865		003/717489	All Decoders
8526054	MR	FO/740024	
8527295		034/741253	
8528256		044/743330	
8565001		059/747500	
A2G2-... 8521864		003/717489	Serdes

*PN 8523662 can be used on U.S. machines in emergency situations without adding the board wiring. ECA 032 should then be ordered and installed.

Feature or RPQ Units

Loc PN	Key	ECA/EC	No./Description
A1E2---8527903		NA	APL
A1J2---8526696		NA	APL
A1 M2---8522845		718552	ASCII I/O Register
A1 N2----8524283		NA	AB4820/5000 Ft (1 524 m) RPQ
8524321		739277	AB4820/5000 Ft (1524 m) RPQ
A1N2-..-8527983		NA	APL
8527996		743326	APL
8528266	MR	$\begin{aligned} & \text { REA06-82544 } \\ & (743332) \end{aligned}$	APL
8528267		743332	APL
Adapter-8523252		NA	AB4820/5000 Ft (1524 m) RPQ
8524318		739277	AB4820/5000 Ft (1524 m) RPQ
Adapter-8527294		NA	8K0566 Lightning Protection RPQ
A2B2--. 8528261		743337	FB0613/Mil Spec
A2D2--8521968		003/717489	ASCII
A2E2----8521448		003/717489	ASCII
8522869		010/718947	ASCII
8523646		017/739064	ASCII
8527977	BW	NA/742861	ASCII
A2F2---8522005		003/717489	ASCII
8528257		044/743330	
8565000		059/747500	
A2G2--- 8521447		003/717489	ASCII
8522849		008/718552	
A2H4--- 8521824		003/717489	Low bps
$\begin{array}{rr} \text { A2J4--. } 8522130 \\ 8522131 \\ \hline \end{array}$		003/717489	High bps
8528260		048/743336	7200 bps
8527986		NA/7455476	9600 bps 8 K 0498
$\begin{aligned} & 8563031 \\ & 8564130 \\ & \hline \end{aligned}$		054/745476	
A2K2---8522855		718559	FB0613/Mil Spec
8524284		739267	

Note: For 3271 Models 11 and 12 SDLC card part numbers, refer to Section 8 of this manual.

3271 Common Board Part Numbers

Loc	PN	Description
A1	2625220	Base
	1653796	50001 RPQ, Ver 20
	1840930	50001 RPQ, Ver 40
	1739986	APL
A2	2625222	EBCDIC
	2625224	ASCII
	1660042	SDLC

3271 Models 1 and 2 EC Cross-Reference Table

This chart is to be used to determine the need for any of the optional EC changes and to verify the EC level of any machine.
To aid in determination the serial number that implemented each change is listed. This list will be updated periodically. It
is recommended that a copy of this service aid be kept in 3270 card caddies.

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/ Mand	Feature Affected	Break In Serial \#	Cards Affected		Board Wiring Involved	Card Loc	Card Type	Description
								Old P/N	New P/N				
001	716954			None	Mand		10057						Factory installed on all machines.
002	717482			None	Mand		10057						Factory installed on all machines.
003	717489		3277 ECA 002 3284 ECA 003	None	Mand		10152	$\begin{aligned} & 8521834 \\ & 8522007 \end{aligned}$	$\begin{aligned} & 8522138 \\ & 8522141 \end{aligned}$	Yes	$\begin{aligned} & \text { A1N2 } \\ & \text { A1S4 } \end{aligned}$	$\begin{aligned} & 2219 \\ & \text { L510 } \end{aligned}$	Correct device adapter card for addressing more than four devices.
004	717949		ECA 004	None	Mand		10152	$\begin{aligned} & 8522119 \\ & 8522009 \end{aligned}$	$\begin{aligned} & 8522152 \\ & 8522139 \end{aligned}$	Yes	$\begin{aligned} & \mathrm{A} 1 \mathrm{~J} 2 \\ & \mathrm{~A} 1 \mathrm{~K} 2 \end{aligned}$	$\begin{aligned} & 9129 \\ & 2221 \end{aligned}$	Correct spurious Device-Ends, separate generation of device-ends and attention, add metering-in when printing.
005	717956		ECA 004	None	Opt		10666	$\begin{aligned} & 8521725 \\ & 8522138 \end{aligned}$	$\begin{aligned} & 8522830 \\ & 8522831 \end{aligned}$	Yes	$\begin{array}{\|l} \mathrm{A} 1 \mathrm{E} 2 \\ \mathrm{~A} 1 \mathrm{~N} 2 \end{array}$	$\begin{aligned} & 2218 \\ & 2219 \end{aligned}$	Fixes "Read Modified" with tagged attribute in last buffer location with untagged attribute preceding.
006	718544		ECA 004	None	Mand		10666	8522129	$\begin{aligned} & 8522839 \\ & \text { or } 8522834 \end{aligned}$	None	A1H2	2220	Loss of data in position 0 with tagged attribute in last buffer position.
007	718942 OBSOLETE	ERSE	ECA 004 Y ECA 027	None	Opt		10666	8521829	8522861	None	A1C2	9128	Composite EC to prevent hang on Read Modified command if there is an untagged attribute in last buffer position and no other attributes in buffer.
008	718552		ECA 004	None	Mand	ASCII	10728	$\begin{aligned} & 8521852 \\ & 8521447 \end{aligned}$	$\begin{aligned} & 8522845 \\ & 8522849 \end{aligned}$	None	$\begin{aligned} & \mathrm{A} 1 \mathrm{M} 2 \\ & \mathrm{~A} 2 \mathrm{G} 2 \end{aligned}$	$\begin{array}{\|l\|} 9033 \\ 9110 \end{array}$	ASCII conversion problem (ASCII machines only)
009	717949C		ECA 004	None	Mand		10847			None			Update Socket List
010	718947 OBSOLETE	ERSE	$\begin{aligned} & \text { ECA } 004 \\ & Y \text { ECA } 017 \end{aligned}$	None	Opt	$\begin{aligned} & \text { EBCDIC } \\ & \text { ASCII } \end{aligned}$	11109	8521443 or 8521712 8521448	8522868 8522869	None	A2E2 A2E2	$\begin{array}{\|l\|} \hline 9041 \\ 9111 \\ \hline \end{array}$	"Line Hit" on message to 3271 results in retransmission which may result in wrong Ack. Expected Ack 0, received Ack 1.
011	718956		ECA 004	None	Opt WTC only		11109						World Trade only
012	718335			None	Mand		11443			None			Update IR Code Guide
013	718556		None	None	Mand					None			Provide 3277 "Max Pack" logics to early ship control units.
014	738897		None	None	Mand		11659			None			Prevent burning of 5 volt return line connectors
015	738790		None	None	Mand		12571			None			Connector spring clip installation

Figure 2-3 (Part 1 of 7). 3271 Models 1 and 2 EC Cross-Reference Chart

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/ Mand	Feature Affected	Break In Serial \#	Cards Affected		Board Wiring Involved	$\begin{aligned} & \text { Card } \\ & \text { Loc } \end{aligned}$	Card Type	Description
								Old P/N	New P/N				
016	738653												This ECA was cancelled.
017				None	Opt	EBCDIC ASCII	12530	$\begin{aligned} & 8521712 \\ & \text { or } 8522868 \\ & 8521448 \\ & \text { or } 8522869 \end{aligned}$	$\begin{aligned} & 8523645 \\ & 8523646 \end{aligned}$	None	$\begin{aligned} & \mathrm{A} 2 \mathrm{E} 2 \\ & \mathrm{~A} 2 \mathrm{E} 2 \end{aligned}$	$\begin{array}{r} 9041 \\ 9111 \end{array}$	Wrong Ack on odd number of temporary text delays.
018	739540		ECA 004	None	Mand		12672			Yes			Resolves reread problem that occurs when doing a reread of a block of data.
019	OBSOLETE - SUPERSEDED BY ECA 051			None	Opt		13462	8522830	8524319	None	A1E2	2218	Prevents read at wrong location and loss of SBA (light pen read) and address of modified attribute.
020	739265				Opt*		14388	8521523	8524575	Yes	A1F2	9039	WTC only - US mach picked up a portion of this EC which is the use of new A1F2 card and wiring (factory only). *WTC only
021	738794		None	None	Mand		N/A			None			Power Supply Logic update.
022	718969		None	$\begin{aligned} & \text { Comp } \\ & 3277 \text { ECA } 023 \end{aligned}$	Mand		N/A			None			Logic update for 3277.
023	739065		None	$\begin{aligned} & \text { Comp } \\ & 3277 \text { ECA } 028 \end{aligned}$	Mand		13165			None			Logic update for 3277.
024	739072		None	$\begin{aligned} & \text { Comp } \\ & 3277 \text { ECA } 029 \end{aligned}$	Mand		N/A			None			Logic update for 3277.
025	739071		None	$\begin{aligned} & \text { Comp } \\ & 3277 \text { ECA } 032 \end{aligned}$	Mand		13110		-	None			Logic update for 3277.
026	$\begin{aligned} & 739559 \\ & \text { OBSOL } \end{aligned}$	SUPERS	$\begin{aligned} & \text { ECA } 004 \\ & \text { BY ECA } 055 \end{aligned}$	None	Opt		14220	8523624	8523659	None	A1B2	2216	Prevents the loss of aid character when retransmitting a short read.
027	740022		ECA 004	None	Opt		13969	8522861	8524587	None	A1C2	9128	To correct data that was lost when retransmitting the last block of data in response to an NAK.
028	739268		None	$\begin{aligned} & \text { Comp } \\ & 3277 \text { ECA } 038 \end{aligned}$	Opt		13530			None			Logic update for 3277.

Figure 2-3 (Part 2 of 7). 3271 Models 1 and 2 EC Cross-Reference Chart

ECA	EC	REA	Pre-ReqECA	Concur or Comp	Opt/Mand	Feature Affected	Break In Serial \#	Cards Affected		Board Wiring Involved	$\begin{array}{\|l\|l} \text { Card } \\ \text { Loc } \end{array}$	$\begin{array}{\|l\|l} \text { Card } \\ \text { Type } \end{array}$	Description
								Old P/N	New P/N				
029	740398		004	None	Opt		15917	8523655	8526057	None	A1L2	9085	Corrects a timeout condition that results when an internal buffer error (data check) occurs. This appears when running OLT FLTs to the 3271 . Routines 46 and 53 fail. These routines do a "force buffer parity" which causes the 3271 to generate an internal buffer parity error. The printout states that the data check was received but an error occurred in retrieving the diagnostic read trace latch data. Another symptom is that with the SIU plugged in, there are no sequence indicators on.
030	$\begin{aligned} & 740373 \\ & 741298 \end{aligned}$		None	None	Mand			None	None	None			Provides additional secondary circuit protection in case of power fault condition by adding a +5 volt fuse.
031	740389		None	None	Mand			None	None	None			3277 Logic Manual update
032	$\begin{gathered} 740036 \\ \text { OBSOLETE } \end{gathered}$		004 BY ECA 042	None	Opt		$\begin{aligned} & 15823 \\ & 14070 \end{aligned}$	8523640 852365 Same	8523662 8526047 MR	Yes None on REA 06-81644	A2B2	9045	1. Bit shifting problems due to cable crosstalk. Symptoms: Line drop, loss of control unit from polling list, timeouts. 2. Data shifting seimens D2400S MODEM (Germany) REA - card only One wire add to complete EC
033	740861	06.81652	032	None	Opt		17069	8523645	8526059	Yes	A2E2	9041	Wrong Ack response after single or multiple line hit. Ack response latch changes only on receipt of good BSC.
034	741253 OBSOLETE	06.81666	004 BY ECA 044	None	Opt		17895	8521865	8527295		A2F2		Allow 3271 to resend the previous block of text after it has timed out and received the wrong Ack from the TCU

Figure 2-3 (Part 3 of $\mathbf{7}$). $\mathbf{3 2 7 1}$ Models $\mathbf{1}$ and $\mathbf{2}$ EC Cross-Reference Chart

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/Mand	Feature Affected	Break In Serial No.	Cards Affected		Board Wiring Involved	Card Loc	Card Type	Description
								Old P/N	New P/N				
035	384010			None	Opt WTC Only								World Trade Use Only
036	384011			None	Opt WTC Only								World Trade Use Only
037	742203			None	Opt WTC Only								World Trade Use Only
038	742201	0682457	018	None	Opt	Base	19110	None	None	Yes			1. Corrects a copy protected operation that erases protected data. 2. Adds a reset to the priority counter for SDLC off-line operations. 3. Prevents intermittent dropping of bytes of data on a write (with no error indication)
039	744142	0682543	None	None	Mand	APL	21895			None			Update logic and history. ALDs are provided to incorporate REA 0682543.
	OBSOLETE - MANDATORY CHANGE FOR APL MACHINES												

Figure 2-3 (Part 4 of 7). 3271 Models 1 and 2 EC Cross-Reference Chart

Figure 2-3 (Part 5 of 7). 3271 Models 1 and 2 EC Cross-Reference Chart

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/ Mand	Feature Affected	Break-In Serial No.	Cards Affected		Board Wiring Involved	Card Loc	Card Type	Description
								Old P/N	New P/N				
049	745471		None	None	Opt	SDLC		8527990	8563024	None	A2E2		Attached printer ending status is incorrectly presented if intervention required occurs while the printer is printing.
	OBSELETE - SUPERSEDED BY ECA 060 - 01A A2E2 OBSELETE - SUPERSEDED BY ECA 060 - 01A A2E2 ECA 061 - 01A A2F2							8527909	8563025		A2F2		If display goes busy while the control unit is receiving an " l " frame for that display, the message may be reported or the system may temporarily hang.
050	OBSOLETE - SUPERSEDED BY ECA 063			None	Opt	Base		None	None	Yes A1 Board			Prevent system outages such as "hangs" and "waits states" due to a repetative equipment check.
051	745462		005	None	Opt	Hi Baud w/o APL		8524319	8563022	None	A1E2		Correct a problem where a 3271, with hi baud feature, will intermittently drop an 'SBA' sequence on a read if that sequence takes place at the end of a block.
052	746044	JPERSE	045 ECA 057	None	Opt	SDLC		$\begin{aligned} & 8527994 \\ & 8527993 \end{aligned}$	$\begin{aligned} & 8563037 \\ & 8563036 \end{aligned}$	Yes	$\begin{aligned} & \mathrm{A} 2 \mathrm{H} 2 \\ & \mathrm{~A} 2 \mathrm{~J} 2 \end{aligned}$		A read of what should be 256 bytes results in 257 bytes, with the first and last bytes being the same. If a read of 255 bytes is performed with a re-read following, only the first byte is resent. If a successive re-read is tried, all data is resent.
053	743211		None	None	Opt	Base		None	None	None			To provide an electrical surge arrester to reduce curcuit damage due to lightning.
054	745476		046	None	Opt	9600 BPS		8527986	8564130	Yes	A2J4		Problem is present when a format on the display has an attribute in the last position of the screen and one, two or three characters of data entered in the first few locations of the screen followed by an "enter" attention. This sequence causes the second cursor address character of the read heading to be repeated. This EC also fixes an intermittent time out of the erase all unprotected command.
055	747005		004	None	Opt	Base		8523659	8564141	None	A1B2		Prevent the loss of aid character when retransmitting a short read.
056	747006		004	None	Opt	Hi Baud or 9600 BPS		8527304	8564142	None	A1F2		To correct a 3271 problem where the remote interface detects a BCC error before the preceeding data has been acted upon. The 3271 will hang in sequence 8.

Figure 2-3 (Part 6 of 7). 3271 Models 1 and 2 EC Cross-Reference Chart

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/ Mand	Feature Affected	Break-In Serial No.	Cards Affected		Board Wiring Involved	$\begin{aligned} & \text { Card } \\ & \text { Loc } \end{aligned}$	Card	Description
								Old P/N	New P/N				
057	746053		052	None	Opt	SDLC		8563024 8563025 8563036 8503050	8564136 8563038 8564138 8564140 \qquad	Yes		$\begin{aligned} & \text { A2E2 } \\ & \text { A2F2 } \\ & \text { A2H2 } 2 \\ & \text { A2 } 22 \end{aligned}$	1. Sending incomplete message while testing intervention required responses. 2. SDLC command reject indication of RAM overrun after a BCC error during transmission of write data.
058	No ECA												
059	747500		003	None	Opt	$\begin{aligned} & \text { Models } \\ & 1 \& 22 \\ & \text { Only } \end{aligned}$		$\begin{array}{\|l\|} \hline 8528256 \\ 8528257 \\ \hline \end{array}$	$\begin{aligned} & 8565001 \\ & 8565000 \end{aligned}$	None		A2F2 A2F2 ASCI	Prevents the decode of an ITB in the BCC character that follow a valid ITB initiating another ITB sequence.
060	747518		057	None	Opt	SDLC		8564136	8565453	None		A2E2	Prevent hanging the system when the attention key is depressed for the second time while the system is responding to the first attention key depression.
061	748628 NOTICE:	ObSO	057 ECA 062	None	Opt	SDLC		8527897 8527899 8565009	8565456 8565458 8565459	None		A2D2 EBCDIC A2D2 ASClI A2F2	Corrects a hang condition when exercising the ' 0 ' length RU option incorporated in IMS. The 3271 ceases communication with the host. Communication with NCP remains but terminal messages are not being transmitted.
062	747505 obsole	ERSED	$\begin{gathered} 057 \\ \text { Y ECA } 061 \end{gathered}$	None	Opt	SDLC		8563038	8565009	None		A2F2	Correct equipment check problem from attached printers and erroneous status in 3271.
063	747509		038	None	Opt	Base		8522139	8565011	Yes		A1K2	Corrects a problem where the 3271 hangs in sequence 6 if a device responses to a idle poll with the printer and attention bit set.

Figure 2-3 (Part 7 of 7). 3271 Models 1 and 2 EC Cross-Reference Chart

3271 SERVICE AIDS

Cables and Connectors

Cabling Error

On some 3271 Control Units there may be an error in the placement of a cable into the H3 or J3 position of the A2 board. Proper cable and card plugging is as follows:

1. 3271 Control Units with 1200 -bps feature: A card is required in positions A 2 H 4 and A 2 H 5 , and a cable is required in position A2H3.
2. 3271 Control Units with 2000 or $\mathbf{2 4 0 0}$-bps feature: Only a cable is required in position A2H3.
3. 3271 Control Units with 4800 -bps feature: A card is required in positions A2J4 and A2J5, and a cable is required in position A 2 J 3 .

Coaxial Cable Ends - Loose

The metal ends of unused coaxial cables that are left in the 3271 Control Unit can contact the exposed pins of the A2 board, resulting in possible component damage. Ensure that the unused coaxial cables are secured in such a manner that there is no possibility of contact with the A2 board.

Flat Cables - Defective

If a flat cable (cable group PN 2570156) between the A1 board and the A2 board in the 3271 Control Unit is suspected as being defective, then another cable from that board may be substituted. These flat cables are pin-for-pin compatible, but are different in length. A temporary cable (PN 5803892) is also available for use in troubleshooting a cable problem in the 3271 . It is 60 inches (1.52 m) long and is pin-for-pin compatible with the cable group found in the 3271.

Voltage Jumpers - Defective

The exposed metal ends of some voltage jumpers can cause shorts or cold flows when installed on the back of the A1 and A2 boards of the 3271 Control Unit. These defective voltage jumpers have exposed metal ends due to the insulation being cut too short. If the jumper is installed on the board with excessive pressure, it is possible that the jumper will penetrate the insulation on an adjacent yellow wire or land pattern, causing a short or cold flow problem.

Cards and Boards

Card Removal and Insertion

Power must be turned off when removing or inserting cards in the 3271 Control Unit. Analysis of returned defective cards indicates that a possible cause of failure was removing or inserting cards with power on.

Test Point - Serial Clock Transmit (SCT)

In the 3271 Control Unit, logic card PN 8523662 no longer has a Serial Clock Transmit (SCT) test point available at pin location A2-B2B03. This point, when probed, will appear as a floating level. To check for SCT pulses, probe A2-B2B04.

Modems and Lines

Line Errors - Engineering Changes (ECs)

There are presently eight engineering changes (EC) available that should be installed to correct problems such as line drops resulting from line hits. Problems that may be corrected by these ECs are:

1. Line drops.
2. A control unit being dropped from the polling list.
3. Unrecoverable errors.
4. Time outs.
5. LOss of SYSTEM READY on the 3271.
6. Incorrect ACK responses.

The ECs are accompanied by "break in" serial numbers to help determine which ECs are needed for a particular machine. The 3271 card socket listing (A1115 and A1125) should also be consulted to determine which ECs were factory-installed. All ECs have been released to the field and must be ordered via a MES. These ECs are:

ECA Number	EC Number	Break-In Serial Number
018	739540	12672 Mandatory and auto shipped
019	739278	13462 Card A1E2 PN 8524319
026	739559	14220 Card A1B2 PN 8523659
027	740022	13969 Card A1C2 PN 8524587
029	740398	15917 Card A1L2 PN 8526 G57
032	740036	14070 Card A2B2 PN 8526047 (MR)
		or 8523662 (BW)
034	741253	14366 Card A2F2 PN 8526054 (MR)
replaces EC	740024	or 8527295
033	740861	15124 Card A2E2 PN 8526059 and BW

Modem or Line Scoping Procedure

Note: This procedure is applicable only for those machines attached to modems that provide "Receive Element Signal Timing Clock" continuously, or 3271 s at EC 743330 or above.

The following procedure can be used to verify line or modem problems:

1. Power off the 3271 Control Unit and one 3277 Display Station (Device 0) and connect the SIU for offline use.
2. Power on the 3271 and the 3277.
3. Perform an Initial Selection routine, including the ACK 0 response.
4. Perform a Read Modified command. When the text message response to the Read Modified command is complete, reply with a wrong ACK response (ACK 0) as shown below:

32	32	10	70	FF	(EBCDIC)
16	16	10	P30	P7E	(ASCII)

5. The 3271 will respond to the wrong ACK with an enquiry sequence as shown below:

55	32	32	$2 D$	(EBCDIC) for 2400,4800 , and 7200 bps speed rate.
55	16	16	P5	(ASCII) for 2400,4800 , and 7200 bps speed rate.

Note: If the speed rate is 1200 bps , the above sequence will have 3 starting pad characters (55) preceding the message instead of 1.
6. Place the SIU ONLINE/OFFLINE switch to ONLINE. The 3271 will now send the enquiry sequence down line to the TCU at the system site every 3 seconds, if the TIMEOUT OVERRIDE switch on the SIU is placed in the NORMAL position.

Note: For continuous transmission, install a jumper from pin A2-B2J13 to ground (D08).
7. Scoping can now be performed at the TCU for the correct enquiry sequence from the 3271. Examples of scoping patterns are shown below:

EBCDIC pattern every 3 sec from 3271 to TCU

ASCII pattern every 3 sec from 3271 to TCU

Note 1: Data bytes appear to be reversed. This is normal because of the shifting of the SERDES shift register in the 3271 Control Unit.

Note 2: Time base settings for the scoping procedure are as follows:

$1200-\mathrm{bps}$ rate	5 ms per division
$2000-\mathrm{bps}$ rate	2 ms per division
$2400-\mathrm{bps}$ rate	2 ms per division
$4800-\mathrm{bps}$ rate	1 ms per division
$7200-\mathrm{bps}$ rate	5 ms per division

Programming

Device End - Lost
If a line hit occurs while sending the Device End response to a Specific or General poll, and the program decides to poll again, the Device End condition in the 3271 Control Unit will be lost. This problem has been fixed by a change to BTAM. This change sends one NAK as a result of the TCU timeout before responding to the poll. It is recorded under OS-BTAM APAR 66416. The DOS APAR is DX01437, applicable to release 27.1. The DOS-VS APAR is DY04583.

8000-bps Problem - System 3

A problem can occur when a 3271 Control Unit is attached to a System 3 CPU with the 8000 -bps feature. An Operations Check (OC) occurs because the 3271 cannot accept the data fast enough and data is lost. This problem occurs when:

1. The customer program has a reset Modified Data Tag (MDT) in the Write Control Character (WCC).
2. The cursor position, at the time the write is performed, is at the end of the 1920 character display (position 1919).

To correct this problem, obtain APAR number S304679. This APAR is applied against three modules (\$CC4DF, \$CC4DE, and SCCPDF) of the display format facility (DFF) program. This is an IBM-written program that takes the customer's data stream and formats it to run on the System 3. The APAR adds three SYN characters after a WCC with a reset Modified Data Tag bit set. Additionally, three SYN characters are added after an Insert Cursor order.

Power Supplies

Heat Sink Short to Ground

Check to see that the heat sink (PN 2582955), mounted in the 3271 Control Unit power supply, does not contact the screw used to connect the prime power box to the rail. If this condition is present, a short will occur. The short may show the following symptoms:

1. The primary fuse may blow.
2. Terminals 5,6 , and 7 of the power input connector may burn.
3. The 5 V rectifiers or the wire to the rectifiers may fail.
4. High ac ripple on the 5V output.

The above condition can be corrected by adjusting the heat sink mounting.

$+5 V$ Fuse

When EC 740373 (fuse change) is installed on 3271 Control Units, blowing the +5 V fuse will cause Request-to-Send to come up solid on the EIA interface. This could cause an entire teleprocessing line to hang or be removed from the polling list. When this problem occurs, all indicators on the 3271 Control Unit operator panel will be off.

Note: EC 742873 will correct this problem.

Tools and Test Equipment

SIU - Byte Mode Failure

Byte mode problems (pressing the SINGLE STEP pushbutton more than once to enter a character) may occur when using the SIU on the 3271 Control Unit. To correct the problem, add a 1000 -ohm resistor from A2-B2D04 to D08 (ground).

Note: This resistor must be removed to operate onlfine.

TDAT - Tape Speed

Problems with 3270 pre-recorded tape playback on all 1200 TDATs can be identified and adjusted using the MST 1 card PN 8233270. This card will identify such playback problems as head alignment, speed variations, idler roll tension, wow and flutter, and weak tape signals. The recorder in the TDAT should be adjusted using the Maintenance Library manual ($\mathbf{S} 226$-3029) and the Norelco* tape recorder manual. When properly adjusted, the error light should blink less than once every 2 seconds (use the 3270 pre-recorded test tape "Speed routine").

Note: Test tapes having a suffix of -0 should not be used.

TDAT and Cassette Tape Checkout

If problems are experienced using the 1200 TDAT with the 3270 system, the following aids may help determine whether the problem is with the cassette tape, the recorder, or the TDAT. Make the measurements on the TDAT EIA/CCITT connector using pin 7 (signal ground) as a reference.

1. A reading of -1 V to -3 V on pin 15 means that the transmit clock is running and symmetrical. This allows for 30% distortion.
2. A reading of -1 V on pin 17 means the receive clock is running and symmetrical. Additional testing is required to determine if the clock is in sync with the data. Zero volts on either clock indicates a defective clock.

[^0]3. Use the 3270 test tape "speed test routine" to create a signal. If the following voltages are seen on pin 3 (receive data), then the tape and recorder are working properly.

	Terminal Attached	Terminal Unattached
Speed pattern running	+5 V	+7 V
Pattern not running	-10 V	-12 V

Note: Prior to making these voltage checks, the head alignment test should have been performed using the test tape (PN 2728138), and the speed of the tape player should have been properly adjusted.

EIA Line Name	EIA Pin No.	3271 Pin No.
Protective Ground	1	
Transmit Data	2	B2D02
Receive Data	3	B2M10
Request to Send	4	B2B02
Clear to Send	5	B2B09
Data Set Ready	6	Not Used
Signal Ground	7	B2D08
Carrier Detect	8	B2U04
Serial Clock Transmit	15	B2S08
Serial Clock Receive	17	B2M12
Data Terminal Ready	20	B2B13

25-Pin Connector Mounted on 3271
Note: Signals from data set to 3271 measure +3 V to +25 V for up level and -3 V to -25 V for down level. Signals to data set from 3271 measure +3 V to +8 V for up level and -3 V to 12 V for down level.
Protective ground pin 1 does not pick up ground from 3270.
Protective ground is the cable shield and is clamped to 3270 .

CAUTION: When measuring voltages on the IO connector, use an oscilloscope. Do not use the General Logic Probe or the standard probe.

3271 Diagnostic Latch for Intermittents

To troubleshoot intermittent 3271 problems, it is possible to insert a latch by placing two 3272 cards into positions A1Q2 and A1R2.

There are three inputs to the latch, each of which must be at the positive (up) level before the latch can be set. Because these inputs are normally floating, the latch is always set. To reset the latch, at least one negative level must be applied to the input, and the latch "RESET" pin (R2B07) must be momentarily jumpered to ground. The output is R2J13, which can be monitored with a general logic probe, oscilloscope, or CE meter.

If the signal to be input to the latch is positive, and the active level is negative, an inverter must be used to make the active level positive to set the latch. Two inverters are available on the R2 card for this purpose.

Also available on the Q 2 card is a two-legged AND without a latch. This AND can be used in conjunction with the latch and inverters.

Note 1: To use the AND circuit, the card at Q 2 must be $\mathrm{P} / \mathrm{N} 8526971$.
Note 2: To use the latch and inverters, the card at R2 must be P/N 8526064.
Note 3: Both cards are contained in the 3272 recommended " C " level card caddy.

Section 3. 3272 Control Unit

Contents

3272 CEM/Service Aid Index 3-2
3272 Symptom Fix List 3.3
3272 Card Substitution List 3-10
Basic Unit 3-10
Feature or RPQ Units 3-12
3272 Common Board Part Numbers 3-12
3272 Model 1 and 2 EC Cross-Reference 3-13
3272 Service Aids 3-18
Loose Coax Aids 3-18
Probe Points for Monitoring PT2 or B-TDAT $3-18$
Diagnostic Latch for Intermittents 3.19Figures
Figure 3-1. 3272 Control Unit Data Flow 3.7
Figure 3-2. 3272 Buffer Storage Address Control 3.8
Figure 3-3. 3272 A-Gate Card Layout by Function $3-9$
Figure 3-4. 3272 Models 1 and 2 EC Cross-Reference Chart (5 Parts) 3.13

3272 CEM/SERVICE AID INDEX

1. Loose Coax Ends
2. 3272 Models 1 and 2 EC Cross-Reference Table
3. 3272 Card Substitution List
4. VTL Logic Voltages
5. 3272 DOS IPL Hang
6. Lightning Protection
7. 3272 Logic Board P / N; Latest EC Level and Card P / Ns
8. 3272 Diagnostic Latch Circuit
9. 3272 Hang
10. 3272 Models 1 and 2 Ship Group
11. Intermittent Troubleshooting Procedure
12. 3272 Address Label Holder and Label
13. New Power-On Lamp for 3272
14. Required Cards for A1 Board at EC 747510 Level
15. Defective A1V2 Card P/N 8563028
16. Troubleshooting Aid
17. EC - Card Cross-Reference List
18. Recommendation to Replace Cards, A1 Board and Power Supply (in that order)

Note: Check for additional Service Aids released beyond the last number in this Index.

Section 3. 3272 Control Unit

Figures 3-1 through $3-3$ give the locations for the 3272 Control Unit.

3272 SYMPTOM FIX LIST

The following Symptom Fix List is to be used to supplement the existing troubleshooting procedures in the MLTG.

Note: Defective coax or ground loops can cause most of the following symptoms.

Symptom

Addressing Failure with Condition Code 3 response Alternate Console wait state

Busy, Status Modifier continuously set by all devices on SIU - Set by POR
Busy after Unit Check

Channel Bus Out checks
Channel Control checks and IFCC 3158
Channel failure message when attempting to
activate 3272. 3272 operates offline with SIU
correctly. OLTS put CPU into loop.
Control Check (intermittent)
Cursor - double length, cannot clear Input Inhibited
Data Checks
Data Checks and missing cursor
Data Checks (Read), bad cursor address
Data Checks on Write to any device
Data Checks on Write, Read Command data contained 6 bit byte decoded as $3 F$ on the bus.
Device Adapter failure
Dropping data or misplaced data on screen
Dropping devices off system one at a time

Enable Failure and/or lost manual interrupts or becomes disabled
Erase All Unprotected failures. Failure on check Route 4, FLT routines 130 and 133. Timing out on split CSW. Expected Channel End and later, Device End. Received only Device End.
Erase/Write command hangs channel
Extra spaces/characters

Hangs 3272

 was the only reset.Hangs channel - missing Op-In TAG
Hangs channel - 3272 TAGS Operation-Out, Select
In, Channel waiting for Address-In
Hangs channel writing to 3284/3286 attempting multiple prints.
Hangs channel on one device
Hangs in SIO Loop on Selector Channel - Correct operation on Multiplexer Channel. FLTs show interrupts from devices which are being tested.
Hangs partition - SIU indication: Seq 2 on
Hangs - SIU indication; Seq 6 on, Byte Count 0 on.

Fix

Missing + 5V A1P2

A102

Defective coax
Bus Cable
EC 741251
A1T2

Wrong type of coaxial cable
A1G2
A1G2, coax, ground loop
Missing-12V
A1P2
A1N2
Buffer card
+8V D11 pin slip-on open
EC 741779, A1F2, coax
A1V2

A1V2

A1U2

A1D2
A1D2
A1G2
A1D2
A1V2
A1V2

A1U2

A1P2
A1S2

A1E2
A1 Board

Symptom

Hangs - SIU indication: Seq 2 on, Byte Count 1 on.
Hangs systems - Application program. IPL is correct.
Hangs system - channel red lights, Status-In, Service-
Out, Unit unobtainable, Address Mismatch,
Program loop with Address-Out, Status-In, and Short Busy
Hangs system - run diagnostic to enable, do POR with ON LINE/OFF LINE switch set to ON LINE prior to POR
Hangs system - Request-In up from 3272 - unable to reset Device End
Hangs system - OLTs cause system to loop
Hangs system with Request-In and Control Unit Busy
Hangs with Command Stored on

Initial Selection incomplete - solid or intermittent reset.
Input Inhibited on all displays
Interface Control Checks

Interface Control Checks on Write or Erase/Write
Interface Control Checks. Hanging CPU. SIU - raise
Address-out, Select-out, and Operation-In delayed 20 ms
Interface Control Checks and unexplainable Wait States

Interface Disable online (light on) ok on SIU
Interface Disable indicator always on

Interface Disable after Initial Selection
Interrupts lost
Intervention Required - any device
Intervention Required on specific device

Multiplexer hang - missing interrupt in online mode. Operates correctly with SIU

Offline - Pressing CLEAR key causes device to go offline
Offline works - online fails

OLTs failure - FLT routine 132
OLTs failure - FLT routines $97,112,113,116,125$, 136 and Check routine
OLTs appear to run fast - prints ret. code 08 Macro \$CUTEST - Mod A - Test Terminating
OLTs failure - FLT routines $44,45,52$
Return code of OCON DPRINT Macro
OLTs failure - FLT routine 132 - AID of 61 instead of 60-Extra 7 Bit using SIU
OLTs failure - FLT Routine 69
OLTs failure - FLT Routine 89, RTN129 Timeout
Order failure - decoding second byte of buffer Address Sequence
Order failures - unable to decode orders - \% printed instead of decoding 3C order

Fix

A1R2
A1Q2
A1V2

Wire No. 3 (online/offline switch) on A1V2S03 not
S04
A1K2

A1H2
A1T2, coax, ground loops
A1E2

Relay K1-3 (+5V special)
A1C2, A1H2, A1F2, A1B2
Capacitor on 01A-A2 D04
instead of on A2D03
A1S2
A1P2

A1S2, A1C2, -12V,
A1Z6 cable
A1P2
A1G2, A1F2, A1J2, A1K2,
A1U2,5-volt special missing
at A1J2D11 (blown fuse).
buffer cards
A1V2
A1H2
A1J2
Adapter card

Connection 01AY6

A1K2

Enable/Disable Switch miswired
A1C2
OLTs configured for 480 devices instead of 1920
CDS cards missing Cols 46.53 (Lowest device address)
A1J2

A1C2

A1E2
A1L2, CDS incorrect
A1F2

A1M2
A1D2

Poll Poll checkout hangs with Seq 2 on and Byte Count 0 or 1 on.	A1C2
Poll Poll checkout hangs with Seq 2 on and Byte Count 1 on. System reset checkout is correct.	Buffer
Power On Reset failure with SIU. Byte Count stopping at 1.	A1E2
Print failure - 3286 fails to print online.	A1P2
Random spaces, characters, cursor fill	No ground on coax shield
Read Modify failure	A1U2
Read or Write to first display only	A1H2
Read Command data contained 6 -bit byte decoded as 3F on the Bus.	Buffer
Read failure - cannot read 3277 buffer. Erase/Write is correct. Write command failed.	A1G2
Read Modify Command failure - Symptoms at command-out time: Byte Count 0 on, Pri. Ctr. Ldd. on, Seq 6 on and Control Check on. FLT failures: 91, 92, 94, 95, 96	A1G2
Request-In up solid	1/O ribbon cable
System light on CPU on solid: meter runs continuously when 3272 is attached.	A1A4
System problems, causes	ECA037
Transaction code always rejected under IMS	A1E2
Write Command fails to display or print data to devices. SIU Write ends correctly - no data written.	A1F2
Write or Read to first display only.	A1H2
Write Command fails. Read also fails. Erase/Write is correct.	A1G2

Figure 3-1. 3272 Control Unit Data Flow

Figure 3-2. 3272 Buffer Storage Address Control

\square

3272 CARD SUBSTITUTION LIST

The following is a card substitution list approved only for use in the United States on 3272 Control Units.

Key
FO = Factory Only
NA $=$ Not Available
CC $=$ Needs Companion Card
BW $=$ Needs Board Wiring
MR = Minimum Rework - Functionally equivalent to the PN listed immediately below it.
The Underlined PN is the latest level card.
Cards may be substituted up or down as long as board wiring (BW) is not required.

Basic Unit

| Loc | PN | Key | ECA/EC |
| ---: | :--- | :--- | :--- | Function/Comments

| Loc | PN | Key | ECA/EC |
| ---: | :--- | :--- | :--- | Function/Comments

*These cards may be used on U.S. machines in emergency situations without adding board wiring. If the card is to be left in the machine the CE must order and install the proper EC.

Feature or RPQ Units

Loc.	PN	Key	EC	No./Description
A1E2	-- 8527903		NA	APL
A1N2	... 8527996		743326	APL
	8528266	MR	$\begin{aligned} & \text { REA 06-82544 } \\ & \text { (743332) } \end{aligned}$	APL
	8528267		743332	APL
A1N2	... 8524283			AB4820/5000 Ft (1524 m) RPQ
	8524321			AB4820/5000 Ft (1524 m) RPQ
Adapter-8524318				AB4820/5000 Ft (1524 m) RPQ
Adapter-8527294			NA	8K0566 Lightning Protection
3272 Common Board Part Numbers				
Loc	PN			Description
A1	2625216			Base
	2610001			5000 Ft . RPQ
	1739988			APL
A2	2625218			Base
	2610002			5000 Ft . RPQ

3272 Models 1 and 2 EC Cross-Reference Table

This chart is to be used to determine the need for any of the optional EC changes and to verify the EC level of any machine To aid in determination the serial number that implemented each change is listed. This list will be updated periodically. It is recommended that a copy of this service aid be kept in 3270 card caddies.

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/ Mand	Feature Affected	Break in Serial \#	Cards Affected		Board Wiring Involved	Card Loc	Card Type	Description
								Old P/N	New P/N				
001	716956				Mand	Base	30081						No Field Bill
002	717483				Mand	Base	30081						No Field Bill First Customer Ship Level
003	717490				Mand	Base	30173						These ECs were shipped to all machines to establish ' C ' exit level.
004	717950				Mand	Base	30203						
005	717955		Continuity	k: A1L2D09	Mand 03B02	Base	30203	$\begin{aligned} & 8522125 \\ & 8522106 \text { or } \\ & 8522111 \end{aligned}$	$\begin{aligned} & 8522132 \\ & 8521414 \\ & 8522823 \end{aligned}$	Yes	$\begin{aligned} & A 102 \\ & A 1 L 2 \\ & A 1 U 2 \end{aligned}$	$\begin{aligned} & \text { X459 } \\ & 9095 \\ & 9046 \end{aligned}$	Add new card to Q2. Correct T10 problem.
006	717959		717955 Continuity	A1E2D13	$\begin{aligned} & \text { Opt } \\ & \text { F2D11 } \end{aligned}$	Base	30804	$\begin{aligned} & 8521725 \\ & 8522138 \end{aligned}$	$\begin{aligned} & 8522830 \\ & 8522831 \end{aligned}$	Yes	$\begin{aligned} & \text { A1E2 } \\ & \text { A1N2 } \end{aligned}$	$\begin{aligned} & 2218 \\ & 2219 \end{aligned}$	Corrects Rd Mod with tagged attribute in last buffer location.
CANCELLED	738545 Supersede	CA 021	717055		Mand	Base	30804	8522129	$\begin{aligned} & 8522834 \\ & \text { or } 8522839 \end{aligned}$	Nome	$\mathrm{AlH2}^{\text {H2 }}$	2220	Loss of data in buff locabon O with tagged aturibute in lass buffer location:
008	718548				N/A	Base	30843						No Field Bill. Became part of 718964
009	718542				N/A	Base	30804						No Field Bill. Became part of 718550
010* CANCELLED	718550		717955 Continuity	A1P5B06	Mand P5D06	Base	30804	$\begin{aligned} & 8522127 \\ & 8522150 \end{aligned}$	$\begin{aligned} & 8522857 \\ & 8522862 \end{aligned}$	Yes	$\begin{array}{\|l\|l\|l} A 1 S 2 \\ A 1 V 2 \end{array}$	$\begin{array}{\|l} 9048 \\ 9049 \end{array}$	IFCL. Spurious 1/O Interrupts
011	718941		717950		Mand	Base	30804	8522152	8522858	None	A1J2	9129	SIO to busy device does not receive busy in initial status
012	718547				Opt	Base	30843						No Field Bill. Became part of 718943
013	718943				Opt	Base	30843	8521829	8522861	None	A1C2	9128	Hang on Rd Mod untagged attribute in last buffer location and no other attribute in buffer.
014	7179552												Update Socket List
015	718948												No Field Bill. Part of 718964
016	718335												IR Code Guide
* If you determine a cancelled mandatory change is required, contact your Region Product Coordinator for assistance.													

Figure 3-4 (Part 1 of 5). 3272 Models 1 and 2 EC Cross-Reference Chart

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/ Mand	Feature Affected	Break In Serial \#	Cards Affected		Board Wiring Involved	Card Loc	Card Type	Description
								Old P/N	New P/N				
017* CANCELLED	78964		718550 Continuit	k: A1S4B09		Base	31420	8522857 8522862	$\begin{aligned} & 8523261, ~ \\ & 8523622, ~ \\ & 8523626 \% 1 \\ & 8523627+\quad \\ & 8523263+ \end{aligned}$	Yos		5931 9048 9046 9049	Shott:sead or RdMOD Fatse ohain 02880 Chan carnot be broken CO eset Sends sysuall at wrong time Ade 42 card
018	718556				Mand								3277 Logic
019	738897				Mand	Base	31604						5 V Return
内内 CANCELLED	Superseded by ECA 048		172965		Ont	Base	31691	8522840	8523624	None	A1B2	2216	Cul cks under ${ }^{\text {dra }}$
021	738642		718964		Opt	Base	32185	$\begin{aligned} & 8521969 \\ & 8522879 \end{aligned}$	$\begin{aligned} & 8523635 \\ & 8523634 \end{aligned}$	See Discription	$\begin{aligned} & \mathrm{A} 1 \mathrm{G} 2 \\ & \mathrm{~A} 1 \mathrm{H} 2 \end{aligned}$	$\begin{aligned} & 9036 \\ & 2220 \end{aligned}$	Timing for 3115-3125. Wiring done on 718964.
022	738790				Mand	Base							Connector clips
023* CANCELLED	+39542		$\begin{aligned} & 718964 \text { a } \\ & \hline \text { Continui } \end{aligned}$	eck: A1C4B05	Mard ${ }_{\text {A1 }}$	Base	32775	8522132	8524320	Yes	A102	0459	ACC address mismateh printer on 2860
024	738794				Mand								Pwr Supply Logic
025	739065				Mand								3277 Logic
026	739072				Mand								
027	718969				Mand								
028	739071				Mand								
029 CANCELLED conti	739279 Supersed you determ gion Produ nued on	ECA 045 cancelled m ordinator fo page	717959 ory change stance. \qquad	uired, contact	opt our	Base	33276	8522830	8524319	None	A1E2	9039	Loss of $S B A$ on light pen interiupt

Figure 3-4 (Part 2 of 5). 3272 Models 1 and 2 EC Cross-Reference Chart

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/Mand	Feature Affected	Break In Serial \#	Cards Affected		Board Wiring Involved	Card Loc	Card Type	Description
								Old P/N	New P/N				
30	739268			$\begin{aligned} & 739268 \text { for } \\ & 3277 \end{aligned}$	Opt								3277 Logic
31 CANCELLE	739275 Supersede	0692444 ECA 049	005		Opt	Base	33918	8521523	8524575	See Note	A1F2	9039	New card for F 2 to correct write problem where an extra byte or attribute may be written or a data byte or attribute may be dropped. Also adds a board wire for Katakana machines. The wire and the card are not related.
CANCELLED	739548 Superseded	$\begin{aligned} & 0<992453 \\ & \text { ECA } 037 \text { : } \end{aligned}$			Opt		34089	8524323			A1U2.	9046	The fied B/M has been cancelled and will be included in EC 791251
33	740373				Mand	Power	34997						Add fuse to +5 volt safety.
34	740389				Mand								3277 Logic
35	740394	0681643	005		Opt	Base	34654	8521852	8526062	None	A1M2	9033	Correct sending an extra byte of data to the channel on a read buffer or read modified command.
36	740038	0681650	023 Continuity	k: A1R2D0	Opt A1T2D07	Base	34850	8523261	8526064	Yes	A1R2	Y931	Eliminate a hang condition when a channel program check causes the channel to issue a psuedo TIO and then stacks zero initial status.
37	741251	$\begin{aligned} & \hline 0681664 \\ & 0681645 \\ & 0692453 \end{aligned}$	017	None	Opt	Base	35588	$\begin{gathered} 8526050 \\ \text { or } \\ 8524323 \end{gathered}$	8526970	No	A1U2	9046	1. Correct a channel hang. Channel hangs with "op in" on after issuing a stop to the control unit to terminate a read or write command. SIU indicators are "op in" on, "stop" on, "service in" off and C.E. off. 2. Prevent setting C.E. a second time when a data check is detected. 3. Prevent a channel hang when executing any command immediate. The control unit is hung with "status in" on and the channe! is hung with "service out" on. 4. Prevent an interface control check when the channel is plugged for suppress data.

Figure 3-4 (Part 3 of 5). 3272 Models 1 and 2 EC Cross-Reference Chart

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/ Mand	Feature Affected	Break In Serial \#	Cards Affected		Board Wiring Involved	Card Loc	Card Type	Description
								Old P/N	New P/N				
038	740867	0681667	017	None	Opt		35660	8523263	8527297	No	A1V2		1. Prevents relays on 9049 card from coming loose and causing channel hang. 2. Prevents a hang condition when suppress out rises as "ADR \ln " and "OP In " are trying to set from a device initiated selection. When this occurs, the indication on the SIU is "ADR In " on and "OP \ln " off.
CANCELLED	Superseded by ECA 049		017	None	Opt		35675	8524575	8527304	No	A1F2		Carrect P Program Tab Problem on 3272 High Speed.
040	741252	$\begin{aligned} & 0682471 \\ & 0681665 \end{aligned}$	036 Continuity	None ck: A1U3B08			36053	8524320	8526971	Yes	A102		Control Check (invalid sequence) when printer starts printing as a start I/O to another device is issued.
041	742204												World Trade use only
042	743332	0682544		None	Mand	Mod 2 APL only							Logic Update
043	741779	0682473	040 Continuity	None eck: A1U3B0	$\begin{array}{r} \text { Opt } \\ \text { 2B06 } \end{array}$		36854	8523622	$\begin{gathered} 8527906 \\ \text { or } \\ 8563027 \end{gathered}$	Yes	A1S2	9048	Prevent four 3272 unit problems. 1. The 3272 presents busy along with the 'CE' to a Hardware Generated Test I/O. 2. With attention status pending, 'Command Immediate' is issued to same add. for which the status is pending. Control unit will present the generated initial status along with the pending status and execute the command. 3. Looses bytes of data randomly. 4. Channel detects a channel check after stacking the primary status of a 'Command Immediate' followed by an attempt to select another device in the control unit (an address other than the address of the stacked status).
044	744148		Contin	None heck: A1U3B	$\begin{gathered} \text { Mand } \\ \text { S2B06 } \end{gathered}$	APL W/O EC741779	$\begin{gathered} \text { N.A. } \\ \text { 10.08.76 } \\ \text { Break } \\ \text { In Date } \\ \hline \end{gathered}$	8523622	$\begin{gathered} 8527906 \\ \text { or } \\ 8563027 \\ \hline \end{gathered}$	Yes	A1S 2	9048	Bring all APL machines up to EC741779
045	745479		006	None	Opt		39538	8524319	8563022	No	A1E2	2218	Correct loss of an SBA on a light pen interrupt. This change supersedes EC 739279A (ECA 029).
046 CANCELLE	CANCELLED - Superseded by ECA 050 - Continuity Check: A1L3D11-A1K3D13				Opt		40266			Yes			Prevent system outages such as 'hang' and 'wait states' due to a repetitive equipment check. See ECA 050.
047	743211		None	None	Opt		7/6/78			No			Provide an electrical surge arrester to reduce curcuit damage due to lightening.

Figure 3 -4 (Part 4 of 5). 3272 Models 1 and 2 EC Cross-Reference Chart

Figure 3-4 (Part 5 of 5). 3272 Models 1 and 2 EC Cross-Reference Chart

3272 SERVICE AIDS

Loose Coax Ends

A condition of possible component damage in the 3271 and 3272 Control Units could exist if the loose ends of coax cables are left uncovered in the control unit.

The metal ends of unused coax cables that are left in the 3271 and 3272 Control Units can come into contact with the exposed pins of the A2 board, resulting in possible component damage.

Ensure that the unused coax cables are secured and dressed in such a manner that there is no possibility of contact with the A2 board.

Probe Points for Monitoring PT2 or B-TDAT

The following pins can be used for 3275 Models 1 and 2 with an undercover modem for attaching a PT2 or buffered TDAT for monitoring purposes (all probes are on the B-gate):

SCR	+SCR or SCT 1200/900 BPS	M2B11
CD	+CARRIER DETECT EIA	N4D02
RD	-RECEIVE DATA	N4D13
SCT	+SCT or SCR 1200/900 BPS	F2D12
CS	+CLEAR TO SEND EIA	M2B09
RS	+REQUEST TO SEND EIA	N2D04
SD	-SEND DATA	N2J11

Note that Receive Data and Send Data are minus levels. The minus levels on these two signals are active levels and do not have to be inverted on the PT2 or buffered TDAT.

3272 Diagnostic Latch for Intermittents

A latch circuit existing within the 3272 can be used to troubleshoot intermittent problems. This latch is located on the R2 card.

There are three inputs to the latch, each of which must be at the positive (up) level before the latch can be set. Because these inputs are normally floating, the latch is always set. To reset the latch, at least one negative level must be applied to the input and the latch "RESET" pin (R2B07) must be momentarily jumpered to ground. The output is R2J13, which can be monitored with a general logic probe, oscilloscope, or CE meter.

If the signal to be input to the latch is positive, and the active level is negative, an inverter must be used to make the active level positive to set the latch. Two inverters are available on the R2 card for this purpose.

Also available on the Q2 card is a two-legged AND without a latch. This AND can be used in conjunction with the latch and inverters.

Note 1: To use the AND circuit, the card at Q 2 must be $\mathrm{P} / \mathrm{N} 8526971$.
Note 2: To use the latch and inverters, the card at R2 must be P/N 8526064.
Note 3: Both cards can be used without associated EC board rework installed.

R2 CARD P/N 8526064

.

Section 4. 3275 Display Station

Contents
3275 CEM/Service Aid Index 4-2
3275 Symptom Fix List 4-3
Video (Power). 4.4
Remote Interface and Control Logic 4-5
Miscellaneous 4.6
3275 Model 1 and 2 Card Substitution List $4-17$
Basic Unit 4-17
Other Features and RPOs 4-21
3275 Model 1 and 2 EC Cross-Reference 4.23
3275 Service Aids 4-34
Line, Modem Scoping Procedures 4-34
Probe Points for Monitoring PT2 or B-TDAT $4-35$
Version Level Feature Identification (Board Part Numbers) $4-36$
3275 Line Adapter Installation $4-37$
Incorrect Characters or Quote Marks on 3275 Screen with Status Light 4.37
Field Installation of 4800/7200 BPS Feature 4-37
+5 Fuse 4-37
EIA Connector Layout 4-38
Figures
Figure 4-1. 3275 Display Data Flow $4-7$
Figure 4-2. 3275 Remote Interface and Control Unit Data Flow, Leased Line - ASCII 4-8
Figure 4-3. 3275 Remote Interface and Control Unit Data Flow, Leased Line - EBCDIC 4.9
Figure 4-4. 3275 Remote Interface and Control Unit Data Flow, Dial - EBCDIC $4-10$
Figure 4-5. 3275 Remote Interface and Control Unit Data Flow, Dial - ASCII 4-11
Figure 4-6. $\quad 3275$ A-Gate Card Layout by Function (Display) 4-12
Figure 4-7. 3275 B-Gate Card Layout by Function (Leased) $4 \cdot 13$
Figure 4-8. $\quad 3275$ Model 3 A-Gate Card Layout by Function 4.14
Figure 4-9. $\quad 3275$ Model 3 B-Gate Card Layout by Function 4.15
Figure 4-10. 3275 B-Gate Card Layout by Function (Dial) $4-16$
Figure 4-11. 3275 Model 1 and 2 EC Cross-Reference Chart (7 parts) 4-23

1. Analog Cards 2565236 and 2565080^{*}
2. Line, Modem Scoping Procedure
3. Quick Checkout of TDAT and Cassette Tape (Cancelled - see SA12)
4. Version Level Feature Identification
5. 3275 Line Adapter Installation
6. 3275 Models 1,2 and 3 EC Cross-Reference Table
7. Incorrect Characters or Quote Marks on 3275 Screen with Status Light
8. Field Installation of $4800 / 7200$ BPS Feature
9. +5 Volt Fuse
10. Card Substitution List
11. VTL Logic Levels
12. TDAT Tips
13. Card Jumpering
14. ASCII Card Jumpering Change
15. Hanging Request to Send
16. Intermittent Problems
17. Serial Clock Transmit Test Point
18. Line Adapter
19. Caution when Installing Fuses
20. Packing Instructions for 3275
21. Intermittent Keyboard Problems
22. Transformer Leakage on $3275-1$ and 260 Hz - Sumare' Origin 82 Only (WTC)
23. Status Lights
24. Selector Pen Problems
25. Transmit Level Adjustment
26. ID Reader - Motorized Theory Maintenance - Parts Catalog (SY26-4188)
27. 3275 Dial Failure Troubleshooting Guide
28. Clarification of Jumpering on B-E2 Card on 3275 Dial
29. 3275 Display Stations Models 1 and 2 Leased Line Troubleshooting Guide (Correction to)
30. Anode Lead to CRT
31. Probe Points for Monitoring PT2 or B-TDAT
32. 3275 - Models 1 and 2 Ship Group
33. Field Engineering Handbook for SNA
34. Packing Instructions for 3275

Note: Check for additional Service Aids released beyond the last number in this Index.

Section 4. 3275 Display Station

=igures 4-1 through 4-10 give the locations for the 3275 Display Station.

3275 SYMPTOM FIX LIST

The following Symptom Fix List is to be used to supplement the existing troubleshooting procedures in the MLTG.

Symptom

Attributes are displayed causing Data Checks.
Cursor missing on POR. No cursor, Input inhibited and the Status indicator is on after a Power-On Reset.
Device End not set with POR. Following POR, EOT status occurs instead of DE status.
Displays non-display field.
Dot only for cursor. 3275 cursor was only a dot in the left-hand margin. As data was entered, the cursor would move and grow to normal size and was blinking. The original dot was on solid.
Extra characters on screen. After powering on, or if the machine was idle, extra characters appear on the screen.
Input Inhibit. After POR sequence, the Input Inhibited indicator turns on.
Input Inhibit. Characters change display positions, Input Inhibited and Status come on.
Input Inhibit on Power On Reset (POR). When the power is turned on, Input Inhibited and Status indicators come on.
Input Inhibited indicator is always on.
Missing DE after print $3284 / 3275$. After a Write command to the printer, the host system did a General Poll and expected Device End. 3275 sent EOT and never sent status of DE.
Modified Data Tags not beinq set by keyboard. Checks out correctly with SIU.
POR problem. No Power On Reset
Print Command. Timeouts after a print command to 3284 printer with SIU attached. WACK indicator on. WACK character missing from response.
Prints line 1 of 3275 on last line of 3284.3284 prints first line from 3275 on last line of 3284.
Screen full of D or A.
Timeouts from CPU. Tape tests run correctly.
Transmit EOT with Power On Reset. When 3275 is powered up and attached to TDAT or data set, it will start transmitting EOT continuously.

Fix

01A.A1C2
01A.A1F2
01A•A1E2
01A.A1H2
01A-A1H2

01A-A1D2
01A-A1E2
01A-A1J2
01A-A1D2
01A-A1L2
01A-A1E2

01A-A1A2
01A-A1G2
01A-A1H2

01A•A1L2
01A-A1F2
01A-A1E2
01A-A1E2

Video (Power):

Symptom

Audible Alarm fails. Not working on 3275 or 3277. Blows fuse 1 immediately. 3275 blows fuse 1 immediately when power is turned on.
Cursor disappears, Audible Alarm sounds. When not online, the Audible Alarm sounds and the cursor disappears for 20 seconds. When online, a random character is inserted where the cursor was and the Status indicator turns on.
Cursor missing - no display. Pressing INTENSIFY OVERRIDE would cause a single line to be displayed at the top of the screen.
Extra AID characters prior to transmission.

Input Inhibited and data checks (vibration sensitive)
Intensity control problem. On initial power up of the 3275 , the display comes on very bright. Cannot control the intensity with the intensity control.
Message not displayed. Messages sent through remote interface cannot be displayed on video screen. Data keyed-in via keyboard are correctly displayed. Cable at $\mathrm{B} 1 \mathrm{Z2}$ with poor connection.
Missing 8 V . 8 V measures 1 V . Loss of 400 V on high voltage. No cursor or sweep indicator.
POR sequence failure. POR sequence not correctly ended . . . no cursor displayed.
POR without delay, highly intermittent. All data in buffer is lost.
Radio interference - 3275 and 3277. There is a possibility of interference to radio receivers from the analog card due to parasitic oscillations (applies to installations such as police stations). The analog card is not defective, but replacement should correct the problem.
Raster failure. Raster always present on the screen. Screen blanks when attaching data set cable.

Screen goes blank. Display goes blank 5 to 20 minutes following power up. Pressing INTENSIFY OVERRIDE switch causes single horizontal line across top of screen.

Screen image disappears. Display intermittently disappears.
Short Turnaround - no Clear To Send (CTS). With Integrated Modem (Mini-12) the 3275 responds immediately with no Clear To Send (CTS) delay. +12 V measures +22 V with a load and +34 V without a load.

Fix
Analog card
Analog card
HVPS

HVPS

Decoupling capacitor on the 01B-A1 board is on D05 pin and not on D08 pin.
LVPS card shorting against frame.
Bad analog card

Reseat cable (B1Z2)

Loose connectors pin 10 and 11 connector.
HVPS defective.

Replace voltage distribution board.
Replace analog card.

Replace analog card.
Missing red insulator cap on mounting stud behind -12 V regulator card. The -12 V can short from frame to signal ground.
Voltage distribution board. Diodes CR1, 2, 3 on defective boards might be wired backwards.
HVPS
Open dc return in cable from +12 V regulator card to PC board.

Remote Interface and Control Logic:

Symptom
ACK - incorrect or out of sequence
Bad data or no data from 3275.
Continuously resends data in buffer. When doing a read of the 3275 buffer from the SIU the 3275 resends the data on the display over and over.
Bad data transmitted
Data Check on status message of Device End
Data Checks. TCU Data Check on customer programs.
No error on the 3275. It will run offline on SIU.
EOT in middle of read modified data stream.
EOT reply missing after RVI from host
Erase/Write Command failure.
ETB sent at wrong time

ETX invalid
Fails to send correct data. Hit any PF key, ENTER key with blank screen, or TEST REQ. with blank screen, 3275 sends: STX space space ETX.
False status (DE). When polling general or specific, status always is presented (C2 40) Device End.
General Poll failure. No response to a General Poll. Specific Poll works correctly.
Hot bit in SERDES.
Incorrect data or Data Check. Cannot send data or status correctly. Fails in Transmit only.
Incorrect data transmitted.
Incorrect response to poll. 3275 responds to poll with an AID character that should not be there.
Input Inhibited. Input Inhibited comes on during polling. Sync Search stays on and Selected turns on.
Multiple AID characters on a Read command. On a Read command multiple AID characters move through SERDES - found "Gate Aid" up all the time. For example: For an ENTER key you would get 7D 7D 7D 7D etc.
No data display on a Write. No data displays after doing a successful Write command to the screen with all the correct indications on the SIU.
No device selected or SP/GP indicator. During Specific Poll, at load of second device address, DEV SEL and SP/GP indicators fail to come on. Initial selection works.
Poll failure
Poll failure - no response
Read Command failure
Receives correctly, will not transmit
Receive Failure - 3275 Integrated Modem (Mini-12). The 3275 was not able to receive with the Integrated Modem (Mini-12).
Repeat first data character on Write. On a Write command, the first data character entered will fill the screen with that character. Also a status of Op Check occurs.
Request to Send (RTS) up solid.
Responds with EOT to any order or command.
Specific Poll failure
Start Pad character incorrect

Fix
EC 740862
ECA 048
01B-A1M2
01B-A1A2

01B-A1J2
01B-A1L2
01B-A1L2

01B-A1B2
01B-A1K2
01B-A1B2
01B-A1H2 jumper
missing
01B-A1H2
01B-A1A2

01B-A1H2
01B-A1K2

01B-A1L2
01B-A1L2
01B-A1H2
01B-A1B2

01B-A1D2
01B-A1B2

01B-A1J2

01B-A1J2

01B-A1K2 jumpers
01B-A1H2 or A1M2
01B-A1L2
01B-A1F2 (High bps)
01B-A1N4

01B-A1A2

01B-A1L2 or A1M2
01B-A1G2
01B-A1K2 jumpers
01B-A1L2

Symptom

Fix
Status indicator comes on intermittently.
Status light
Status of OP Check on Write from SIU.
SYN character decode problem. Unable to decode SYN characters (Hex 32). Dial feature without Integrated Modem installed. Also with Integrated Modem no dial.
Timeout -
Timeout and Op Check
Timeouts at CPU. Symptom: (1) Using test box SERDES fills up, (2) Timeouts at host system site, (3) Sync Search indicator not flickering, and (4) no response.

Timeouts - after host system is polling, a time-out occurs. When the host system honors an enter request, it will try to get back into the poll sequence. At this time a time-out will occur. The CPU will then go on and poll correctly until the next ENTER key operation is performed.
Transmits full buffer ended with ETB. Transmits only the first character entered from the keyboard or loaded by a TCU command for the length of the buffer: Ended with ETB.
Write Command failure (no data transfer)

Miscellaneous:

Symptom

Data incorrect. When numeric characters are keyed in, followed by a Read Buffer command to the 3275, instead of F1F2F3F4F5, the response is B1B2B3B4B5.
Drop AID and data-Read Command. Missing AID and data character in SERDES register on Read Modified Command. On an Erase/Write Command, the data should have started at position zero; however, the first character went to the fifth, from the last line in position 40.
Incorrect data displayed. 3275 displays incorrect data in any or all positions of screen.

Input Inhibited without pressing AID keys. Input Inhibited comes on unexpected while using keyboard (vibration sensitive).
Parity error from keyboard. Keyboard parity bit is on all the time, even when character does not require one. Input Inhibited indicator comes on when a character key is pressed. Does not require a parity bit.

Unable to run 3275 at half duplex at 4800 bps.

01B-A1L2
01B-A1H2, A1J2
01B-A1F2 (High bps)
01B-A1F2

01B-A1H2, A1K2, A1L2, A1M2
01B-A1F2 (High bps)
01B-A1L2

01B-A1K2

01B-A1A2

01B-A1M2

Fix
Defective cable from B1Y3 to A1Z3.

Flat cable from
01A-A1Y3 to
01B-A1Z3

Insure data set is providing common pins $1+7$.
Defective enter key module.

Resistor was wired from 01A-A1C6B04; should have been 01A-A1C6C04; after EC 718965-A resistor will be on cárd.
New sync missing at CPU.

Figure 4-1. 3275 Display Data Flow

Figure 4-2. 3275 Remote Interface and Control Unit Data Flow, Leased Line - ASCII

Figure 4-3. 3275 Remote Interface and Control Unit Data Flow, Leased Line - EBCDIC

Figure 4-4. 3275 Remote Interface and Control Unit Data Flow, Dial - EBCDIC

Figure 4-5. 3275 Remote Interface and Control Unit Data Flow, Dial - ASCII

ASCII Feature Cards

H2-ASCII Fixed Inputs Status Reg Xmit Ctr J2-ASCII T Clock and Timeout
K2-ASCII Decoder and LRC Reg and LRC SERDES L2-SERDES and ASCII/EBCDIC Code Converters D2-ASCII 10 Reg

4800-bps Transmission Speed Card

F2-High-Baud Feature (Double card)

Line Adapter Feature Cards

N2-IBM Line Adapter - Transmit
N4-IBM Line Adapter - Receive

Figure 4-7. 3275 B-Gate Card Layout by Function (Leased)

Legend

* $=$ Cards with jumpers

Figure 4-10. 3275 B-Gate Card Layout by Function (Dial)

Notes:

1. ASCII Feature Cards
*E2 - ASCII T-Clock and Timeout.
G2 - ASCII Fixed Inputs, Status Reg and Xmit Ct.
H2 - ASCII Decoder, LRC Reg and LRC SERDES.
J2 - SERDES and ASCII/EBCDIC Code Converters.
D2 - ASCII Input Reg.
2. EIA Interface Card only: B-M5 (One card wide)
3. 1200 bps Line Adapter feature without Auto Answer: B-N2 and B-N4
(Two 2 wide cards)
4. 1200 bps Line Adapter feature with Auto Answer: B-N2 (One 4 wide card)

3275 MODEL 1 AND 2 CARD SUBSTITUTION LIST

The following is a card substitution list approved only for use in the United States on 3275 Display Stations.

Key
FO = Factory Only
NA $=$ Not Available
CC $=$ Needs Companion Card
BW $=$ Needs Board Wiring
$M R=$ Minimum Rework \cdot Functionally equivalent to the PN listed immediately below it.
The Underlined PN is the latest level card.
Cards may be substituted up or down as long as board wiring (BW) is not required.

Basic Unit

Loc PN	Key	ECA/EC	Function/Comments
A1A2... 8522001		005/718557	Kybd Controls 2
8523616		017/718965	
8523633		FO/739273	
8527296			
8528262		.071/744145	
8564132		/746051	Opt/Kybd Adapt
8564143		082/747013	
A1B2.... 8522852		005/718557	Kybd Controls 1
8524282		030/739069	
A1C2.... 8521992		005/718557	I/O Gating \& Parity
8523648		031/739068	
A1D2... 8521862		005/718557	480 Storage \& Gate
A1D2... 8521863		005/718557	960 Storage \& Gate
A1E2.... 8522140		005/718557	Head to CU Adapter 2
8522847		013/718554	
8523638	BW	027/738651	
8526058		051/740860	
8565452		086/747517	
A1F2 $\cdots 8521863$		005/718557	960 Storage \& Gate
A1G2-... 8522121		005/718557	Head to CU Adapter 1
8527982		065/742876	
A1H2-.. 8522825		005/718557	Clock and Step Control
8523617		021/718972	
8523649		003/739073	
8524604		FO/740386	
A1J2... 8522836		005/718557	Display Control
A1K2...-8520576		005/718557	Model 1 Standard
8524302		039/739545	
A1K2...- 8520577		005/718557	Model 2 Standard
8524289		039/739545	

"B" Gate - Leased Line

Loc PN	Key	ECA/EC	Function/Comments
B1A2 $\cdots 8$.		005/718557	Read Control
8524322		036/739544	
8524597	MR	044/740032	
8524594		044/740032	
8563023		075/745463	
B1B2... 8521717		005/718557	Write Control
B1C2 $\cdots .8522105$		FO/718552	Buffer Address
B1D2-.. 8521732		FO/718552	EBCDIC Input Reg
B1D2... 8521732		005/718557	ASCII Input Reg
8522846		012/718553	
B1G2... 8521978		005/718557	Init. \& Unit Selection
8528269	MR	NA/744155	
8528270		NA/744155	
B1H2 - 8521712		005/718557	EBCDIC - Status \& Sense Regs
8522868		019/718951	
8523645		028/739062	
8526059	BW	048/740862	
8527916		064/742862	
B1H2 $\cdots 8521448$		005/718557	ASCII-Status \& Sense Regs
8522869		019/718951	
8523646		028/739062	
8527977	BW	064/742862	
B1J2 \cdots - 8521967		005/718557	EBCDIC-T-Clock
B1J2... 8521968		005/718557	ASCII-T-Clock
B1K2... 8521865		005/718557	EBCDIC - All Decoders
8526054	MR	FO/740027	
8527295		NA/741254	
8528256		NA/743331	
8565001		NA/747501	
B1K2-.. 8522005		005/718557	ASCII - All Decoders
8528257		NA/743331	
8565000		NA/747501	
B1L2--. 8521864		005/718557	EBCDIC - Serdes
B1L2.... 8521447		005/718557	ASCII - Serdes
$\underline{8522849}$		012/718553	
B1M2 - . 8521516		005/718557	EIA Driver
8523640		FO/738654	
8523658		FO/739558	
8526047	MR	047/740037	
8523662	BW	047/740037	
8527981		NA/742874	

"B" Gate - Dial

Loc PN	Key	ECA/EC	Function/Comments
B1A2-... 8522183		005/718557	Read Control
8524322		036/739544	
8524597	MR	044/740032	
8524594		044/740032	
8563023		NA/745463	
B1B2 $\cdots 8521717$		005/718557	Write Control
B1C2 $\cdots 8.8522105$		FO/718552	Buffer Address
B1D2-* 8521732		FO/718552	EBCDIC Input Reg
B1D2-.. 8521732		005/718557	ASCII Input Reg
8522846		012/718553	
B1E2 $\cdots 8522135$		006/718549	EBCDIC T.Clock
8524286	CC	029/739541	
B1E2 $\cdots 8522145$		006/718549	ASCII T-Clock
8523267		FO/718966	
8524287	CC	029/739541	
B1F2... 8522859		006/718549	Line Bid
8524317		FO/739276	
8524585	MR	040/740021	
8524586		040/740021	
8563030		074/745475	
B1G2 $\cdots \underline{8521846}$		006/718549	EBCDIC-Status \& Sense Regs
B1G2 $\cdots 8522865$		006/718549	ASCII-Status \& Sense Regs
B1H2 $\cdots 8522864$		006/718549	EBCDIC - All Decoders
8565005		083/747019	
B1H2 $\cdots 8522866$		006/718549	ASCII - All Decoders
8565007		083/747019	
B1J2 \cdots. 8522842		006/718549	EBCDIC - Serdes
$\begin{array}{r} B 1 J 2 \cdots . \\ 8522863 \\ \underline{8565006} \\ \hline \end{array}$		$\begin{aligned} & 006 / 718549 \\ & 083 / 747019 \end{aligned}$	ASCII - Serdes
B1K2... 8523249		006/718549	Xmit Line Controls
8523260		FO/718963	
8524285	CC	029/739541	
B1M2 \cdots. 8521824		005/718557	1200 bps
B1M2-... 8522131		005/718557	High bps
B1M2 $\cdots \underline{8527986}$		N/A	9600 bps RPQ8K0498
B1M5 - . 8521719		006/718549	EIA Interface

Loc PN	Key	ECA/EC	Function/Comments
B1G2-- 5863960			Loop Bypass Relay
$\begin{array}{r} \mathrm{B} 1 \mathrm{H} 2-\mathrm{F} \\ 8525999 \\ \underline{8528254} \\ \hline \end{array}$		NA/742860	SIU Serdes and Control Control Unit to Interface Control
$\begin{array}{rr} \mathrm{B} 1 \mathrm{~J} 2-\mathrm{-} . & 8526027 \\ \underline{8527298} \\ \hline \end{array}$		$\begin{aligned} & 053 / 740390 \\ & 058 / 741763 \end{aligned}$	Fixed Response Encode Status Reg, Sequence
$\begin{array}{r} B 1 K 2 \cdots \begin{array}{r} 8526028 \\ 8527915 \\ 8528258 \\ \hline \end{array}{ }^{8}+2, \end{array}$	MR	$\begin{aligned} & 053 / 740390 \\ & \text { NA/742860 } \end{aligned}$	Line Control and CMD Decodes Fixed Resp Control
B1L2 - 8526004	.		Serdes Address Compare, DVC Address Encode, CRC Reg, Byte Counter
$\begin{array}{r} \text { B1M2-... } 8526000 \\ 8527310 \\ 8527978 \\ \hline \end{array}$	BW	$\begin{aligned} & 061 / 742200 \\ & 063 / 742870 \end{aligned}$	Bit Stuff, Destuff, Rcv Xmit Control, Poll Seq Control, Bit Counter
$\begin{array}{r} \text { B1N2--. } 8524641 \\ \underline{8526965} \\ \hline \end{array}$		057/741243	Bypass Reclocking, Clock Gen and Correction, Clock Pulse Gen, Loop Drivers, and Receivers

Other Features and RPOs

Loc PN	Key	ECA/EC	Function/Comments
		"A" Gate	
A1A2--. 8522854		005/718557	AB3953/2260 compatibility
8523625		023/718978	
A1A2-... 8526046		FO/740388	ME0731/2260 new line
8564137		N/A	
A1B2-.. 8523639		FO/718949	WD5095/tab to colon
A1B2--. 8522853		005/718557	AB3953/2260 compatibility
A1B2--. 8522853		FO/740388	ME0731/2260 new line
A1B2.... 8523656		FO/739555	WD3140/print key
8524602		REA69547	
A1C2 $\cdots \underline{8522872}$		FO/718949	WD5095/tab to colon
A1K2-..-8521708		005/718557	8K0366/Dual Case
A1L2-... 8522115		005/718557	Dedicated printer
8524324		035/739551	
8526677	BW,MR	NA/740873	
8526678		NA/740873	
A1L2-- 8523657		FO/739555	WD3140/print key
A1L4-... 8524137		005/718557	8K0366/Mod 1 Dual Case
8524314		039/739545	
A1L4.-. 8521436			8K03661 Mod 2 Dual Case
8524301			
A1M2 $\cdots \underline{8521505}$		005/718577	Selector Pen
A1N2... 8522108		005/718557	Card Reader
8523257	BW	014/718959	
A1N2-... 8526681		FO/738417	EE8197/7460-4 Card Reader
		"B" Gate	
B1F2... 8521824		005/718557	1200 bps
B1F2... 8522131		005/718557	High bps
8527986		NA	9600 bps RPQ
B1M2-..- 8528261		NA/743338	Mil Specification
B1N2-1. 5862916		006/718549	Line Adapter w/Auto Answer
$\underline{5863955}$		FO/741245	
B1N2 $\cdots 8524284$		NA/739267	Mil Specification
B1N2 $\cdots \underline{5862858}$		005/718557	Line Adapter w/o Auto Answer (Xmit)
$\underline{5863763}$		FO/738646	
B1N4-.. 5862859		005/718557	Line Adapter w/o Auto Answer

Note: For 3275 Models 11 and 12 SDLC card part numbers, refer to Section 8 of this handbook.

3275 Models 1 and 2 EC Cross-Reference

This chart is to be used to determine the need for any of the optional EC changes and to verify the EC level of any machine To aid in determination the serial number that implemented each change is listed. This list will be updated periodically. It is recommended that a copy of this service aid be kept in 3270 card caddies.

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/ Mand	Feature Affected	Break In Serial \#	Cards Affected		Board Wiring Involved	Card Loc	Card Type	Description
								Old P/N	New P/N				
001	717484			None	Mand	Base	80066	N/A	N/A	Yes			Factory installed on all machines.
002	717942	06-63201 06.63202 06.63203	ECA 001		Mand	Base	80269			Yes			This change was shipped to all machines.
003	Cancelled		None										EC was cancelled after ECA was assigned.
004	717952		None		Mand		80617						Field B / Ms were composited into EC 718557.
005	718557	63206	ECA 002	None	Mand	Base - Dual Case Katakana	81274	8521853 8522000 8522014 8522128 8522120	8522153 8522852 8522836 8522001 8522833	Yes	B1A2 A1B2 A1.J2 A1A2 A1L2	9080 9069 9067 9072 2214	This change corrects: 1. Backspace blink. 2. Keyboard compatibility. 3. Data entry functional problem. 4. Katakana functional problem.
006	718549		None	None	Mand	Dial	81274	N/A	N/A				Factory installed on all dial machines. No field B/Ms required.
007	718396		None	None	Mand	Base	N/A						This change provides an Arc suppression network to protect analgo cards P / N 2565236. This change is not necessary for analog cord P/N 2565080.
008	718348		None	None	Mand	Keyboard	80699	N/A	N/A	None			Keyboard audible feedback asm failures caused by residual magnetism, type A keyboard only.
009	718342		None	None	Opt	Keyboard	81029	N/A	N/A	None			Redesigned clicker card for audbile feedback asm, type A keyboard only.
010	718868		None	None	Opt	Base	80972	N/A	N/A	None			Redesigned low-voltage power supply. Released new ferro-xmer to replace noisy (loud hum) 60 Hz ferros.
011	718869		None	None	Opt	Base	N/A	N/A	N/A				Eliminates high-frequency noise caused by yoke and analog card.
012	718553		ECA 005	None	Mand	ASCII	81479	8521447 8521732	8522849 8522846	None	$\begin{aligned} & \mathrm{B} 1 \mathrm{~L} 2 \\ & \mathrm{~B} 1 \mathrm{D} 2 \end{aligned}$	$\begin{array}{r} 9110 \\ \times 463 \end{array}$	Corrects ASCII translate problems. Symptoms: 1. 3275 will not respond to selection address 4C. 2. Xlates an EBCDIC 6A to 5 C instead of $7 C$.

Figure 4-11 (Part 1 of 11). 3275 Models 1 and 2 EC Cross-Reference Chart

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/ Mand	Feature Affected	Break In Serial \#	Cards Affected		Board Wiring Involved	$\begin{aligned} & \text { Card } \\ & \text { Loc } \end{aligned}$	Card Type	Description
								Old P/N	New P/N				
013	OBSELETE - SUPERSEDED BY ECA 027			None	Opt	Base	81535	8522140	8522847	None	A1E2	9030	Prevents honoring another attn key while selected for a read or write operation.
014	718959		ECA 017	None	Mand	Magnetic Card Reader	82847	8522108	8523257	Yes	A1N2	2229	Corrects MDT bit placement in I/O operations and corrects timing error to prevent attribute being entered at data character. Card reader feature only.
015	718335		None	None	Mand	All	81809	N/A	N/A	N/A			Provided new IR Functional Unit Code Guide form \#S229-7018-1.
016	718973												World Trade use only.
017	718965		None	None	Opt	Base	82847	8522001	8523616	Yes	A1A2	9072	1. Corrects double characters on screen caused by numeric field speed shifting. 2. Corrects multiple cursors with card reader feature.
018	738620		None	None	Mand	Base	82104	N/A	N/A	None			Provides new linecord to prevent intermittent loss of input power.
019	718951		ECA 005	None	Opt	Base	81587	$\begin{aligned} & \text { EBCIDIC } \\ & 8521712 \end{aligned}$	8522868	None	B1H2	9041	Field $B / M s$ have been cancelled. EC 740862 will pick up this EC.
	OBSOLETE - SUPERSEDED BY ECA 029							$\begin{aligned} & \text { ASCII } \\ & 8521448 \end{aligned}$	8522869	None	B1H2	9111	Field B / Ms have been cancelled. EC 739062 will pick up this EC.
020	738628		None	None	Opt	Base	82104	N/A	N/A	N/A			Provides an improved on/off switch spring to ensure a more positive action.
021	718972	ERS	ECA 005 Y ECA 033	None	Opt	Model 1 only	83086	8522825 or 8521981	8523617	None	A1H2	9071	Corrects non-display attribute in last position from causing hi-intensity display in position 0 . Cancelled See ECA 033.
022	739021		None	None	Mand	Base	82172	N/A	N/A				+5 Volt power supply change provides additional current capacity for 5 Volt return circuit. Adds a jumper wire in place of land pattern on power supply PC board.
023	718978		ECA 005	None	Opt	2260 Compat. and Card Reader	82830	8522854	8523625	None	A1A2	X457	Provides new card to allow 2260 compatibility to operate with card reader feature.

Figure 4-11 (Part 2 of 11). 3275 Models 1 and 2 EC Cross-Reference Chart

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/ Mand	Feature Affected	Break In Serial \#	Cards Affected		Board Wiring Involved	Card Loc	Card Type	Description
								Old P/N	New P/N				
024	738622												World Trade use only.
025	718971		None	None	Mand	Tab to Colon RPQ	82130	$\begin{aligned} & 8522871 \\ & \text { or } \\ & 8523636 \end{aligned}$	8523639	None	A1B2	X927	Dup key causes hang condition when buffer is unformatted. Tab to colon RPQ only.
026	738639		None	None	Mand	Base	83472	N/A	N/A	None			Provides amp connector stiffner clip to ensure a more positive connection of amp connectors to PC boards and analog card. Note: Amp connectors that have experienced burning prior to this change may continue to arc and should be replaced.
027	738651		ECA 005	None	Opt	Model 1 only	83414	8522847	8523638	Yes	A1E2	9030	Corrects data transfer errors when attributes are located in odd-decimal positions only. Affects Model 1 only.
028	739062		ECA 005	None	Opt	Base	83681	$\begin{aligned} & \text { EBCDIC } \\ & 8522868 \end{aligned}$	$\begin{aligned} & \text { EBCDIC } \\ & 8523645 \end{aligned}$	None	B1H2	9041	Field B / Ms have been cancelled. EC 740862 will pick up this EC.
	OBSOLETE - SUPERSEDED BY ECA 048							$\begin{aligned} & \text { ASCII } \\ & 8522869 \end{aligned}$	$\begin{aligned} & \text { ASCII } \\ & 8523646 \end{aligned}$	None	B1H2	9111	
029	739541		ECA 006	None	Mand	Dial	83801	$\begin{aligned} & \text { EBCDIC } \\ & 8522135 \end{aligned}$	$\begin{aligned} & \text { EBCDIC } \\ & 8524286 \end{aligned}$	None	B1E2	4716	Corrects timeouts on read operations of greater than 256 bytes. Affects dial machines only.
								$\begin{aligned} & \text { ASCII } \\ & 8523267 \end{aligned}$	$\begin{aligned} & \text { ASCII } \\ & 8524287 \end{aligned}$	None	B1E2	4723	
030	739069		ECA 005	None	Opt	Base	84077	8522852	8524282	None	A1B2	9069	Multiple cursors appear on screen when BACKTAB operation is interrupted by backspace, period, comma and \# or \$.
031	739068		ECA 005	None	Opt	Base	80429	8521992	8523648	None	A1C2	9066	Electrical noise causes partial power on reset. Symptom: Screen blanks - including cursor momentarily then cursor reappears.
032	738367	06-6918	ECA 002	None	Mand	Magnetic Card Reader	84218	N/A	N/A	Yes			This change installs a resistor asm to correct intermittent card reader failures.

Figure 4-11 (Part 3 of 11). 3275 Models 1 and 2 EC Cross-Reference Chart

Figure 4-11 (Part 4 of 11). 3275 Models 1 and 2 EC Cross-Reference Chart

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/ Mand	Feature Affected	Break In Serial \#	Cards Affected		Board Wiring Involved	$\begin{aligned} & \text { Card } \\ & \text { Loc } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Card } \\ & \text { Type } \end{aligned}$	Description
								Old P/N	New P/N				
040	740021 OBSOLE	$06-92452$ SUPERSEDED	ECA 005 Y ECA 074	None	Opt	Dial	84375	8524317	8524586	None	B1F2	4714	1. Corrects disconnect message being cut short because the machine was dis. connecting at the same time it was sending the END PAD (FF). 2. Unable to hang up the phone if a system ready condition was not obtained on dial machines with the line adapter feature and auto answer. This EC picks up EC 739276 ECA 034.
041	740659		None	None	Opt	Keyboard Type B Only	N/A	N/A	N/A	None			To reduce keyboard contamination problems by installing new keyboard (less covers). See ECA 041 for details to determine applicable Field B / M.
042	740096	None	None	Mand	Opt	Keyboard Type B Only	N/A	N/A	N/A	None			Eliminates possible keyboard errors due to contamination, and provides ac/dc ground separation to eliminate difficulty to define ground loop problems.
043	740098	None	None	None	Opt	Keyboard Type B Only	N/A	N/A	N/A	None			This is a notice only change to allow removal of Type B keyboards which have superslick modules. Superslick modules are white and may be identified by looking under keybutton at lip of module. See ECA 043 for further details.

[^1]| ECA | EC | REA | PRE/REQ | CONC/ COMP | OPT
 /MAND | FEATURE AFFECTED | BREAK IN SERIAL \# | OLD P/N | NEW P/N | BOARD WIRING INVOLVED | Card Loc | Card
 Type | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 044 | 740032
 OBSOLETE | $06 \cdot 63218$
 SUPERSEDED | $\text { ECA } 005$ $\text { ECA } 075$ | None | Opt | Base | REA 63218
 84460
 EC 740032
 85332 | 8524322 | $\begin{aligned} & 8524597 \text { MR } \\ & 8524594 \text { EM } \end{aligned}$ | None | B1A2 | 9080 | When executing a read modified, a reread of the last block of multiple data blocks is generated because of a BCC error detected at the TCU: The retransmitted data is incomplete. |
| 045 | 739991 | | ECA 005 | None | Opt | Base | 85210 | N/A | N/A | | | | Add several capacitor assemblies and ground jumpers to eliminate intermittant failures (typamatic failures, etc) by minimizing shift between AC and DC ground. Also to make displays less sensitive due to electrical storms (lightning). |
| 046 | 740027
 ObSOLETE | 06.81048
 SUPERSEDED | $\begin{aligned} & \text { ECA } 005 \\ & \text { ECA } 055 \end{aligned}$ | None | | Base | | 8521865 | 8526154 MR | None | B1K2 | 9042 | Field $B / M s$ have been cancelled - EC741254 will release the field $B / M s$ at a later date. |
| 047 | 740037
 OBSOLETE | $06-81047$
 SUPERSEDE | ECA 005
 ECA 066 (W | None
 so picked | Opt
 A 066) | Base | 84997 | 8523658 | 8526047 MR
 8523662 EM | None for REA 06-81047
 Yes for EC 740037 | B1M2 | 9045 | Corrects bit shifting problems due to crosstalk.
 Symptoms:
 Line drop CU dropped from pulling list Transmission checks Status lights Timeouts |
| 048 | 740862
 ObSOLETE | $06-81049$
 SUPERSEDED | $\begin{array}{r} \text { ECA } 005 \\ \text { ECA } 047 \\ \text { ECA } 064 \end{array}$ | None | Opt | Base
 EBCDIC. | 86026 | 8523645 | 8526059 | Yes | B1H2 | 9041 | Corrects improper ACK response. It will only step the ACK counter upon receipt of a good BCC.
 Symptoms: Line drop
 Timeouts
 Wrong ACK
 response
 ENQ - ACK
 loops |
| 049 | 740874 | | ECA 005 | None | Opt | Leased
 Line with
 Line
 Adapter | N/A | N/A | N/A | | | | Provides jumpering instruction for decreasing clear-to-send delay for 4-wire machines with the line adapter feature. |

[^2]| ECA | EC | REA | Pre-Req ECA | Concur or Comp | Opt/Mand | Feature Affected | Break In Serial \# | Cards Affected | | Board Wiring Involved | Card Loc | Card Type | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | Old P/N | New P/N | | | | |
| 050
 Mod 1, 2, and 3 | 741722 | | None | None | Mand | Base | 87744 .
 Mod 1\&2
 89044 .
 Mod 3 | None | None | | | | Provides additional secondary circuit protection. Adds fusing for +5 volts and +34 volts. |
| 051
 Mod 1, 2 | 740860
 OBSOLETE | $06-63214$
 SUPERSEDED | $\text { ECA } 005$
 BY ECA 086 | None | Opt | Base | 87178 | 8523638 | 8526058 | None | A1E2 | 9030 | This change allows a RVI control message to reset the device check latch. The device check was not being reset and would cause certain error recovery procedures to hang the system. |
| 052
 Mod 1, 2, and 3 | 741726 | | None | None | Mand | Base | 87864.
 Mod 1\&2 | None | None | None | | | Provides a safety cover to prevent power cord from contacting the hinge screw. |
| 053
 Mod 3
 Only | $\begin{gathered} 740390 \\ \text { OBSOLETE } \end{gathered}$ | SUPERSEDED | None
 BY ECA 058 | Nune
 1J2) \& ECA 0 | Mand
 (B1K2) | $\begin{aligned} & \text { Mod } 3 \\ & 2400 \text { BPS } \end{aligned}$ | 89039 | $\begin{aligned} & 8526001 \\ & 8526003 \end{aligned}$ | $\begin{aligned} & 8526027 \\ & 8526028 \end{aligned}$ | None | $\begin{aligned} & \mathrm{B} 1 \mathrm{~J} 2 \\ & \mathrm{~B} 1 \mathrm{~K} 2 \end{aligned}$ | $\begin{aligned} & \text { Y786 } \\ & \text { Y787 } \end{aligned}$ | Provides a proper status and sense return on status request and reset commands. |
| 054 | 942768 | | | | | | | | | | | | World Trade Use Only |
| 055
 Mod 1,
 2 | 741254 | | ECA 005 | None | Opt | Leased Line | 88391 | 8521865 | 8527295 | Norie | B1K2 | 9042 | Corrects timeout after sending data and receiving wrong ack. This EC replaces EC 740027. |
| 056 | 740873 | 0681051 | ECA 005 | None | Opt | With Print Adapter | 88142 | 8524324 | $\begin{aligned} & 8526677 \\ & 8526678 \end{aligned}$ | Yes | A1L2 | 9092 | Corrects invalid status message. Problem arises when IR or EC is brought up during a poll. Any part or all of the status may be lost or altered. |
| 057
 Mod 3 | 741243 | | | None | Opt | Mod 3
 Only | A9079 | 8524641 | 8526965 | No | B1N2 | Y782 | 1. Provides $A C$ overvoltage protection for loop drivers.
 2. Prevents interruption to the loop caused by pick of loop bypass relay when power is turned on. |

Figure 4-11 (Part 7 of 11). 3275 Models 1 and 2 EC Cross-Reference Chart

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/Mand	Feature Affected	Break In Serial \#	Cards Affected		Board Wiring - Involved	Card Loc	Card Type	Description
								Old P/N	New P/N				
058 Mod 3	741763	06.81059	None	None	Mand	Mod 3 Only	89069	$\begin{aligned} & \text { N/A } \\ & 8526027 \end{aligned}$	$\begin{aligned} & 8527026 \\ & 8527298 \end{aligned}$	No	$\begin{aligned} & \mathrm{B} 1 \mathrm{~F} 2 \\ & \mathrm{~B} 1 \mathrm{~J} 2 \end{aligned}$	$\begin{aligned} & Z 346 \\ & \mathrm{Y} 786 \end{aligned}$	1. Corrects hang condition with 9600 BPS when doing print operation. 2. Insure card compatibility between 2400 BPS and 9600 BPS machines.
059	384010												World Trade Only
060	384011												World Trade Only
$061 \operatorname{Mod} 3$ Cancelled See ECA 063	742200		$\begin{aligned} & 053 \\ & 058 \end{aligned}$	None	Mand	Mod 3 Only	89099	8526000	8527310	Yes	B1M2	Y789	1. To correct hang condition with 9600 BPS when attn key is depressed. 2. Change security key operation to allow beaconing to occur when key is on or off cancelled. See ECA 063
062	742202												World Trade Only
063 Mod 3	742870		$\begin{aligned} & 053 \\ & 058 \end{aligned}$	None	Mand	Mod 3	89136	8527310	8527978	No.	B1M2	Y789	1. When the address field looks like a frame (01111110), IE address 126 , the device fails to recognize the address 05. 2. When attached to a remote loop via a 3659-3, a 3275 Mod 3 may see unstuffed one bits after a frame. It accepts these 8 ones as an all parties address. 3. Incorporates ECA 061.
064 Mod 1 \& 2	$\begin{aligned} & 742862 \\ & \text { OBSOLET } \end{aligned}$	PERSEDED	$\begin{gathered} 047 \\ 048 \\ \text { Y ECA } 080 \end{gathered}$	None	$\begin{aligned} & \text { OPT } \\ & \text { OPT } \end{aligned}$	Leased Line	N/A	EBCDIC 8526059 ASCII 8523646	EBCDIC 8527916 ASCII 8527977	None Yes	$\begin{aligned} & \mathrm{B} 1 \mathrm{H} 2 \\ & \mathrm{~B} 1 \mathrm{H} 2 \end{aligned}$	$\begin{aligned} & 9041 \\ & 9111 \end{aligned}$	1. To correct a hang in transmit due to a data check status condition. 2. To correct a wrong ACK response from 3275 ASCII machines to a message that was repeated after a line hit and followed by a TCU timeout.
065 Mod $1,2, \& 3$	742876		005	None	OPT	Base	71739 Mod 3 89121	8522121	8527982	No	A1G2	9074	If a numeric field is included in a print operation, the numeric field latch will set. There is no reset for this latch while printing. If cursor is not repositioned after the print operation and an alpha character is entered from the kybd, it will go in as numeric. The latch is then reset and the second character goes in correctly.
066 Mod 1 \& 2	742874		005	None	OPT	Leased Line	72061	8523662	8527981	No	B1M2	9045	Prevents "Reguest-to-Sent" from coming up solid when +5 volts fuse blows. This EC also installs ECA 047 if not previously installed.
$\begin{aligned} & 067 \\ & \text { Mod } 11 \& 12 \end{aligned}$	742872			None	Mand	SDLC		$\begin{aligned} & 8527912 \\ & 8527311 \\ & 8527910 \end{aligned}$	$\begin{aligned} & 8527990 \\ & 8527994 \\ & 8527993 \\ & \hline \end{aligned}$	Yes	$\begin{aligned} & \mathrm{B} 1 \mathrm{E2} \\ & \text { B1H2 } \\ & \text { B1J2 } \\ & \hline \end{aligned}$		To correct pre-first customer ship problems.

Figure 4-11 (Part 8 of 11). 3275 Models 1 and 2 EC Cross-Reference Chart

Figure 4-11 (Part 9 of 11). 3275 Models 1 and 2 EC Cross-Reference Chart

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/ Mand	Feature Affected	Break-In Serial No.	Cards Affected		Board Wiring Involved	Card Loc	Card Type	Description
								Old P/N	New P/N				
078	746045 OBSOLETE	ERSED	067 ECA 081 ECA 087	None \& B1J2)	Mand	SDLC		$\begin{aligned} & 8527993 \\ & 8527994 \\ & 8563025 \end{aligned}$	8563036 8563037 8563038	No	$\begin{aligned} & \text { B1J2 } \\ & \text { B1H2 } \\ & \text { B1F2 } \end{aligned}$	$\begin{aligned} & \text { Z171 } \\ & \text { Z169 } \\ & \text { Z175 } \end{aligned}$	This problem is found in two parts: 1. A read of what should be 256 bytes results in 257 bytes, with the first and last bytes being the same. 2. If a read of 255 bytes is performed with a reread following, only the first byte is resent. If a successive re-read is tried, all the data is resent. NOTE: For further detail, see EC Announcements.
079	745414		None	None	Opt	Base		None	None	No	None		Provides (3275/3277-02) with hospital ground green wire leakage requirements and field B / M.
080	747000		None	None	Opt	EBCDIC ASCII Kata.		$\begin{aligned} & 8526059 \\ & 8523646 \end{aligned}$	$\begin{aligned} & 8527916 \\ & 8527977 \end{aligned}$	Yes	$\begin{aligned} & \mathrm{B} 1 \mathrm{H} 2 \\ & \mathrm{~B} 1 \mathrm{H} 2 \end{aligned}$	$\left.\begin{array}{\|l\|} \text { EBCDIC } \\ \text { ASCII } \end{array} \right\rvert\,$	Combines field optional ECs 739062, 740862 and EC 742862 into a composite EC.
081	746054		078	None	Opt	SDLC		$\begin{aligned} & 8563024 \\ & 8563037 \\ & 8563036 \end{aligned}$	8564136 8564138 8564140	Yes	$\begin{aligned} & \hline \text { B1E2 } \\ & \text { B1H2 } \\ & \text { B1J2 } \end{aligned}$		1. Incomplete Int. Req. messages. 2. SDLC command reject indication during transmission of write data.
082	747013		005	None	Opt	Base		8564132	8564143	No	A1A2		To correct the loss of the keyboard clicker on the 'Aid' keys.
083	747019		005	None	Opt	Dial		$\begin{gathered} 8522864 \\ 8522866 \\ 8522863 \\ \hline \end{gathered}$	8565005 8565007 8565006	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { B1H2 } \\ & \text { B1H2 } \\ & \text { B1J2 } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { EBCDIC } \\ \text { ASCII } \\ \text { ASCII } \end{array}$	To correct line hit problems on the dial interface.
084	747501		005	None	Opt	Leased Line		$\begin{aligned} & 8528256 \\ & 8528257 \end{aligned}$	$\begin{aligned} & 8565001 \\ & 8565000 \end{aligned}$	No	$\begin{aligned} & \text { B1K2 } \\ & \text { B1K2 } \end{aligned}$	EBCDIC ASCII	Corrects the decode of an ITB, in the BCC characters, that follow a valid ITB, initiating another ITB sequence.
085	748620		081	None	Opt	SDLC		8564136	8565453	No	B1E2		Prevents hanging the system when the attention key is depressed for the second time while the system is responding to the first attention key depression.
086	747517		005	None	Opt	Base		8526058	8565452	No	A1E2		1. Hold 'Op In' process line up until write or read command goes away. 2. Corrects data transfer errors. 3. Allows 'RVI' line control message to reset device check. 4. Eliminate printer message confusion on Mods 11 \& 12. NOTE: All units w/o ECA 027 and all Mod 3s require board wiring.
087	747506	RSED	081 ECA 088	None	Opt	SDLC		8564147	8565009	No	B1F2		Corrects erroneous status in the 3275.

Figure 4-11 (Part 10 of 11). 3275 Models 1 and 2 EC Cross-Reference Chart

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/ Mand	Feature Affected	Break-In Serial No.	Cards Affected		Board Wiring Involved	$\begin{aligned} & \text { Card } \\ & \text { Loc } \end{aligned}$	$\begin{aligned} & \text { Card } \\ & \text { Type } \end{aligned}$	Description
								Old P/N	New P/N				
088	748629	081		None	Opt	SDLC		8565009 8527897 8527899	8565459 8565456 EBCDIC 8565458 ASCII	No	$\begin{aligned} & \mathrm{B} 1 \mathrm{~F} 2 \\ & \mathrm{~B} 1 \mathrm{M} 2 \\ & \mathrm{~B} 1 \mathrm{M} 2 \end{aligned}$		Corrects a hang condition when exercising the ' O ' length RU option incorporated in IMS. The 3275 ceases to communicate with the host. Communication with NCP remains, but terminal messages are not being transmitted.

Figure 4-11 (Part 11 of 11). 3275 Models 1 and 2 EC Cross-Reference Chart

3275 SERVICE AIDS

Line, Modem Scoping Procedure

Use the following procedure to verify line or modem problems:

1. Power off the 3275 and connect the SIU for offline use.
2. Power on 3275.
3. Perform an initial selection routine including the ACK O RESPONSE.
4. Perform a Read Modified command. When the text message response to the Read Modified command is complete, reply with a wrong ACK (ACK 0).

32	32	10	70	FF	(EBCDIC)
16	16	10	P30	P7E	(ASCII)

5. The 3275 will respond to the wrong ACK with an enquiry sequence.

55	32	32	$2 D$	(EBCDIC) 2400, 4800, 7200 bps rates
55	16	16	P5	(ASCII) 2400, 4800, 7200 bps rates

Note: (1200 -bps rate will have 3 start pads (55) preceding message instead of 1)
Verify in SERDES that the RESPONSE is correct.
6. Place SIU on/line off/line switch to on/line. The 3275 will now send the enquiry sequence down line to the TCU at the system site every 3 seconds if the timeout override switch on the SIU is placed in the NORMAL position.
7. Scoping can now be performed at the TCU (Receive data) for the correct enquiry sequence from the 3275 .
8. For continuous uninterrupted transmission, jumper 01B-A1M2J13 to ground (D08).

EBCDIC Pattern every 3 sec from 3275 to TCU

ASCII pattern every 3 sec from 3275 to TCU

Notes:

1. Data bytes appear to be reversed. This is normal because of the shifting of the SERDES shift register in the 3275.
2. SCOPE Timings

1200-bps Rate	
2400-bps Rate	$2 \mathrm{~ms} / \mathrm{div}$
4800-bps Rate	1
7200-bps Rate	

Probe Points for Monitoring PT2 or B-TDAT

The following pins can be used for 3275 Models 1 and 2 with undercover modem for attaching a PT2 or buffered TDAT for monitoring purposes (all probes are on the B-gate):

SCR	+ SCR or SCT 1200/900 BPS	M2B11
CD	+ CARRIER DETECT EIA	N4D02
RD	- RECEIVE DATA	N4D13
SCT	+ SCT or SCR 1200/900 BPS	F2D12
CS	+ CLEAR TO SEND EIA	M2B09
RS	+ REQUEST TO SEND EIA	N2D04
SD	- SEND DATA	N2J11

Note that Receive Data and Send Data are minus levels. Minus levels on these two signals are active levels and do not have to be inverted on the PT2 or buffered TDAT.

Version Level Feature Identification

The 3275 uses ALD version levels to identify models and character format in ALD Vol. 1 (A gate). In Vol. 2, ALD version levels identify the type of remote interface and features installed.

The following is a cross-reference list of ALD version numbers to model and/or features. Also included are the board PNs for each version.

Vol-1 (A gate)

Version	Volume Description	Board PN	Notes
000	Standard Model 2	2625226	2
005	Katakana Model 2	2625236	2
007	Dual Case Model 2	2625236	2
002	Standard Model 1	2625226	2
A25	Katakana Model 1	2625236	2
A27	Dual Case Model 1	2625236	2

Vol-2 (B gate)

Version	Volume Description	Board PN	Notes
000	Leased EBCDIC w/wo Lo-bps	2625228	
004	Leased EBCDIC Hi-bps	2625232	3
003	Leased ASCII w/wo Lo-bps	2625230	3
A03	Leased ASCI Hi-bps	2625234	3
006	Leased EBCDIC Katakana	2625238	3
	w/wo Lo-bps		3
010	Leased EBCDIC UCM	2625244	
B10	Leased ASCII UCM	2625248	1,3
C10	Leased Katakana UCM	2625246	1,3
012	9600 bps RPQ 8K0498	1740294	1,3
030	Dial EBCDIC UCM Auto		-
	Answer	2625752	
B30	Dial EBCDIC UCM	2625752	3
C30	Dial EBCDIC External	2625752	1,3
040	Dial ASCII UCM/Auto		3
	Answer	1829958	
B40	Dial ASCII UCM	1829958	3
C40	Dial ASCII External	1829958	1
B36	Dial Katakana Auto Answer	2625754	3
C36	Dial Katakana UCM	2625754	3
D36	Dial Katakana External	2625754	1
061	Leased Katakana Hi-bps	1657192	3
050	Model 3-2400 bps	1833026	3
051	Model 3-9600 bps	165796	-
052	Model 3-2400 Katakana	1657194	-
053	Model 3-9600 Katakana	1653854	-

Notes:

1 UCM = Under Cover Modem (line adapter feature)
2 Refer to socket listing ALD A1115 for location and PNs of feature cards such as selector pen, card reader, and dedicated printer.

Refer to ZZIXX pages for location and PNs of RPQs such as 2260 compatibility, Dual Case, print key, and tab to colon.
3 Refer to socket listing ALD A2115 for location and PNs of RIF feature cards such as Lo-bps, Hi-bps, Line Adapter (UCM), and Dial.

3275 Line Adapter Installation

1. Field installation of line adapter has attachment of dc return wire missing in installation instructions.

Field installation of the line adapter feature requires an additional +12 V supply to be added to the base machine.

The dc return line may not be attached on some machines, resulting in 36 V being present on the N2 and N4 cards. Check that wire \#8 in cable PN 2565246 is attached to pin 10A on the voltage distribution board. This wire may be taped back into the cable.
2. Base machine wiring verification. The above-mentioned wire is not necessary for proper operation w/o line adapter feature. However, this wire should be attached on all machines. Check for this wire on the next service call. Use service code 34 for base machine wiring verification.

Incorrect Characters or Quote Marks on 3275 Screen With Status Light

1. Incorrect or garbled characters on the 3275 accompanied by a status light is an indication of a transmission check (status/sense C140). Transmission check (TC) is caused by a BCC error detected by the 3275 . BCC checking is the method used to insure the integrity of the data received by the 3275. TC is usually caused by line disturbances, modem or TCU errors. It may also be caused by the EIA driver card at 01BA1M2. If replacing the EIA driver card does not fix your problem, contact central site for status/sense information. Error recovery should be to reconstruct the entire device buffer and retry the failing chain of commands. A minimum of six retries should be attempted before the error is considered non-recoverable. See 3270 Component Description manual (GA27-2749) Chart 20 for further information. Note: When the 3275 detects a BCC error, it will set TC and responds with EOT. 3271 responds with NAK.
2. Quotation marks on the screen is the result of the 3275 not receiving/recognizing an ETX. As a result, when the line goes to a mark level, the 3275 decodes this as all bits (HEX FF). If the 3275 was unable to decode the ETX, it then decodes the FF characters and places quotes on the screen. Quotation marks will also be displayed with intermittent loss of carrier.

Field Installation of 4800/7200 Bps Feature

Field installation of the $4800 / 7200$ bps Feature (feature code 7821) has an EC incompatibility problem.

If 01B board is at EC 740037 (ECA 047) or EC740862 (EC 048), the card at 01B-A1H2 must be updated as follows:

Board Level	Card PN at 01B-A1H2
EC 740037	8522868 or 8523645
EC 740862	8526059

Note: PN 8521712 cannot be used with the $4800 / 7200$ bps Feature when the board is at EC 740037 or 740862.

Use Service Code 31 for any cards used.

+5V Fuse

Blowing the +5 V fuse will cause "Request-to-Send" to come up solid on the EIA interface.

TEXT: With EC 741722 installed, blowing of the +5 V fuse will cause "Request-to-Send" to come up solid on the EIA interface. In most applications, this could cause an entire line to hang or be removed from the polling list. Instruct the operator that when the symptoms listed below are observed, the control unit should be powered down and call for service.

SYMPTOMS: 3275: No cursor, all lights are Off.
EC 742874 resolves this problem.
\(\left.$$
\begin{array}{|l|c|l|}\hline \text { EIA Line Name } & \text { EIA Pin No. } & \begin{array}{l}\text { 3275 Leased } \\
\text { Pin No. }\end{array} \\
\hline \text { Protective Ground } & 1 & \begin{array}{l}\text { "Pigtail to frame ground from } \\
\text { cable connector }\end{array}
$$

Transmit Data \& 2 \& 01B-M2D02

Receive Data \& 3 \& 01B-M2M10

Request to Send \& 4 \& 01B-M2B02

Clear to Send \& 5 \& 01B-M2B09

Data Set Ready \& 6 \& Only used on Dial Feature

Signal Ground \& 7 \& 01B-M2D08

Carrier Detect \& 8 \& 01B-M2U04

Serial Clock Transmit \& 15 \& 01B-M2S08

\& \&

Serial Clock Receive \& 17 \& O1B-M2M12\end{array}\right\}\)| Only used when |
| :--- |
| modem provided |
| clocking |
| Ding Terminal Ready |

Note: Signals from data set to 3275 measure +3 V to +25 V for up level and -3 V to -25 V for down level. Signals to data set for 3275 measure +3 V to +8 V for up level and -3 V to -12 V for down level.
Protective ground pin 1 does not pick up ground from 3270 . Ground is the cable shield and is clamped to the 3270 .

CAUTION: When measuring voltages on the IO Connector, use an oscilloscope. Do not use the General Logic Probe or the standard probe.

Section 5. 3277 Display Station

Contents

3277 CEM/Service Aid Index 5-2
3277 Symptom Fix List $5 \cdot 3$
Display Malfunctions $5 \cdot 3$
Keyboard Malfunctions 5.5
Power Malfunction 5.7
CPU Error Indicators 5.7
Additional Miscellaneous Symptom Fixes 5.8
3277 Card Substitution List $5 \cdot 12$
Basic Unit 5.12
Feature or RPQ Units 5.13
3277 Models 1 and 2 EC Cross-Reference $5-15$
3277 Service Aids 5-22
Analog Cards 2565236 and 2565080 5-22
Multiple Characters 5.23
Interchangeable Data Entry and Typewriter Keyboards $5 \cdot 23$
Defective Line Cords 5-24
Air Flow Restrictions 5-24
New PC Board Part No. for Type B Keyboards 5-24
Part No. Change 5-25
Screen Blanking 5-25
Installation of PN 2577718 in Wrong Location 5-25
Lightning Protection 5-25
PC Board PNs for RPQ Keyboards 5-25
Feature MES Keyboard PNs and Replacement Assembly PNs 5-26
Type A Keyboard PNs for 3277 5-26
3277 Ship Group 5-26
3277 Board PN List 5-28
High-Frequency Noise 5-28
Selector Pen Replacement of Tip 5-28
Figure 5-1. 3277 Data Flow 5-10
Figure 5-2. 3277 A-Gate Card Layout by Function 5-11
Figure 5-3. 3277 Models 1 and 2 EC Cross-Reference Chart (7 parts). 5-15

3277 CEM/SERVICE AID INDEX

1. Analog Cards 2565236 and 2565080
2. Multiple Cursors
3. Interchangeable Data Entry and Typewriter Keyboards
4. New Version of 3277 MLTG (Cancelled -6/17/77)
5. Defective Line Cords (Cancelled $-4 / 2 / 76$)
6. Type 'B' Keyboard
7. IRs for 3277s
8. Contamination Problem on Type ' B ' Keyboards
9. Air-Flow Restrictions
10. New PC Board Part Number for Type 'B' Keyboards
11. Type 'B' Keyboard Flyplate Replacement Procedure
12. Part Number Change
13. Screen Blanking
14. 3277 Ship Group
15. 3277 Models 1 and 2 EC Cross-Reference Table
16. Installation of $\mathrm{P} / \mathrm{N} 2577718$ in Wrong Location
17. High Frequency Noise
18. Lightning
19. Keyboard Cable Clamp
20. PC Board P/Ns for RPQ Keyboards
21. Feature MES Keyboard P/Ns and Replacement P/Ns
22. Type 'A' Keyboard P/Ns for 3277
23. 3277 Card Sub List (Cancelled - see SA 2)
24. Caution when Installing Fuses
25. 3277 Board P/N List
26. VTL Logic Levels
27. 3277 Card Sub List
28. Buffer Card (Cancelled $-6 / 11 / 76$)
29. Selector Pen Problems
30. Location to Place Service Coverage Sticker on 3277s
31. Intermittent Keyboard Problem
32. Intermittent Problems
33. New CRT Cable
34. Intensity Control
35. Packing Instructions for 3277
36. Transformer Leakage on $3277-250 \mathrm{~Hz}$ - Sumare Origin 82 Only (WTC)
37. Displaying Attribute Characters on APL 3277s
38. ID Reader - Motorized Theory Maintenance Parts Catalog (SY26-4188)
39. Anode Lead to CRT
40. Erratic Display - Addition to 3277 Troubleshooting Guide

Section 5. 3277 Display Station

Figures 5-1 and 5-2 give the locations for the 3277 Display Station

3277 SYMPTOM FIX LIST

The following Symptom Fix List should be used to supplement the existing procedures in the MLTG.
Symptom Fix

Display Malfunctions
NO DISPLAY:
No visible light or glow on CRT after POR. Change card E2.
No visible light or glow on CRT. Change cards: E2, G2, H2, J2.
Resolder -12 V regulator card socket connections on LVPS board.
Replace: LVPS, HVPS, analog card, or voltage distribution board connectors, arc-suppression neon arc-suppression board, +5 V bus bar on logic board.

INTERMITTENT DISPLAY:

Blanks momentarily; data lost and cursor repositioned at 00.

Blanks when display station is polled; cursor move key(s) causes cursor to appear.
Cursor (only) flashes on and off.
Disappears and reappears (similar to POR).

Replace cards E2, C2
Replace: voltage distribution board arc-suppression neon or board.
Replace card G2.

Replace CRT
Replace card C2.
Tighten LVPS cap screws.
Replace: HVPS connector clips or HVPS, LVPS.
Replace card E2.
Replace LVPS (Damage may have resulted from burned PS connector. Check that ECA 022 or 023 is installed.)
Change card K2.
Replace HVPS, CRT.

Replace analog card. Check for loose connections at arc-suppression board. Replace CRT.

Replace card F2.

Replace cards D2, F2.

Replace card F2.
Check for proper ac grounding.
Replace: voltage distribution board, arc-suppression neon or board, analog card.
Check for loose cable connections at 01AA1Z3.

Symptom

Display blinks when intensity (brightness/contract) control is turned down.
Flashing occurs when brightness/ contrast control is turned up.
Flashing and loss of focus occur when brightness/contrast control is increased.
Focus cannot be varied with focus control.

Compressed raster on screen.
Constant raster.
One horizontal line on top of display.
Unstable display (jitter).

Fix

Replace ac line cord.

Check for loose connection(s) in CRT socket.
Replace voltage distribution board, arc-suppression neon or board.

Straighten pin 9 on CRT.

Replace: voltage distribution board, arc-suppression neon or board, LVPS, HVPS, CRT.
Replace card K2.
Replace CRT.
Check analog card connections; replace analog card.
Check for interference from external electrical fields; for example, electric clocks or the Operator Identification Card Reader is located too close to the display station.

Check and repair, if necessary, defective connectors, ac grounds, fuse terminal board.

Replace cards E2, H2, J2, analog card in 3277; P2 in 3271/3272; -12 volt regulator card.

Replace HVPS, LVPS.

Replace card D2.
Replace card F2.

Replace card J2.

Replace -12 V regulator card.
Replace card K2 or buffer card.
Replace card K2.
Check for voltage on coax shield.
Reverse leads on ac capacitor C1.

Replace analog card.
Replace card J2, analog card.
Replace cards D2. F2.
Check for proper ac grounding.

Replace cards D2, F2, G2.

CURSOR:
Multiple cursor with intervention required status.
Multiple cursors appear.
Cursor not fully displayed and data missing.
Cursor does not move in an unprotected intensified field.
Cursor moves backward and data is compressed at top of display.
Cursor moves to position 00 and INPUT INHIBITED indicator comes on.
Cursor does not move.
Cursor does not clear data off display.
Cursor disappears with control check status.
Cursor does not advance to new line.
Power comes up with three blinking cursors in upper left corner of display.
Cursor moves left and right across top line on display.
Vertical line of cursors on left side of display.
Full line of cursors on screen.

INDICATORS:

SYSTEM AVAILABLE indicator does not light.

Keyboard Malfunctions

CHARACTER KEYS:
Alpha characters are displayed in numeric field (with keyboard numeric lock feature installed).
When keying rapidly, alpha characters are displayed in numeric field (with keyboard numeric lock feature installed).
Extra characters displayed when signing on.
Extra characters displayed when entering one character.
Cursor is visible but characters cannot be entered.
Cursor disappears after first character is entered.
No characters can be entered from keyboard.
Characters change after entry.

Check that logic and frame grounds are connected.
Check for loose connector 01AA123.
Replace cards H2, J2.
Replace card G2.
Replace analog card.
Check I/O cable connections at 01AA1Z4.

Replace card H 2 .
Adjust -12 V regulator card.
Replace card G2.
Replace card G2.
Replace card H 2 and -12 V regulator card.

Check for loose connection at 01AA1Z3.
Replace card F2.
Replace voltage distribution board.

Check for loose coax connection. Replace cards E2, G2, J2.

Remove jumper between A 2 BO 06 and A2D08 if logic board is at EC 717946.

Install ECA 023.

Replace card H2.
Reseat P2 at voltage distribution board.
Check for bent pin at E2D08.
Replace keyboard.
Replace card A2.
Replace card J2.
Check for intermittent open connection on -12 V wire to keyboard.

Fix

INPUT INHIBITED lights after
any key entry.

Last key entry does not display and INPUT INHIBITED lights.
Display blanks after key entry.
Keyboard locked - no INPUT INHIBITED

Check for voltage between frame and signal ground. Voltage should be 0 . Replace card F2.
Replace logic board (defective coupling capacitor).
Replace enter key module.

Resolder connection at CLEAR key on keyboard PC board. Replace card E2.
Replace A2 with P/N 8564132; Z1 cable loose.

CURSOR CONTROL KE.Y FAILURE:
Backspace (\leftarrow) key, when pressed:
Cursor does not move or data moves
Replace card B2. to the left of the cursor.
INPUT INHIBITED lights or data moves to the right of the cursor and cursor does not move.
Data moves to right and down to next line.
Screen fills with cursors, B, D or H characters.
Jitter in top row of data.
Replace card J2.

Replace card H 2 .
Replace card C2.
Replace analog card (to minimize jitter).

Backtab (-) key
INPUT INHIBITED lights and two cursors appear when tab key (\rightarrow) pressed in a protected field.

Replace card B2.
Replace cards D2, F2.

Buffer "runaway" occurs when INS MODE is pressed.
Data shift when INS MODE is pressed.
INPUT INHIBITED lights when INS MODE is pressed.

PROGRAM ACCESS KEY FAILURES:
ENTER key inoperative.
INPUT INHIBITED lights after ENTER key is pressed.
Display blanks when ENTER key is pressed.

Check that the current level logic board is installed.
Replace card A2.
Replace card H2, logic board.

Replace key module.
Replace card H2.
Replace analog card.

Keyboard clicker not working.

Keyboard clicker runs continuously.

Check for missing wire from A1A2S 12 to A1C6E02 or wire from Z1B13 to A2S11 instead of Z1B13 to A2S12.
Check that ground bus on logic board is plugged to correct pins. Replace LVPS.

Power Malfunction

Repeated HVPS failures.
Bright spot on center of screen.

Fuse 1 blows.

Fuse 2 blows.
Fuse 3 blows.

POR does not occur.
-12 V regular card overheats or fails. Random intermittent failures.

Replace CRT.
Check for missing +5 V or -12 V ; burned pins 8 and 9 of J1 on LVPS board; defective analog card.
Replace: arc-suppression board (3277 Model 1), voltage distribution boards (3277 model 2).
Check for reversed connection of wires 12 and 14 on voltage distribution board.
Replace ferro-transformer; shorted yoke.
Check for short on -12 V wire to keyboard. Replace cards D2, E2, F2 or K2. Replace ferro-transformer.
Replace card G2.
Replace ferro-transformer.
Replace -12 V fuse (fuse filament is vibrating).

Replace card G2.
Check for defective coax connection at 01AA1E2D08. Shield on BNC connector should have continuity with all D08 pins.
Check for ungrounded ac outlet.
Replace card C2, analog card, keyboard. Check for LVPS short to frame.
Check for defective cable connections at control unit.
Replace card H2.
Check for incorrect grounding of ferro transformer to D08 pin.
Check 1/O cable connections at A1Z1 analog card.
Check for loose connections at A1Z1 connector.

Replace card E2.
Replace card G2.

Check for two ENTER key clicks. Replace ENTER key module.

Check that connection is made between E2D07 and E2D08.
Replace program NUL ($\mathrm{X}^{\prime} 0 \mathrm{O}^{\prime}$)
attributes with spaces ($\mathrm{X}^{\prime} 40^{\prime}$)

Symptom

INPUT INHIBITED ON:
Input inhibit and two cursors when
tabbing from a protected field.
Vertical row of B or D characters in columns 9 and 49 .
Will not reset.
Data checks and unit checks.
In insert mode.
Last key entry lost and INPUT INHIBITED.
Random data on display at POR.
On after enter key hit.
Device check and line of underscore.
Data check.
Characters will move.
Changes characters and gives input inhibit lights.

BACKSPACE PROBLEMS:
Backspace and cursor left cause data to move right.
Backspace causes INPUT INHIBITED.
Backspace would not move cursor.
Backspace causes data on left to move left.
Backspace causes display to fill with cursors.
Backspace causes display to fill with characters B, D, or H.
Backspace causes data to roll right and down to next line.
Backspace causes cursor not to move but data moves right.

NO DISPLAY:
Disappears and reappears like POR.

Blanks with key entry.
Blanks with ENTER key.
Blanks momentarily, data lost and cursor repositioned at 00.
Goes blank when polled. Cursor movement key causes cursor to appear.
One horizontal line at top.
Cursor flashes on and off. No display after POR.

01AA1D2 or F2.

A1F2.

10 cable at A1Z1, analog.
Keyboard, analog.
A1H2, A1 board.
Enter key module.

A1D2, F2, G2.
A1H2.
A1Z1 connector loose.

LVPS shorting to frame.
A1J2.
A1F2.

01AA1J2.
01AA1J2.

01AA1B2.

01AA1B2.
01AA1C2, or keyboard.

01AA1C2.

01AA1H2.
01AA1B2 or J2 wrong P/N after EC 717946.

HVPS or connector 4, LVPS or loose cap screws, CRT, 01AA1C2.
Solder joint at clear Key on PC board, A1E2.
Analog card.
V. dist. BD, arc supp, 01AA1E2, A1C2.

A1G2.

Analog or connector, A1 board.
CRT.
01AA1E2, G2, H2, J2, LVPS/HVPS/analog or connector, V. dist. BD, arc supp,
+5 bus bar.

NTENSITY PROBLEMS

Low intensity with horizontal line at top.
High when it should not be.
Input inhibited and displays the high-intensity attribute as character H .
Display blinks with intensity down.
Intensity varying when idle.
Low intensity.
Normal fields do not display.
Turning control up causes flashing.
Dual intensity not working.
High intensity displays as low.
Intensity not adjustable.
High intensity does not work.

JURSOR PROBLEMS:

Multiple cursors appear.
Cursor not full, missing dots.
Dim cursor.
Cursor not moving in an unprotected intensified field.
Cursor runs backwards and data is compressed at top of display.
Cursor runs to position 00 and INPUT INHIBITED comes on.
No cursor movement.
Cursor not clearing data off display.
Cursor lost and control check.
No advancement to new line.
Cursor lost after 1st character entered.
Comes on with three blinking cursors in upper left corner.
Runs back and forth across top line.
Line full of cursors.

CRT or loose connector NN.

01AA1F2.
A1D2 or F2.

AC cord.
$A C$ ground.
Analog card.
01AA1F2.
CRT connector lead loose.

Gnd. pin on analog
A1F2.
VDB, arc supp., analog.
A1H2.

01AA1Z3 connector loose.
A1H2, A1J2.
Loose connector to arc suppression BD.
A1G2.

Analog card.

IO cable to 01AA1Z4.

A1H2.
-12 VDC adj.
A1G2.
A1G2.
A1A2.

01 AA 1 H 2 and -12 V regulator.

Loose connector at 01AA1Z3.
01AA1K2.

Figure 5-1. 3277 Data Flow

Figure 5-2. 3277 A-Gate Card Layout by Function

3277 CARD SUBSTITUTION LIST

The following is a card substitution list to be used for 3277 Display Stations.

Key
Mand $=$ Mandatory EC
Opt = Optional EC
CC $=$ Needs Companion Card
BW $=$ Needs Board Wiring
MR = Minimum Rework - Functionally equivalent to the PN listed immediately below it.
The Underlined PN is the latest level card.
Cards may be substituted up or down as long as board wiring (BW) is not required.

Basic Unit

Loc	PN	Key	ECA/EC	Function/Comments
A-2	8522128		002/717492	Mand/Keyboard Adapter
A-2	8522001	CC, BW	005/718556	Opt/Keyboard Adapter
A-2	8523628	MR		Keyboard Adapter
A-2	8523616	MR	023/718969	Opt/Keyboard Adapter
A-2	8523633		023/718969	Opt/Keyboard Adapter
A-2	8527296		FO/741258	Opt/Keyboard Adapter
	8528262		044/743339	
	8564132		046/746050	
	8564143		050/747009	
B-2	8521178		002/717492	Mand/Keyboard Adapter
B-2	8522852	CC, BW	005/718556	Opt/Keyboard Adapter
B-2	8523647	MR		Keyboard Adapter
B-2	8524282		028/739065	Opt/Keyboard Adapter
C-2	8521992		002/717492	Mand/I/O Gating and Parity
C-2	8523648		032/739071	Opt/I/O Gating and Parity
D-2	8521862		002/717492	Mand/Buffer Card Mod I
D-2	8521863		002/717492	Mand/Buffer Card Mod 2
E-2	8522013		002/717492	Mand/SERDES
E-2	8527302		Factory EC	SERDES
F-2	8521863		002/717492	Mand/Buffer Card Mod 2
G-2	8522109		002/717492	Mand/I/O Control
G-2	8522151	CC, BW	005/718556	Opt/I/O Control
G-2	8523663	MR	-	- /I/O Control
G-2	8523651	MR	-	- /I/O Control
G-2	8523664		029/739072	Opt/I/O Control
H-2	8521981		002/717492	Mand/Clock and Step
H-2	8522825	CC, BW	005/718556	Opt/Clock and Step
H-2	8523617		024/718790	Opt/Clock and Step
H-2	8523649		033/739066	Opt/Clock and Step
H-2	8524604		Factory EC	- /Clock and Step
J-2	8522014		002/717492	Mand/Display Control
J-2	8522836	*CC,BW	005/718556	Opt/Display Control
K-2	8520576		002/717492	Mand/Char. Generator Mod I
K-2	8524302		Factory EC	- /Char. Generator Mod I

*PN 8522836 can be directly substituted for PN 8522014 if the function of EC is not needed.
5.12

Feature or RPQ Units

Loc	PN	Key	ECA/EC	Function/Comments
K-2	8520577		002/717492	Mand/Char. Generator Mod 2
K-2	8524289		Factory EC	- /Char. Generator Mod 2
A-2	8522854		718558	AB3953/2260 Compatibility
A-2	$\begin{aligned} & 8523625 \\ & 8565015 \\ & \hline \end{aligned}$	CC	718978	AB3953/2260 Compatibility
A-2	$\begin{aligned} & 8526046 \\ & 8564137 \\ & 8565014 \\ & \hline \end{aligned}$	CC	740388	ME0731/2260 New Line Compatibility
A-2	$\begin{array}{r} 8564132 \\ 8564143 \\ \hline \end{array}$		$\begin{aligned} & 746050 \\ & 747009 \end{aligned}$	Opt Kybd Adapt
B-2	8522853	CC	718978	AB3953/2260 Compatibility
B-2	8522853	CC	740388	ME0731/2260 New Line Compatibility
B-2	8523639	CC	718971	WD5095/Tab-to-Colon
C-2	8528272 8563032		$\begin{aligned} & 744156 \\ & 745473 \end{aligned}$	WD5095/Tab-to-Colon
C-2	8528272	CC	744156	APL only
C-2	8563032		745473	APL text
E-2	8523653		718954	AB4820/5000 Foot (1524 m) RPQ
E-4	8521437		-	8K0366/Dual Case Mod I
E-4	8524314	CC	739268	8K0366/Dual Case Mod I
E-4	8521436		.	8K0366/Dual Case Mod 2
E-4	8524301	CC	739268	8K0366/Dual Case Mod 2
H-2	8563021	CC	744156	APL only
K-2	8521708	CC	739268	8K0366/Dual Case Mod 1 and 2
K-2	8520585		739268	- /Mod I ASCII A
K-2	8524305		739268	- /Mod I ASCII A
K-2	8520585		739268	- /Mod I ASCII B
K-2	8524306		739268	- /Mod I ASCII B
K-2	8520580		739268	- /Mod 2 ASCII A
K-2	8524292		739268	- /Mod 2 ASCII A
K-2	8520581		739268	- /Mod 2 ASCII B
K-2	8524293		739268	- /Mod 2 ASCII B
K-2	8527979		NA	APL
L-2	8523244	C.	740392	740010/Signature Retrieval
L-4	8526603	CC	741248	740010/Signature Retrieval

Loc	PN	Key	ECA/EC	Function/Comments
M-2	8521505		717492	- /Light Pen
M-4	8523242	CC	740392	740010/Signature Retrieval
N-2	8522108		717492	- /Card Reader
$\mathrm{N}-2$	8523257		718958	- /Card Reader
$\mathrm{N}-2$	8526676		740872	EF3269/Double/Triple Zero
$\mathrm{N}-2$	8527308		741776	EF3269/Double/Triple Zero
N-2	8526964		738413	AD0129/2956-8 Card Reader
$\mathrm{N}-2$	8526968		741112	AD0129/2956-8 Card Reader
N-2	8526681		738417	EE8197/7460-4 Card Reader
$\mathrm{N}-2$	8523243	CC	740392	7U0010/Signature Retrieval
$\mathrm{N}-2$	8526604	CC	741248	7U0010/Signature Retrieval
E-2	8527302			Lightning Protection RPQ 8K0566

For maximum flexibility in stocking or controlling the card caddy, all 3277 should be brought up to ECA 005 since that is the last EC requiring board wiring. Also, an analog card (PN 2568924), latest level MLTG, and the 3270 Service Aids should be in every card caddy.

3277 Models 1 and 2 EC Cross-Referenc

This chart is to be used to determine the need for any of the optional EC changes and to verify the EC level of any machine.
To aid in determination the serial number that implemented each change is listed. This list will be updated periodically. It
is recommended that a copy of this service aid be kept in 3270 card caddies.

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/ Mand	Feature Affected	Break In Serial \#	Cards Affected		Board Wiring Involved	$\begin{aligned} & \text { Card } \\ & \text { Loc } \end{aligned}$	Card Type	Description
								Old P/N	New P/N				
001 (Mod 1 \& 2)	716959	None	None	$\begin{aligned} & \text { With ECA } \\ & 002 \end{aligned}$	Mand	Logic Base	10124 (Mod 1) 50235 (Mod 2)	N/A	N/A	Yes	N/A	N/A	Installation instructions and Field B / Ms will ship as part of EC 717492.
002 (Mod 1 \& 2)	717492	0660110 0660121 0660124 0660125 0660126 0660129 0660133 0660135 0660137	Picks up EC 716959	With ECA 001	Mand	Logic Base	10603 (Mod 1) 50979 (Mod 2)	N/A	N/A	Yes	N/A	N/A	This change brings all early ship machines to a base EC level.
003 (Mod 1)	718601	None	None	None	Opt	Logic Base	12969	2565236	2565080	Yes	N/A	N/A	Analog cable ground wire - needed to change from old analog card $\mathrm{P} / \mathrm{N} 2565236$ to new analog card $\mathrm{P} / \mathrm{N} 2565080$.
	717563	None	None	None	Mand	Logic Base	50235	2565236	2565080	Yes	N/A	N/A	Analog cable ground wire needed to change from P/N 2565236 card to $P / N 2565080$ card.
004	717946				Opt	Logic Base	12400 (Mod 1) 50979 (Mod 2)	N/A	N/A	None	N/A	N/A	New "max pack" logics shipped as part of EC 718556.
005	718556	0660138	$\begin{aligned} & \text { ECA } 002 \\ & \text { EC } 717492 \end{aligned}$	Companion with $3271 / 72$ B/M 1838163	Opt	Logic Base	15352 (Mod 1) 57165 (Mod 2)	$\begin{aligned} & 8522128 \\ & 8521178 \\ & 8522109 \\ & 8521981 \\ & 8522014 \end{aligned}$	$\begin{aligned} & 8522001 \\ & 8522852 \\ & 8522151 \\ & 8522825 \\ & 8522836 \end{aligned}$	Yes	$\begin{aligned} & \mathrm{A} 1 \mathrm{~A} 2 \\ & \mathrm{~A} 1 \mathrm{~B} 2 \\ & \mathrm{~A} 1 \mathrm{G} 2 \\ & \mathrm{~A} 1 \mathrm{H} 2 \\ & \mathrm{~A} 1 \mathrm{~J} 2 \end{aligned}$	$\begin{aligned} & 9072 \\ & 9069 \\ & 9068^{*} \\ & 9071^{*} \\ & 9067 \end{aligned}$	Remove backspace blinking, correct keyboard compatibility and correct data entry functional problems. * Note: Card type 9068 and 9071 have no functional change $-P / N$ change only. No parts will be shipped. P / Ns are interchangeable
006	718399	None	None	None	Opt	None	$\begin{aligned} & 14717 \\ & (\operatorname{Mod} 1) \end{aligned}$	N/A	N/A	None	N/A	N/A	To extend cable length when new analog card ($\mathrm{P} / \mathrm{N} 2565080$) is installed. Note: Wiring change is on cable assembly 2577735.

Figure 5 -3 (Part 1 of 7). 3277 Models 1 and 2 EC Cross-Reference Chart

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/ Mand	Feature Affected	Break In Serial \#	Cards Affected		Board Wiring Involved	Card Loc	Card Type	Description
								Old P/N	New P/N				
006	717572	None	None	None	Mand	None	$\begin{aligned} & 50112 \\ & (\operatorname{Mod} 2) \end{aligned}$	N/A	N/A	None	N/A	N/A	Power Switch Actuator Guard
007	718396	None	None	None	Mand	None	$\begin{aligned} & 56239 \\ & (\operatorname{Mod} 2) \end{aligned}$	N/A	N/A	None	N/A	N/A	Analog arc suppressor Mod 2 only with analog card asm. P/N 2565236.
008	718348	None	None	None	Mand	Keyboard	12689 (Mod 1) 53503 (Mod 2)	N/A	N/A	None	N/A	N / A	Keyboard audible feedback asm failures caused by residual magnetism. Type A keyboard only.
009	718342	None	None	None	Opt	Keyboard	14934 (Mod 1) 56500 (Mod 2)	N/A	N/A	None	N/A	N/A	Redesigned clicker card for audible feedback asm. Type A keyboard only.
010	718613	None	None	None	Opt	None	$\begin{aligned} & 14427 \\ & (\operatorname{Mod} 1) \end{aligned}$	N/A	N/A	None	N/A	N/A	This EC reduces the low-frequency noise level caused by the ferro.
010	718868	None	None	None	Opt	None	$\begin{aligned} & 55825 \\ & (\operatorname{Mod} 2) \end{aligned}$	N/A	N/A	None	N/A	N/A	This EC reduces the low-frequency noise level caused by the ferro. On all 3277 Mod 2s previous to $\mathrm{S} / \mathrm{N} 55825$.
011	718611	None	None	None	Opt	None	$\begin{aligned} & 18979 \\ & (\operatorname{Mod} 1) \end{aligned}$	N/A	N/A	None	N/A	N/A	Reduce high-frequency noise caused by yoke and analog cards.
011	718869	None	None	None	Opt	None	65814 (Mod 2)	N/A	N/A	None	N/A	N/A	Reduce high-frequency noise caused by yoke and analog cards.
012	718335	None	None	None	Mand	None	18164 (Mod 1) 63338 (Mod 2)	N/A	N/A	None	N/A	N/A	Updated IR Code Guide Form No. S229-7018-1
013	718610	None	None	None	Mand	Logic Base	$\begin{aligned} & 15157 \\ & (\operatorname{Mod} 1) \end{aligned}$	N/A	N/A	None	N/A	N/A	Provide CRT arc suppressions to prevent damage to analog card $\mathrm{P} / \mathrm{N} 1565236$.

Figure 5-3 (Part 2 of 7). 3277 Models 1 and 2 EC Cross-Reference Chart

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/ Mand	Feature Affected	Break In Serial \#	Cards Affected		Board Wiring Involved	$\begin{aligned} & \text { Card } \\ & \text { Loc } \end{aligned}$	Card Type	Description
								Old P/N	New P/N				
014	738620B	None	None	None	Mand	Logic Base	$\begin{aligned} & 18950 \\ & (\operatorname{Mod} 1) \end{aligned}$	N/A	N/A	None	N/A	N/A	Replace defective line cord.
014	738620A	None	None	None	Mand	Logic Base	65424 (Mod 2)	N/A	N/A	None	N/A	N/A	Replace defective line cord.
015	738403	None	None	None	Opt	Mech. Group B/M	$\begin{aligned} & 19782 \\ & (\operatorname{Mod} 1) \end{aligned}$	N/A	N/A	None	N/A	N/A	Install foam strip to front cover to improve the retention of I / O cables.
016	738628	None	None	None	Opt	Mech. Asm 50.60 Hz		N/A	N/A	None	N/A	N/A	Replace defective detent spring.
017	739021	None	None	None	Mand	Mech. Asm $50.60 \mathrm{~Hz}$	65850 (Mod 2)	N/A	N/A	None	N/A	N/A	To prevent burning of 5 V return connections.
018													No EC will ever be assigned.
019	738401				Mand								World Trade only.
020	738622				Mand								World Trade only.
021	718971	None	None	None	Mand	RPQ WD 5095	64184 (Mod 2)	$\begin{aligned} & 8522871 \\ & \text { or } 8523636 \end{aligned}$	8523639	None	A1B2		To correct Dup key hang - when display is unformatted and REA $06-60142$ has been installed.
022	738411	None	None	None	Mand	Mech. Group B/M	$\begin{aligned} & 21893 \\ & (\operatorname{Mod} 1) \end{aligned}$	N/A	N/A	None	N/A	N/A	To prevent connector housing separation which causes scorches and open connector lands. Install clips.
022	738639	None	None	None	Mand	Mech. Group B/M	$\begin{aligned} & 75468 \\ & (\operatorname{Mod} 2) \end{aligned}$	N/A	N/A	None	N/A	N/A	To prevent connector housing separation which causes scorches and open connector lands. Install clips.
023	718969	None	EC 718556 (ECA 005)	Companion B/M 1841516 3271/3272	Opt	Logic Base	$\begin{aligned} & 20303 \\ & (\operatorname{Mod} 1) \\ & 70867 \\ & (\operatorname{Mod} 2) \end{aligned}$	8522001	$\begin{aligned} & 8523616 \\ & \text { or } \dot{8} 523633 \end{aligned}$	None	A1A2	9072	Alphameric character duplicate characters with depression and release of key.
024	718970	None	None	None	Opt	Logic Base	20664 (Mod 1) 72237 (Mod 2)	8522825	8523617	None	A1H2	9071	Correct high-intensity nondisplay problem when F / S is in last character position.

Figure 5-3 (Part 3 of 7). 3277 Models 1 and 2 EC Cross-Reference Chart

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/ Mand	Feature Affected	Break In Serial \#	Cards Affected		Board Wiring Involved	$\begin{aligned} & \text { Card } \\ & \text { Loc } \end{aligned}$	Card Type	Description
								Old P/N	New P/N				
025	738367	None	EC 717492 (ECA 002)	None	Mand	Card Reader Adapter	$\begin{aligned} & 83182 \\ & (\operatorname{Mod} 2) \end{aligned}$	N/A	N/A	Yes	N/A	N/A	To install a $2.7 \mathrm{~K} \frac{1}{4}$ watt resistor in the data strobe input circuit of card type 2229 to provide additional current in order to avoid intermittent keyboard operation.
026													No EC will ever be assigned to ECA 026.
027	718958	None	EC 718969 (ECA 023)	None	Mand	Logic Base	$\begin{aligned} & 20303 \\ & (\operatorname{Mod} 1) \\ & 70867 \\ & (\operatorname{Mod} 2) \end{aligned}$	8522108	8523257	None	A1N2	2229	To correct MDT bit placement in 3277 I/O operations, and correct functional timing error.
028	739065	None	EC 718556 (ECA 005)	B/M 1841534 for 3271/72 which updates 3277 Logic	Opt	Logic Base	$\begin{aligned} & 23878 \\ & (\operatorname{Mod} 1) \\ & 81406 \\ & (\operatorname{Mod} 2) \end{aligned}$	8522852	8524282	None	A1B2	9069	Correct logic to prevent multiple cursors when backtab is interrupted by backspace, period, comma, \# and \$ keys.
029	739072	None	EC 717492 (ECA 002)	B/M 1841530 On 3271/72 Which Updates 3277 Logic	Opt	$\begin{aligned} & \text { Logic } \\ & \text { Base } \end{aligned}$	$\begin{aligned} & 22760 \\ & (\operatorname{Mod} 1) \\ & 77822 \\ & (\operatorname{Mod} 2) \end{aligned}$	8522151	8523664	None	A1G2	9068	Correct logic to prevent the SERDES register from glitching during reset time. Correct logic to degate "protect buffer latch" during I/O operations.
030	738415	None	None	None	Opt	Mech. Asm $50.60 \mathrm{~Hz}$		N/A	N/A	None	N/A	N/A	5 Volt return model 1.
031													Cancelled picked up on EC 740096 (ECA 035).
032	739071	None	$\begin{aligned} & \text { EC } 717492 \\ & \text { (ECA 002) } \end{aligned}$	B/M 1841538 Which Updates 3277 Logic	Opt	Logic Base	23738 (Mod 1) 80814 (Mod 2)	8521992	8523648	None	A1C2	9068	Correct POR logic to prevent sporadic noise from activating the POR.
033	739066	None	EC 717492 (ECA 002)	B/M 1841525 for 3271/72 Which Updates 3277 Logic	Opt	Logic Base	21455 (Mod 1) 74773 (Mod 2)	8523617	8523649	None	$\mathrm{A}^{1} \mathrm{H} 2$	9071	Correct an intermittent hang condition in the DOT CTR logic in the 9071 type card, which results in a blank screen condition. Correct error in nondisplay, high-intensity logic.

Figure 5-3 (Part 4 of 7). 3277 Models 1 and 2 EC Cross-Reference Chart

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/ Mand	Feature Affected	Break In Serial \#	Cards Affected		Board Wiring Involved	$\begin{aligned} & \text { Card } \\ & \text { Loc } \end{aligned}$	Card Type	Description
								Old P/N	New P/N				
034	740659	None	None		Opt	Keyboard		NAA	N/A	None	N $\neq A$	N/A	 072. Use ECA 035 in place of ECA 034.
035	740096	None	None	None	Mand	Keyboard	26061 $(\operatorname{Mod} 1)$ 40482 (Mod 2)	N/A	N/A	None	N/A	N/A	Eliminate possible keyboard errors due to contamination and provide ac/dc ground separation on Type B keyboards. B/M - 1655174 - All 66 key keyboard B/M - 1655175 - All 78 key keyboard
036	740098	None	None	None	Opt	Keyboard		N/A	N/A	None	N/A	N/A	This is an ECA to allow removal of Type B keyboards from the field which have "super slick" key modules. The key module is identifiable by its color which is white compared to the standard black module.
	Contin	on ne	page										

Figure 5-3 (Part 5 of 7). 3277 Models ${ }^{\text {^ }}$ and 2 EC Cross-Reference Chart

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/Mand	Feature Affected	Break In Serial \#	Cards Affected		Board Wiring Involved	Card Loc	Card Type	Description
								Old P/N	New P/N				
037	739992	None	None	None	Opt	Logic Base	$\begin{aligned} & 24956 \\ & (\operatorname{Mod} 1) \end{aligned}$	N/A	N/A	Yes	N/A	N/A	Add several capacitor assemblies and ground jumpers to eliminate intermittant failures (Typamatic Failure, etc) by minimizing shift between $A C$ \& DC ground. Also to make displays less sensitive due to electrical storms (lightning).
037	739991	None	None	None	Opt	Logic Base	86537 (Mod 2)	N/A	N/A	Yes	N/A	N/A	Add several capacitor assemblies and grnd jumpers to elim inate intermittant failures (Typamatic Failure, etc) by minimizing shift between AC \& DC grnd. Also to make displays less sensitive due to elect storms (lightning).
038	739268	None	$\begin{aligned} & \text { EO } 717492 \\ & \text { ECA } 002 \end{aligned}$	Companion B/M 1655954 3271/3272	Opt	Logic Base	24564 $(\operatorname{Mod} 1)$ 85047 $(\operatorname{Mod} 2)$	Mono Case 8520576 (Mod 1) 8520577 (Mod 2) Dual Case 8521437 (Mod 1) 8521436 (Mod 1)	Mono Case 8524302 (Mod 1) 8524289 (Mod 2) Dual Case 8524314 (Mod 2) 8524301 (Mod 2)	No	K2 E4	9058 $(\operatorname{Mod} 1)$ 9070 $(\operatorname{Mod} 2)$ 2231 $(\operatorname{Mod} 1)$ 2227 $(\operatorname{Mod} 2)$	To correct logic timing error on character gen cards causing dot size cursors. (Symptom may also start as blinking cursor.)
039	740392	$06-96548$ 06-96549	EC 7383376	None	Mand	Signature Retrieval	28881 (Mod 1) 43507 (Mod 2)	N/A	N/A	Yes	N/A	N/A	To correct logic and modify wiring for signature display feature.
040	741691	None	None	None	Mand	Base	30649 (Mod 1)	N/A	N/A	Yes	N/A	N/A	Safety - Provide additional secondary circuit protection in case of power fault condition. Add fuses to +5 and +34 voltage lines.
040	741722	None	None	None	Mand	Base	$\begin{aligned} & \mathrm{B} 4083 \\ & (\operatorname{Mod} 2) \end{aligned}$	N/A	N/A	Yes	N/A	N/A	Safety - Provide additional secondary circuit protection in case of power fault condition. Add fuses to +5 and +34 volt lines.
041	741726	None	None	None	Mand	Base	B5208 (Mod 2)	N/A	N/A	No	N/A	N/A	Safety - Provide an insulated covering over the exposed end of the hinge screw for the front cover so that when line cord is pulled, it will not accidentally short to the frame.

Figure 5-3 (Part 6 of 7). 3277 Models 1 and 2 EC Cross-Reference Chart

3277 SERVICE AIDS

Analog Cards 2565236 and 2565080*

The following procedure should be used when replacing analog cards in the 3275 or 3277 displays.

Arcing Protection for Cathode and G1 Circuits. (See Logic Page YA011).

1. Analog Card 2565080* requires jumper from P 4 pin 7 to frame.
$5^{\prime \prime}(127 \mathrm{~mm})$ jumper (PN 2568928) used for 3275-1, 2 and 3277-2.
$8^{\prime \prime}(203 \mathrm{~mm})$ jumper (PN 2577848) used for 3277-1.
2. Analog Card 2565236 requires use of spark gap assembly, PN 2568807.

For 3275-1, 2 and 3277-2, see Field B/M 2568857 at EC 718396B. $5^{\prime \prime}$ (127 mm) jumper (PN 2568918) from spark gap assembly 2568807 pin 3 to frame.

For 3277-1, see Field B/M 2577847 at EC 718610A. 8" (203 mm) jumper (PN 2577848) from spark gap assembly 2568807 pin 3 to frame.
3. Verify grounding of yoke shield and spring to frame.

For 3275-1, 2 and 3277-2, see Field $B / M 1827666$ at $E C 717563 B$.
For 3277-1, see Field B/M 1831700 at EC 718000B.
CAUTION: Lack of arc protection endangers Analog Card, HVPS, Keyboard and logic cards in 01A-A1J2.

Replacing Card 2565236 with 2565080*

1. Remove spark gap assembly (PN 2568807) if it is installed.
2. Reconnect so that:
a. Cathode CRT pin 13 (yellow wire) to analog connector P4-6.
b. Grid 1 CRT pin 5 (white/green) to P4-4.
c. Frame ground jumper to P4-7.

Notes:

1. (3277-1 Only) If connector cabling to P3 on Card 2565080 is too short, use extender cable (PN 2577858).
2. In an emergency, 2565236 and 2565080^{*} are directly interchangeable. However, appropriate arc protection should be installed as soon as possible. The arc protection makes the cards permanently interchangeable.
3. Rare Case - Replacing 2565236 with 2565080^{*} results in vertical jitter on display. May be caused by HVPS.
4. No longer are the $5^{\prime \prime}(127 \mathrm{~mm})$ or the $8^{\prime \prime}(203 \mathrm{~mm})$ jumper wires being shipped with the analog cards.

Analog Card - HV Supply

UV (Undervoltage) Line - Analog Card P3-8 to HVPS Pin 3.

1. The primary function of this line is to enable the HVPS when horizontal deflection is functioning (indicated by analog card neon). The normal operating voltage at this point (Sweep Indicator on) is approximately -0.7 V . Therefore, Sweep Indicator on means HV should be on.

On the 2565236 card only, a second function is performed - the " +5 V Switched" is sampled (P4-11); if it is absent, the UV Line will be raised to approximately +4 V , thereby disabling the HVPS.

[^3]2. When UV line is removed from pin 3 of HVPS, the voltage reading on the wire from the Analog Card depends on the part number of the card. With Sweep Indicator on, the correct readings are:

2565236	Approximately	-15 V
2565080	Approximately	-80 V
2568924	Approximately	-80 V

Note that 2565236 could have +4 V on this wire for two reasons: No " +5 V switched" to analog card, or analog card is defective.
3. Prior to replacing a defective analog card, a resistance check should be made on the HVPS as follows:
a. Power down 3277/3275.
b. Remove wires from pins 3 and 4 (undervoltage) of HVPS.
c. With meter on $\times 10$ scale, measure resistance in both directions. The meter should NOT indicate a short or open condition (you are measuring across a diode). The actual reading will vary from meter to meter. A short will damage analog card PN 2565236 only. If a short or open is indicated, replace the HVPS.
4. Undervoltage check. The purpose of the UV line is to enable the HVPS when horizontal deflection is operating.
a. Normal voltage is approximately -0.7 V with wire connected to HVPS pin 3 neon on.
b. With wire removed from HVPS, pin 3 analog card PN 2565236 should measure -15 V on the wire. Analog card PN 2565080^{*} should measure approximately -80 V on the wire.
5. If approximately +4 V is measured on the UV wire (2565236 only), the analog card is defective or the +5 V switched to analog card is missing. +5 switched can be checked at analog connector P4-11.

Other Analog Troubleshooting Hints

1. Predominant analog card failure causes severe loading of +34 V supply which may blow F1. Isolate by pulling P3 from analog card.
2. Power-On-Reset signal to logic gate is generated on analog card by sampling +400 V from HVPS. Note that " +5 V switched" is also required on analog cards for this function. Watch for loose $\mathrm{Z3}$ connector.
3. Watch for loose TO-5 heatsinks on analog card which may shake loose. Slight bend of tab will increase tension sufficiently.

Multiple Characters

A character is presented on the display with the depression of a key, and a duplicate character appears when the key is released.

If you are displaying duplicate characters from a single key operation, the following may be the temporary fix.

Place a 1000 -ohm resistor, $1 / 4$ watt or larger, from A02 M10 to A (+5 pin).

Interchangeable Data Entry and Typewriter Keyboards

Without EC 717946, keyboards are not interchangeable between typewriter and data entry 3277 s unless the proper jumpering on the logic board is performed. Jumpering can be checked with logic page ZZ101 in the logic binder or page 6-13 in the 3277 troubleshooting guide.

[^4]
Defective Line Cords

Intermittent line cords causing loss of display.

The female end of the power cord which plugs into the unit can either intermittently make and break contact or not make contact at all. This condition can exist without any physical movement of the unit or cord. If you are experiencing a loss of display or raster problem, be sure this is not the defect before replacing any parts.

A temporary solution to fix a defective plug is to form the female connectors with your vise grip so they are slightly out of round and will make better contact to the male prongs.

CAUTION

Do this only with the line cord disconnected from the ac power source. A mandatory E.C. was released to the field to correct this condition. It is ECA 014, EC 738620A and 238620B.

Air Flow Restrictions

Placement of materials over top vents and/or beneath unit severely restricts air flow. The 3275 and 3277 rely on convection air flow for proper cooling of internal FRUs. The placement of materials over the top vents and/or beneath the unit severely restricts required air flow and causes overheating of components. Instruct operators to refrain from any procedure that causes a restricted air flow condition.

You are also reminded that no material (such as an IR Pack, Troubleshooting Guide, etc.) is to be stored inside of the display unit. This would both restrict air flow and constitute a safety hazard.

CAUTION

Replacing a blown +5 V or +34 V fuse will cause a capacitor discharge to occur.

1. If the new fuse is placed into the fuse clip in a normal manner, it is possible for a slight arc to occur.
2. If you accidentally short the +34 V fuse between the +34 V and +5 V fuse holder, or ground, a larger arc can occur.

Fuse puller (PN 452397) or equivalent should be used when installing or replacing fuses.

New PC Board Part No. for Type B Keyboards

The following is a list of updated part numbers for PC boards which are not listed in the 3275/3277 Parts Catalog (S126-0005):

Keyboard	Latest PN
66-Key EBCDIC	1865280
66-Key ASCII	1643207
Data Entry	1865281
Data Entry 2	1865282
78-Key EBCDIC	1643286
78-Key ASCII	1643287
1052-7	1643288
APL 66 Key	2658607
APL 78 Key	2658608
APL Text Edit	8627101

Part No. Change

The part number for the Arc Suppression Card Assembly on the 3277 Mod 1 has changed from 2577742 to 2577860 . They are interchangeable.

Screen Blanking

To reduce the possible replacement of analog cards and HVPS because of intermittent relay failures on E2 card (PN 8522013) in 3277s.

The symptom of intermittent screen blanking can be caused by a defective E2 card. This can be checked out quickly by tapping the E2 card. If, when tapping the card, you get a quick flashing of the data on the screen, but no total blanking, the E2 card is OK. However, when tapping this card you get a blank screen; this could indicate relay failures and the E2 card should be replaced.

Installation of PN 2577718 in Wrong Location

SYMPTOM: Intermittent response from system.
CAUSES: Unnecessary cleaning of keyboards.

Check for proper installation of bushing as follows:

1. Turn OFF power.
2. Remove front and right side cover.
3. Disconnect coax cable from display.
4. Open gate.
5. Check to see if coax connector is isolated from casting. The coax connector is mounted correctly if there is no continuity.
6. If there was continuity between the coax connector and the casting, then PN 2577718 , bushing, is either missing or mounted wrong. Refer to 3277 Parts Catalog for proper installation of the bushing.

Lightning Protection

In lightning-prone areas, the following modifications should be made on 3277s to reduce possible component damage:

1. Add ECA 037. This ECA provides capacitor assemblies and ground jumpers to minimize the shift between ac and dc ground.
2. Add ECA 047 -Model 2 or ECA 051 - Model 1. This ECA adds a varistor to provide electrical surge protection.
3. Add RPQ 8K0566. This RPQ provides a circuit modification on the 3277 by adding a new E2 card (PN 8527302) and adds new device adapter cards (PN 8527294) to the 3271 and 3272 Control Units.

Note: This RPQ is not compatible with 5000 -foot (1524 m) RPQ AB4820.

PC Board PNs For RPQ Keyboards

RPQ Name	RPQ No.	PC Board PN
Numeric Pad	WD0760	1643289
2260 Style	8 K0407	1643284
NRT	Z09005	1748102
Adding Machine	EF0436	1748112
Double/Triple Zero	EF3269	1748156

Feature MES Keyboard PNs and Replacement Assembly PNs

Type	Keyboard PN (with covers MES)	Keyboard PN (W/O covers)
78-Key EBCDIC	1825029	1858507
78-Key ASCII	1825032	1858509
1052-7 (Console)	1825033	1858510
66-Key EBCDIC	1825028	1858506
66-Key ASCII	1825031	1858508
Data Entry	1825030	1858511
Data Entry	1655139	1863828
APL 66 Key	1830816	1748172
APL 78 Key	1830817	1748174
APL Text Edit	1746741	8627100
RPQ KEYBOARD		
		1865180
Numeric Pad (WD0760)	1832722	1864390
2260 Style (8K0407)	1836442	1748100
NRT (Z09005)	1655181	1748113
Adding Machine (EF0436)	1655182	1748155
Double/Triple Zero (EF3269)	1655199	

Type A Keyboard PNs for 3277

Type	Keyboard PN (with covers MES)	Keyboard PN (W/O covers)
66-Key EBCDIC	2621364	5995515
66-Key ASCII	2621367	5995528
Data Entry	2621366	5995523
78-Key EBCDIC	2621365	5995519
78-Key ASCII	2621368	5995529
1052-7 (Console)	2621369	5995527
RPQ KEYBOARD		
Adding Machine	1836424	1855922

3277 Ship Group
Listed below is what to expect in the 3277 Shipping Group.
HARDWARE KIT

PN	Description	Quantity
104294	Clamp-Mod 2 only	One
5756324	Label IBM	One
5756348	Holder	One

DOCUMENTATION

Packing/Unpacking Instructions
MLC History

MANUALS

None - a 3277 Troubleshooting Guide is sent with each control unit.

- one set of 3277 ALDs is sent with each control unit. (B/M2565065)

REFERENCE BOOKLETS

None - A packet of blank IRs is sent with the control unit for use with the displays.

KEYBOARD (if ordered)

LINE CORD
FEATURE DOCUMENTATION

Feature	Form No.
Card Reader	SY26-4188

Title
Card Reader SY26-4188
IDR-M Theory Maintenance Manual and Parts Catalog included

RPQ DOCUMENTATION

RPQ No.	Form/Part No.	Title
8K0366 (Dual Case)	SY27-2345	Troubleshooting Guide
AB3953 (2260	5922917	Logic Sheet ZZ102
Compatibility)		
WB5095 (Tab to Colon)	2568965	Installation Instructions FB0760 (Security Radiation Control)
8K0438	SY27-2358	Troubleshooting Guide
Signature Display		
	SY27-2357	
SECIAL DOCUMENTATION		

3277-Mod I Documentation for Sys 3 Mod 15 Machines. Feature No. 9590.

PN Description/Title
2565025 System Diagram
2577899 Mask
SY27-2314 3277 MLTG
GA27-2750 Problem Determination Guide
S126.0005 Parts Catalog
IR PACK WITH BLANK FORMS
LOGIC MANUAL - 3277 - MAX PAC (B/M 2565025)

3277 Board PN List

(1/2) - Indicates 10 -card position board
(2/3) - Indicates 13-card position board.

BASIC UNIT

	Latest	
PN	EC Level	Description
2625204	717946	(1/2) Base Board, No Features
2625206	717946	$(2 / 3)$ Base Board With Features

RPQs

Latest

PN	EC Level
2625208	717946
2625210	717946
1655978	740876
1738806	741776
1655958	740392
1655960	740392
1655978	739260

Description
(1/2) Dual Case, No Other Features
(2/3) Dual Case With Other Features
(2/3) 7460-4 Card Reader
(2/3) Double/Triple Zero
(1/2) Signature Retrieval, No Other Features
(2/3) Signature Retrieval Feature
(2/3) 2956-8 Card Reader

High-Frequency Noise

Loud high-frequency noise from the display station may be reduced by tightening the heatsinks on the analog card.

If the noise problem continues and is unacceptable at the particular operating location, replace the analog card with the more recently released analog card PN 2568924.

Selector Pen Replacement of Tip

If the black tip, PN 2570128, on the Selector Pen, PN 2570100, is damaged, it can be replaced by obtaining the part from Mechanicsburg or distribution centers.

Section 6. 3284/3286 Printer

Contents

3284/3286 CEM/Service Aid Index 6-3
3284/3286 Symptom Fix List 6-5
Printer Status Errors 6-5
Power On Reset (POR) and Printout Errors 6-5
Character Print Failures. 6.6
Message Printout Errors 6.7
Platen Indexing Failures 6.8
Miscellaneous Failures 6-8
3284 and 3286 Model 1 and 2 Card Substitution List 6.13
Basic Unit 6.13
Features and RPOs 6.14
3284 and 3286 Model 3 Card Substitution List 6-15
Basic Unit 6-15
Features and RPQs 6-16
3284 and 3286 Model 1 and 2 EC Cross-Reference 6-17
3284 and 3286 Model 3 EC Cross-Reference 6-19
3284 Model 1, 2, and 3 EC Cross-Reference 6-21
3286 Model 1, 2, and 3 EC Cross-Reference 6-24
3284/86 Service Aids 6.27
Index Failures 6-27
Index Failures - Paper Feed Assemblies 6-27
Forms Jamming 6.28
Ribbon Drive Roll (New Style) 6-32
Card Jumpering 6-32
Transducer-to-Emitter Wheel Clearance 6.32
Preferred Alternative Transducer Adjustment. 6.32
Improved Glare Shield 6-36
Cover Interlock 6-36
Data Check 6.37
Crash Stopping and/or Equipment Check 6.37
+5V Power Supply Failure 6-37
Power Supply Service Information 6-37
Equipment Checks 6-38
Index Pawl Carrier Return Spring Breakage 6.38
Indexing on Power-On Reset 6-38
Safety - 3284/3286 Top Cover Window 6-39
Maintenance Monitor 6-39
Printer PC Board and MST Card Damaged 6-39
Corrections and Additions to 3284/3286 Parts Catalog S126-0006-4 6-39
Indexing Problems 6-40
VFIC RPQ Service Information $6-41$
Variable Margin RPQ EB3995 6-43
Safety - DC Power Cable 6.43
Too Many Jumper Pins on Card PN 8523248 $6-43$
5's and/or 9's Printing for NL or EM Orders 6.44
ALD Version Level Feature Identification 6-44
Stepper Motor and Speed Adjustment Service Hints 6-44
MLTG Updates $6-45$
Ribbon Jamming or Feeding Problems 6.45
Ribbon Drive Roll 6-45
Installation Instructions 6.46
Variable Margin RPQ EB3995 Parts Information 6-46
Forms Tractor RPQ WD4031 Service Information 6-47
Logic Boards 6-48
VFIC Forms Specifications 6-48
Forms Size 6-48
Single Part Forms - Thickness Considerations 6-48
Multipart Forms - Thickness Considerations $6-49$
Multipart Forms - Fastening Considerations 6-49
Index Mark - Size and Location 6-49
Ink-Color/Paper-Color Combinations $6-49$
Figures
Figure 6-1. 3284/3286 Model 1 and 2 Block Diagram 6.9
Figure 6-2. $3284 / 3286$ Model 1 and 2 A-Gate Card Layout by Function 6.10
Figure 6-3. $\quad 3284 / 3286$ Model 1 and 2 A-Gate Card Layout by Function - Dual Case 6-10
Figure 6-4. $\quad 3284 / 3286$ Model 1 and 2 A-Gate Card Layout by Function - VFIC 6-11
Figure 6-5. $\quad 3284 / 3286$ Model 3 A-Gate Card Layout by Function 6-11
Figure 6-6. $3284 / 3286$ Model 3 A-Gate Card Layout by Function - Dual Case 6-12
Figure 6-7. $3284 / 3286$ Model 3 A-Gate Card Layout by Function - VFIC 6-12
Figure 6-8. 3284 and 3286 Model 1 and 2 EC Cross-Reference Chart (2 parts) 6-17
Figure 6.9. 3284 and 3286 Model 3 EC Cross-Reference Chart (2 parts) 6-19
Figure 6-10. 3284 Models 1, 2, and 3 EC Cross-Reference Chart (3 parts). 6-21
Figure 6-11. 3286 Models 1, 2, and 3 EC Cross-Reference Chart (3 parts). 6-24
Figure 6-12. Forms Specifications (2 parts) 6-30
Figure 6-13. 3284/3286 Transducer-Adjustment Procedure (3 parts) 6-33
Figure 6-14. VFIC Form, Locations and Dimensions 6.50

3284/3286 CEM/Service Aid Index

1. Cancelled (Superceded by SA 24)
2. Forms Jamming
3. Card Jumpering
4. Jumper Card
5. Transducer to Emitter Wheel Clearance
6. Cancelled
7. Improved Glare Shield
8. Cancelled
9. Data Checks
10. Crash Stopping and/or Equipment Checks
11. Cancelled
12. Power Supply Service Information
13. Equipment Checks
14. Index Pawl Carrier Return Spring Breakage
15. Indexing on Power-On Reset
16. Safety - 3284/3286 Top Cover Window
17. Maintenance Monitor
18. Cancelled
19. Cancelled
20. Cancelled
21. 3284/3286 Manuals
22. Models 1 and 2 EC Cross-Reference Table (up to ECA 020)
23. Model 3 EC Cross-Reference Table (up to ECA 020)
24. Indexing Problems
25. VFIC RPQ Service Information
26. Variable Margin RPQ EB3995
27. Safety - DC Power Cable
28. Cancelled
29. 5s and/or 9s Print for N/L or EOM Orders
30. ALD Version Level Feature Identification
31. Stepper Motor and Speed Adjustment Service Hints
32. MLTG Updates
33. Ribbon Jamming or Feeding Problems
34. Parts Catalog Corrections
35. $3284-1,2$ and 3 EC Cross-Reference Table (ECA 021 and above)
36. $3286-1,2$ and 3 EC Cross-Reference Table (ECA 021 and above)
37. $3284 / 3286$ Models 1 and 2 Card Sub List
38. 3284/3286 Mode! 3 Card Sub List
39. Variable Margin RPO EB3995 Parts Information
40. Forms Tractor RPQ WD4031 Service Information
41. Cancelled (Superseded by SA 50)
42. Cancelled
43. +5 Volt Power Supply Failure
44. Ribbon Drive Roll
45. VTL Logic Levels
46. Stepper Motor Quick Check
47. Ready Light
48. Power Supply Service Information
49. VFIC RPQ Service Information
50. Logic Board Information
51. Indexing Failures
52. Cover Interlock
53. Cancelled (Superseded by SA 86)
54. PM for High Usage Printers
55. Low-Profile Jumper
56. Cancelled (Superseded by SA 86)
57. Print Head Magnets
58. Emitter Transducer Assembly (New)
59. Platen Information
60. Fire Shield
61. Cancelled
62. Cable Location
63. Tear Bar, RPQ ED3470
64. ECs for High Usage Printers
65. Repair of Intermittently Firing Print Wires
66. Extra Indexes
67. Cancelled (Superseded by SA 86)
68. Offline Test
69. VFIC Sensitivity Adjustment
70. Index Pawl
71. Forms Jams
72. Print Head and Print Magnet Assemblies
73. RPQ Parts Information
74. Updated Handbook Available
75. MLTG Errors
76. Index Failures
77. Equipment Checks
78. Intervention Required in 3275
79. Power Supply PC Board
80. VFIC Lever
81. Fail to Index
82. VFIC CE Test
83. Index Problems
84. Paper Jams
85. Intermittent Index Failures
86. Printed Circuit Board
87. Carriage Asm. Production Change
88. Service Aids
89. Safety Label
90. 3284/3286 Manual Update (Power Supply Drawing - Carriage Motor Switch)

Note: Check for additional Service Aids released beyond the last number in this Index.

Section 6. 3284/3286 Printer

Figures 6-1 through 6-7 give the locations for the 3284/3286 Printer.

3284/3286 SYMPTOM FIX LIST

The following Symptom Fix List is to be used to supplement the existing procedures in the MLTG.

Symptom

Fix

Printer Status Errors	
,ttn/Dev End/UC	Refer to ECA 032
Data Check	Missing, loose or defective jumper card in A1Z2, PN 5800036.
Data Check	Replace or reseat A1D2.
Data Check	Replace or reseat A1G2, also check jumpers on A1G2.
Data Check	Defective or misassembled coaxial cable decoupling capacitor.
Data Check, and/or dropping print positions	Defective or maladjusted transducer.
Data Check with Unit Specified and/or "X" in printout	Defective buffer card, socket B4, B5, C4, C5.
Data Check, and/or dropping print positions	Defective or maladjusted transducer.
Device End occurs continually	Replace or reseat A1J2.
Equipment Check, and/or " X " in printout	Defective or maladjusted transducer.
	Defective printer PC board.
	Transducer cable grounded.
	Defective or misassembled coaxial cable decoupling capacitor.
	Reseat jumper on card A1G2.
	Loose wire from stepper motor to EC-4.
Equipment Check inhibited when running OLT's to $3275 / 3284$	Defective cable from 3275 to 3284.
Intervention Required occurs when online, and/or H's printed are expanded when in offline mode	Reseat or replace A1J2 or A1E2.
Intervention Required occurs when online, yet printer operates OK when in offline mode	Bad ground on ac power cord or +24 V missing at A1B3D11.
	Reseat or replace A1E2.
	+5V dc switched missing.
Intervention Required and Unit Specify	Defective or maladjusted forms motion switch, or speed adjustment.
Unit Check followed by Busy	Defective coaxial cable.

Defective coaxial cable.

Power On Reset (POR) and Printout Errors

?arriage motion erratic, garbled print
Carrier motion erratic or noisy

Carriage crashes into left margin
No POR
No POR

Blown driver card A1 or B1, or printer PC board.
Clean and lubricate lead screw and carriage support shaft.
Stepper motor coupling out-of-round.
Replace or reseat A1E2.
Missing voltage.
Poor I/O cable connection.

Symptom

No POR. Erratic carriage motion, and/or carriage hangs at the right margin

No POR. No Print (Model 3).

PORs unexpectedly during normal operation

No print. Offline (Model 3). No print when online. Carriage may move but no print. CE Test Pattern has incorrect number of lines.

No print when online. (Model 3)
Offline test patterns do not print
Offline " H " Test Pattern failure or (?) appears in " H " Test Pattern printout.

Prints incorrect characters during offline test

Character Print Failures

Carriage moves but no print
Dropping dots or entire character.
Garbled print or varying speed.
Incorrect line Iength
Extra dots in characters
Garbled print in evenly spaced positions across the page, forming a vertical line of bad print in the printout
Garbled or missing character. No Data Check and Unit Specified, and no " X " at end of printout
Garbled print or varying print impressions; Emitter adjustment critical, or difficult to adjust.
Prints all wires for every character.

Print one or more random " X " characters during normal print operation

Fix

Replace or reseat A1D2, A1C5 or A1B2.
Defective right margin switch, margin switch cable, or cable to logic gate.
Defective printer PC board. If PC board blows on 3286 again, check C1 and C2 (stepper motor capacitors) for shorts.
Reverse feedback transducer short to frame or shield, or intermittent open circuit.
Maladjusted print emitter.
Defective cable to 3275 or cable ground strap not making good contact or internal printer cable (PN 2570239) defective.
Check capacitor on A1A5D03 to A1A4D08.
Defective card A1L2 in 3275.
Defective or maladjusted forms motion switch.
Defective buffer card.
Defective or maladjusted left margin switch.
Broken or maladjusted index link.
Replace or reseat A1H2.
Decoupling capacitor should be mounted between A1A4D08 and A1A5D03.
$D C$ voltage missing at logic board.
Replace or reseat A1D2, or A1E2 or A1C5.
Perform transducer adjustment.
Check A1G2 (A1E2 on Model 3) jumper arrangement.
Check buffer cards B4, B5, C4, C5 or J2.

Replace or reseat A1H2.
Check jumpering of motor control card A1G2 (Models 1, 2) or A1E2 (Model
3). Defective or maladjusted transducer.
Check dc power supply voltages.
Warped or crooked emitter wheel.

Defective character generator card J2.

A1B2 defective or low output.

Defective card A1J2.
12 V missing, or excessive ripple at A 1 board.
Replace buffer cards B4, B5, C4, and C5.

Symptom

Printer speed too fast; can't slow down with adjustment.

Varying print impressions.

Message Printout Errors

Continuous printing.
Drops character, or entire line of print.
Extra characters (random).
Left margin uneven.

Losing messages on $3284 / 3286$ printers used as alternate console.
New Line and End of Message orders. Prints as " 5 " or " 9 ".
One line of data from 129 Keypunch is split into two lines if the first card column contains an 8 or 9 .
Printer hangs at left margin after one line of print.

Printer hangs at some point in print line

Printer hangs up.
Printer repeats buffer printout.
Printer repeats buffer printout with an " X " printed at the end.

Printer repeats messages on a Copy command.

Printer repeats message in online mode. Offline test works correctly
Does not print numeric 9, Model 3 printer.

Wrong character prints out
" X " prints and Status indicator lights. Prints " X " and "?" during test patterns.
" X " prints on Model 3 printer, and/or Equipment Checks.
"X" prints or 3275 Status indicator lights when printer is bumped.

Fix
Defective PC board in printer assembly. Defective stepper motor. Noise on DC power supply voltages.
A1B2 weak or defective. Warped platen or ribbon problems.

Defective buffer card.
Replace or reseat A1H2 or A1D2.
Reseat cable at A1A3.
Defective stepper motor.
Defective or maladjusted emitters.
Check motor control card jumpering:
A1G2 - Models 1 and 2
A1E2 - Model 3
OS alternate console support does not retry equipment checks or data checks.
Buffer card B4, B5, C4, C5, or J2 (Models 1 and 2) or C2 (Model 3).
Defective card in printer location A1D2.

Defective or maladjusted left margin switch.
Defective 3272 card at 01A-A1K2
Emitter whee! out-of-round, or defective tooth

Defective buffer card.
Defective or maladjusted emitters.
Check power supply voltages.
Check emitter cables for shorts or grounding.
Loose wire from stepper motor to EC 4.
Operator error. Cursor on 3277 must be returned to position zero before hitting a copy key.
Defective card E2.

Replace or reseat 3275 card at 01A-A1L2.
Defective ROS character generator card: A1J2 - Models 1 and 2 A1C2-Model 3

Emitter wheel out of adjustment.

Emitter adjustment
Defective buffer card in 3275
Bad connection at A1N4 in 3275
Loose C4 capacitor in the printer.

Platen Indexing Failures

Does not eject paper when end of forms	Defective or maladjusted forms motion
is recognized.	
switch.	
Prints while indexing	Slow transfer of forms motion switch.
	Binding index solenoid.
Stacking or paper feeding problems	More than 6-part forms in use, or total thickness greater than 0.018 (0.5 mm)
	(basic), or 0.014 (0.4 mm) with
VFIC RPQ.	

Defective or maladjusted forms motion switch.
Slow transfer of forms motion switch. ding index solenoid. thickness greater than 0.018 (0.5 mm) (basic), or 0.014 (0.4 mm) with VFIC RPQ.

解d strap at the rear of the printer shorting to the index solenoid.

Binding index solenoid. Index clutch shaft undercut by support bearings. t enough spring tension on index clutch release lever.
Defective clutch assembly.

Defective forms motion switch. Replace it even if it tests good.

Bad PC board.
Bad stepper motor driver card.
Check cabling from logic gate to printer PC board.
Carriage support shaft requires lubrication.

Transducer touching (nipping) emitter wheel.
tight. (Refer to ECA 016.)
Check for out-of-round pulleys on drive motor or carriage drive shaft. Motor should not touch frame.
heck alignment of pulleys for proper belt tracking. motor pulley, and the fan shaft bearing retaining screw.

Figure 6-1. 3284/3286 Model 1 and 2 Block Diagram

Figure 6-4. 3284/3286 Model 1 and 2 A-Gate Card Layout by Function - VFIC

Figure 6-5. 3284/3286 Model 3 A-Gate Card Layout by Function

3284 AND 3286 MODEL 1 AND 2 CARD SUBSTITUTION LIST

Key
Mand $=$ Mandatory EC
Opt = Optional EC
CC = Companion Card required
BW $=$ Board Wiring required
MR = Minimum Rework - functionally equivalent to PN listed immediately below it.
The underlined PN is the latest level card.
Cards may be substituted up or down as long as board wiring (BW) is not required.

Basic Unit

Loc	PN	Key	ECA/EC	Function/Comments
A1B1	5860705		NA	Stepper Motor Driver
	5862898		NA	
	5861753		NA	
	5863914		NA/141950	
	5864333		$036 / 347554$	

Features and RPQs

3284 AND 3286 MODEL 3 CARD SUBSTITUTION LIST

The following is a card substitution list to be used for the 3284 and 3286 Model 3
Printer.

Key
Mand $=$ Mandatory EC
Opt $=$ Optional EC
CC = Companion Card Required
BW $=$ Board Wiring Required
MR = Minimum Rework - functionally equivalent to PN listed immediately below it.
The underlined PN is the latest level card.
Cards may be substituted up or down as long as board wiring (BW) is not required.
Basic Unit

Loc	PN	Key	ECA/EC	Function/Comments
B2-.....-	8521823		002/717481	Sense Amp
	8526055		031/740396	Optional EC
C2-...--	8521494		003/717488	ROS Char. Gen
D2-....-	8521833		003/717488	Ded Prtr Intf
	8522848	MR	004/717958	Optional EC
	8522829		004/717958	Optional EC
	8523615	MR	012/718968	Optional EC
	8523618	MR	012/718968	Optional EC
	8523619		012/718968	Optional EC
	8526956		025/740878	Optional EC
E2-....-	8521488		003/717488	Motor Control
	8523248		005/718946	Optional EC
	8526969		NA/741762	Optional EC
A1A1-..	5860705		NA	Print Wire Driver
	5862898		NA	
	5861753		NA	
	5863914		NA/141950	
	5864333		036/347554	
A1B1-...	5860705		NA	Stepper Motor Driver
	5862898		NA	
	5861753		NA	
	5863914		NA/141950	
	5864333		036/347554	

Features and RPQs

Loc PN		EC	No./Description
C2-....- 8521501		NA/716957	Katakana
F2--.--- 8521700			Dual Case
F2------ 8521518			Katakana
F4--....- 8523643		NA/738659	VFIC
8526957	BW	FO/740879	
8527309	BW	NA/742863	Optional EC
8528255		041/743334	
A1A1--. 5861752		NA	Dual Case Print Wire Driver
5863915		NA/141950	
5864334		036/347554	
A1B1--. 5861752		NA	Dual Case Stepper Motor Driver
5863915		NA/141956	
5864334		036/347554	

3284 and 3286 Model 1 and 2 EC Cross-Reference

This chart (Figure 6.8) is to be used to determine the need for any of the optional EC changes and to verify the EC level of any machine. To aid in determination the serial number that implemented each change is listed. This list will be updated periodically. It is recommended that a copy of this service aid be kept in 3270 card caddies.

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/ Mand	Feature Affected	Break In Serial \#	Cards Affected		Board Wiring Involved	Card Loc	Card Type	Description
								Old P/N	New P/N				
001	716958	$\begin{aligned} & 63677 \\ & 63678 \\ & 63692 \\ & 63695 \end{aligned}$	None	None	Mand	Basic	$\begin{aligned} & 3284 / 50050 \\ & 3286 / 80054 \end{aligned}$	8521435 8520569 8521496 8521431	$\begin{aligned} & 8521823 \\ & 8522012 \\ & 8521722 \\ & 8521517 \end{aligned}$	Yes	A1B2 A1C2 A1D2 A1E2	9050 L511 9118 9115	Factory installed on all machines.
002	717480	None	001	None	Mand	Basic	$\begin{aligned} & 3284 / 50050 \\ & 3286 / 80054 \end{aligned}$	8521722	8521731	Yes	A1D2	9118	This EC is picked up by ECA 003.
003	717487	$\begin{aligned} & 63692 \\ & 63688 \\ & 63693 \\ & 63694 \end{aligned}$	001	None	Mand	Basic	$\begin{aligned} & 3284 / 50151 \\ & 3286 / 80171 \end{aligned}$	$\begin{aligned} & 8521041 \\ & 8521517 \text { or } \\ & 8521830 \end{aligned}$	8521985 8521986	Yes	A1B4 A1E2	9035 9115	Picks multiple REAs. For Model 2. Buffer cards in B5, C4, and C5 are replaced as well as B4.
004	718551	63710	003	None	Opt	Basic	$\begin{aligned} & 3284 / 50801 \\ & 3286 / 80690 \end{aligned}$	8521986	8522844	No	A1E2	9115	Corrects CE test pattern failure.
005	718555	63712	003	None	Opt	Basic	$\begin{aligned} & 3284 / 50966 \\ & 3286 / 80798 \end{aligned}$	$\begin{aligned} & 8521495 \text { or } \\ & 8521698 \end{aligned}$	8522850	No	A1F2	9117	Corrects intermittent missing line feeds.
006	718335	None	None	None	Mand	Basic	$\begin{aligned} & 3284 / 51575 \\ & 3286 / 81609 \end{aligned}$	N/A	N/A	N/A	N/A	N/A	New IR Code Guide
007	138879	None	None	None	Mand	Basic	$\begin{aligned} & 3284 / 52944 \\ & 3286 / 82724 \end{aligned}$	N/A	N/A	N/A	N/A	N/A	New carriage motion switch. Kingston EC 718336.
008	None	N/A	No EC released.										
009	718977	None	003	None	Opt	Basic	$\begin{aligned} & 3284 / 51615 \\ & 3286 / 81528 \end{aligned}$	8521488	8523248	No	A1G2	9113	Corrects constant indexing during POR.
010	141384	None	007	None	Mand	Basic	$\begin{aligned} & 3284 / 53288 \\ & 3286 / 83197 \end{aligned}$	N/A	N/A	N/A	N/A	N/A	Install improved index link and clevis. Kingston EC 738786.
011	738791	None	None	None:	Mand	Basic	$\begin{aligned} & 3284 / 53249 \\ & 3286 / 83110 \end{aligned}$	N/A	N/A	N/A	N/A	N/A	Adds clips to power supply connectors to improve contact.
012	None	None	None	None:	N/A	Basic	N/A	N/A	N/A	N/A	N/A	N/A	Announces the availability of an improved glare shield $\mathrm{P} / \mathrm{N} 2495731$.
013	None												World Trade Corp only.
014	141991	None	None	None	Mand	Basic	$\begin{aligned} & 3284 / 53486 \\ & 3286 / 83339 \\ & \hline \end{aligned}$	N/A	N/A	N/A	N/A	N/A	Safety change to round corners on cover P/N 2632620. Kingston EC 738795.

Figure 6-8 (Part 1 of 2). 3284 and 3286 Model 1 and 2 EC Cross-Reference Chart

ECA	EC	REA	Pre-Req ECA	Concur or Comp	$\begin{aligned} & \text { Opt/ } \\ & \text { Mand } \end{aligned}$	Feature Affected	Break In Serial \#	Cards Affected		Board Wiring Involved	$\begin{array}{\|l\|l} \hline \text { Card } \\ \text { Loc } \end{array}$	$\begin{array}{\|l} \text { Card } \\ \text { Type } \end{array}$	Description
								Old P/N	New P/N				
015	739552	69546	None	None	Opt	VFIC RPQ	$\begin{aligned} & 3284 / 53899 \\ & 3286 / 83825 \end{aligned}$	N/A	N/A	Yes	N/A	N/A	Corrects VFIC counter reset problem.
016	141936	None	None	None	Opt	Basic	$\begin{aligned} & 3284 / 55148 \\ & 3286 / 85674 \end{aligned}$	N/A	N/A	N/A	N/A	N/A	Reduces idling noise due to vibration.
017	None												World Trade Corp only.
018	739549	63722	003	None	Opt	Basic	$\begin{aligned} & 3284 / 54363 \\ & 3286 / 84486 \end{aligned}$	$\begin{array}{\|l} 8521495 \text { or } \\ 8521698 \text { or } \\ 8522850 \end{array}$	8524326	No	A1F2	9117	Corrects loss of last line of CE mode. Corrects loss of last line of print "on line". Corrects switch bounce on "ready" line.
019	141990	None	None	None	Opt	Basic	$\begin{aligned} & 3284 / 55440 \\ & 3286 / 86529 \end{aligned}$	N/A	N/A	No	N/A	N/A	Improved cover interlock magnet mount. ing bracket. Kingston EC 740361.
020	740033	63723	004	None	Opt	Basic	3284/55515 3286/86609	8521986 or 8522844 or 8523642 or 8523644	8524596	No	A1E2	9115	Corrects intermittent control checks on 3272 on SIO to a printer.

Figure 6-8 (Part 2 of 2). 3284 and 3286 Model 1 and 2 EC Cross-Reference Chart

This chart (Figure 6-9) is to be used to determine the need for any of the optional EC changes and to verify the EC level of any machine. To aid in determination the serial number that implemented each change is listed. This list will be updated periodically. It is recommended that a copy of this service aid be kept in 3270 card caddies.

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/ Mand	Feature Affected	Break In Serial \#	Cards Affected		Board Wiring Involved	Card Loc	Card Type	Description
								Old P/N	New P/N				
001	716957		None	None	Mand	Basic	$\begin{aligned} & 3284 / 70034 \\ & 3286 / 75032 \end{aligned}$	N/A	N/A	N/A	N/A	N/A	Factory installed on all machines.
002	717481	None	001	None	Mand	Basic	$\begin{aligned} & 3284 / 70034 \\ & 3286 / 75032 \end{aligned}$	N/A	N/A	N/A	N/A	N/A	This EC is picked up by ECA 003.
003	717488	$\begin{aligned} & 63683 \\ & 63697 \end{aligned}$	001	None	Mand	Basic	$\begin{aligned} & 3284 / 70196 \\ & 3286 / 75114 \end{aligned}$	$\begin{aligned} & 8521528 \\ & 8521490 \end{aligned}$	$\begin{aligned} & 8521833 \\ & 8521823 \end{aligned}$	Yes	$\begin{aligned} & \mathrm{A} 1 \mathrm{D} 2 \\ & \mathrm{~A} 1 \mathrm{~B} 2 \end{aligned}$	$\begin{aligned} & 9093 \\ & 9050 \end{aligned}$	Picks up multiple REAs.
004	717958	63711	003	None	Opt	Basic	$\begin{aligned} & 3284 / 70579 \\ & 3286 / 75235 \end{aligned}$	8521833	8522829	No	A1D2	9093	Correct a problem of missing line feeds.
005	718946	None	003	None	Opt	Basic	$\begin{aligned} & 3284 / 70791 \\ & 3286 / 75347 \end{aligned}$	8521488	8523248	No	A1E2	9113	Corrects constant paper indexing during POR.
006	138879	None	None	None	Mand	Basic	$\begin{aligned} & 3284 / 71594 \\ & 3286 / 83197 \end{aligned}$	N/A	N/A	N/A	N/A	N/A	New carriage motion switch. Kingston EC 718336.
007	718335	None	None	None	Mand	Basic	$\begin{aligned} & 3284 / 70995 \\ & 3286 / 75359 \end{aligned}$	N/A	N/A	N/A	N/A	N/A	New IR Code Guide
008	None	N/A	No EC released.										
009	141384	None	006	None	Mand	Basic	$\begin{aligned} & 3284 / 71790 \\ & 3286 / 75435 \end{aligned}$	N/A	N/A	N/A	N/A	N/A	Install improved index link and clevis. Kingston EC 738786.
010	738791	None	None	None	Mand	Basic	$\begin{aligned} & 3284 / 71719 \\ & 3286 / 75413 \end{aligned}$	N/A	N/A	N/A	N/A	N/A	Adds clips to power supply connectors to improve contact.
011	None	None	None	None	N/A	Basic	N/A	N/A	N/A	N/A	N/A	N/A	Announces the availability of an im. proved glare shield $\mathrm{P} / \mathrm{N} 2495731$.
012	718968	None	003	None	Opt	Basic	$\begin{aligned} & 3284 / 71117 \\ & 3286 / 75381 \end{aligned}$	8522829	8523619	No	A1D2	9093	Eliminate switch bounce on "ready" line to 3275 to correct loss of "device. end" status.
013	None												World Trade only.
014	141991	None	None	None	Mand	Basic	$\begin{aligned} & 3284 / 71829 \\ & 3286 / 75446 \end{aligned}$	N/A	N/A	N/A	N/A	N/A	Safety change to round corners on cover P/N 2632620. Kingston EC 738795.
015	None												Not applicable to Model 3.

Figure 6-9 (Part 1 of 2). 3284 and 3286 Model 3 EC Cross-Reference Chart

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/ Mand	Feature Affected	Break In Serial \#	Cards Affected		Board Wiring Involved	Card Loc	$\begin{aligned} & \text { Card } \\ & \text { Type } \end{aligned}$	Description
								Old P/N	New P/N				
016	141936	None	None	None	Opt	Basic	$\begin{aligned} & 3284 / 72994 \\ & 3286 / 75697 \end{aligned}$	N/A	N/A	N/A	N/A	N/A	Reduce idling noise due to vibration.
017	None												World Trade only.
018	None												Not applicable to Model 3.
019	141990	None	None	None	Opt	Basic	$\begin{aligned} & 3284 / 73292 \\ & 3286 / 75794 \end{aligned}$	N/A	N/A	N/A	N/A	N/A	Improved cover interlock magnet mounting bracket. Kingston EC 740361.
020	740033												Not applicable to Model 3.
	-												

Figure 6-9 (Part 2 of 2). 3284 and 3286 Model 3 EC Cross-Reference Chart

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/ Mand	Feature Affected	Break In Serial \#	Cards Affected		Board Wiring Involved	Card Loc	Card Type	Description
								Old P/N	New P/N				
043	743359		None	None	Opt	Basic				No			Supplies improved drive belts.
044	741113		None	None	Opt	VFIC				No			Installs forms guide and paper hold down assem to fix paper jam.
045	743329		035	None	Opt	VFIC		8527309	8528255		A1K4	Y936	Provides improved VFIC Mod 1 \& 2 reliability.
046	347598		None	None	Opt	Basic				No			Provides wider emitter wheel and a more sensitive transducer to help alleviate emitter problems.
047	318253												WTC only.
048	319904		None	None	Opt	Basic				No			Change to comply with hospital ground leakage requirements.
049	318265		None	None	Opt	Basic				No			Provide electrical surge arrester.

Figure 6-10 (Part 3 of 3). 3284 Models 1, 2, and 3 EC Cross-Reference Chart

This chart (Figure 6-11) is to be used to determine the need for any of the optional EC changes and to verify the EC level of any machine. To aid in determination, the serial number that implemented each change is listed. This list will be updated periodically. It is recommended that a copy of this service aid be kept in 3270 card caddies.

ECA	EA	REA	Pre-Req ECA	Concur or Comp	Opt/ Mand	Feature Affected	Break In Serial \#	Cards Affected		Board Wiring Involved	Card Loc	Card Type	Description
								Old P/N	New P/N				
021	740375	None	None	None	Mand	Basic	Mod 1 \& 2 88090 Mod 3 75890	N/A	N/A	N/A	N/A	N/A	Provides additional secondary circuit protection in case of power fault condition by adding +5 V and +24 V fuse.
022	144179	None	None	None	Opt	Basic	N/A	N/A	N/A	N/A	N/A	N/A	Prevents paper jams caused by static electricity by replacing plastic forms guide with metal guide.
023	740387	None	003	None	Opt	Basic	Mod 1 \& 2 87704 Mod 3 N/A	$\begin{aligned} & 8524325 \\ & \text { or } \\ & 8524326 \end{aligned}$	8526044	No	A1F2	9117	Corrects problem of loss of last buffer position if preceding 2 positions have N / L codes and printer is in default mode.
024	144182	None	None	None	Mand	Basic	Mod $1 \& 2$ 88822 Mod 3 75947	N/A	N/A	N/A	N/A	N/A	Prevents PC board burnout by installing heatsinks on diodes. Prevents indexing problems by replacing clutch cam set screws and adding shims to clutch cam release arm.
025	740878	None	None	None	Opt	Basic	Mod 3 75952 Mod 1 \& 2 N/A	8523619	8526956	No	A1D2	9093	Corrects a problem of undefined S / S on Mod 3 printers with VFIC, by bypassing 20-ms delay between equipment check and not ready status.
026	393341												World Trade only.
027	393327												World Trade only.
028	393305												World Trade only.
029	740759	None	None	None	Mand	Basic	Mod 1 \& 2 87370 Mod 3 75840	N/A	N/A	N/A	N/A	N/A	MLTG update.
030	740396	63725	003	None	Opt	Basic	N/A	8521823	8526055	No	A1B2	9050	Corrects the problem of machine indexing for 15 seconds when first powered "on". Models 1 and 2°

Figure 6-11 (Part 1 of 3). 3286 Models 1, 2, and 3 EC Cross-Reference Chart

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/ Mand	Feature Affected	Break In Serial \#	Cards Affected		Board Wiring Involved	Card Loc	Card Type	Description
								Old P/N	New P/N				
031	740397		003	None	Opt	Basic		8521823	8526055	No	A1B2	9050	Corrects the problem of machine indexing for 15 seconds when first powered on. Mod 3
032	741250		003	None	Opt	Basic		8523248	8526969	No	A1G2	9113	Corrects problem of S/S errors of ATTN/ DE/UC on 3284 connected to 3272 with 1 Device adapter \& 4 Devices.
033	347568		None	None	Opt	Basic				No			New cassette aligner and ribbon drive roll.
034	347575		021	None	Mand	Basic	$\begin{aligned} & \text { Mod } 1 \& 2 \\ & 11470 \\ & \text { Mod } 3 \\ & 76010 \end{aligned}$			Power Supply			Fan change to eliminate belt.
035	742212		015	None	Opt	VFIC		8526957	$\begin{aligned} & 8527309 \\ & 8528255 \end{aligned}$	Yes	A1K4	Y936	Provides adj VFIC sensitivity. Changes VFIC timeout. Provides VFIC reset. Mod 1 \& 2
036	347554		None	None	Opt	Basic		$\begin{aligned} & 5863914 \\ & \text { or } \\ & 5863915 \end{aligned}$	$\begin{aligned} & 5864333 \\ & \text { or } \\ & 5864334 \end{aligned}$	No	$\begin{aligned} & \mathrm{A} 1 \mathrm{~A} 1 \\ & \mathrm{~A} 1 \mathrm{~B} 1 \end{aligned}$		Eliminates erroneous firing of print wires during POR.
037	742179		None	None	Opt	Basic				No			Adds clamp to capacitors C1 \& C2 to minimize loosening.
038	347563		None	None	Opt	Basic				No			Replaces index shaft and bearings to reduce index problems.
039	740363		023	None	Opt	Basic				No			Provides ready lamp. Mod 1 \& 2
040	743344		025	None	Opt	Basic				No			Provides ready lamp. Mod 3
041	743334		025	See Descrip.	Opt	VFIC		8527309	8528255	Yes	A1F4		Improved VFIC reliability. $\operatorname{Mod} 3$ Requires ECA 056 on 3275.

Figure 6-11 (Part 2 of 3). 3286 Models 1, 2, and 3 EC Cross-Reference Chart

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/ Mand	Feature Affected	Break In Serial \#	Cards Affected		Board Wiring Involved	Card Loc	Card Type	Description
								Old P/N	New P/N				
042	743349		None	None	Opt	Basic				No			Installs new heavy duty index link and clevis to eliminate index failures.
043	743359		None	None	Opt	Basic				No			Supplies improved drive belts.
044	741113		None	None	Opt	VFIC				No			Installs forms guide and paper hold down assem to fix paper jams.
045	743329		035	None	Opt	VFIC		8527309	8528255		A1K4	Y936	Provides improved VFIC function. Increases VFIC timeout to 192 indexes \& provides VFIC error reset. Mod 1 \& 2
046	347598		None	None	Opt	Basic				No			Provides wider emitter wheel and a more sensitive transducer to help alleviate emitter problems.
047	318253												WTC only.
048	319904		None	None	Opt	Basic				No			Change to comply with hospital ground leakage requirements.
049	318265		None	None	Opt	Basic				No			Provides electrical surge arrester.

Figure 6-11 (Part 3 of 3). 3286 Models 1, 2, and 3 EC Cross-Reference Chart

3284/86 SERVICE AIDS

Index Failures

Indexing failures may be due to wearing of the carriage clutch assembly shaft, PN 2495519 (Item 72, fig. 5 in 3284/86 parts catalog). Any vertical movement of the shaft indicates that the shaft and bearings (PN 114498) should be replaced. This vertical movement can be observed by lifting upon the shaft with a screwdriver while using the motor as a fulcrum. If the bearings are presently clearance-fit on this shaft (allowing the shaft to turn inside the inner race of the bearing), order ECA038, which provides B / M 1863576. Installation of this B / M requires Loctite* sealant Type A, PN 216348, and Loctite Primer, PN 615960 . Until parts are available, the problem can be solved by making the shaft swell in the area where the left bearing fits on the shaft. This can be done by striking a center punch at four spots equidistant around the circumference of the shaft. This procedure is only necessary for the bearing nearest to the motor pulley. The bearing on the opposite end of the shaft is held in place by pressing the collar (PN 2495518) against the inner race of the bearing. It is important that there be no clearance between the collar and the bearing.

Index Failures - Paper Feed Assemblies

There are two style paper feed assemblies on 3284/86 printers presently in the field. The type of paper feed assembly on a printer can be identified by comparing the mechanical assembly serial number to that below.

The serial number is stamped in the base casting of the mechanical printer assembly directly below the right end of the print head worm shaft.

3284 base serial number below 01611 is old style.
3284 base serial number above 01610 is new (A frame) style.
3286 base serial number below 01680 is old style.
3286 base serial number above 01679 is new (A frame) style.
There are several parts which are not interchangeable between the two style paper feed assemblies, and intermittent indexing problems could result if these parts are intermixed on a machine. Consult 3284/86 Parts Catalog, Figure 8, for old style paper feed assemblies, or Figure 7 for new style paper feed assemblies. Also, the pin feed platens are not interchangeable between the different style pin feed assemblies (refer to Parts Catalog, Figure 6, item 1).
*Tradename of Locktite Corp.

Forms Jamming

The following is a recommended check list if you are experiencing forms jamming problems.

1. Apply anti-static solution PN 2200118 (or equivalent) to all paper guide surfaces. Frequency dictated by environment.
2. Adjust platen laterally to ensure the forms do not contact the left edge of Forms Entry Guide.
3. Ensure that the platen pin-to-pin dimension aligns with the marginally punched holes in the forms. (Note that forms hole-to-hole dimension changes significantly with variations in relative humidity.)
4. Ensure that the platen pinwheels are adjusted per MLTG.
5. Ensure that the Forms Entry Guide is square with and parallel to the platen.
6. Ensure that Forms Stacker Stand, sales feature number 4450 or equivalent, is used with each printer. The Forms Supply Tray should be located below the Forms Stacking Tray.
7. Verify that platen height, platen-to-print head, and platen-to-ribbon guide dimensions are as specified in the MLTG.
8. Ensure the Forms Wire Guides are located per the MLTG. Additional Forms Wire Guides may be installed as required, using clamp (1) PN 2640769, bracket (2) PN 2642456, and guides (as required) PN 2642446.
9. Verify that orange shipping spacers have been removed from shock mounting for printer assembly.
10. All forms should be removed from the carton.
11. If jamming is due to static electricity on printers with a plastic exit rack (old style), install optional EC 144179 (refer to ECA 022), replacing existing rack with new metal forms exit rack.
12. Forms jamming may also be due to out-of-specification forms. Refer to Figure 6.12 for form specifications or to the Forms Design Reference Manual, GA24-3488.
13. If the VFIC feature is installed, see ECAO44.

See the Forms Design Reference Manual, GA24-3488, for more detail.
Figure 6-12 (Part 1 of 2). Forms Specifications
8. Form Length -11 in . $279,4 \mathrm{~mm}$) recommended for optimum stacking

Minimum - 3 in. (76,2 mm)

Multiple Copies - Up to 6-part form can be printed.

- Front form of multiple copy must be a full form width.
- No hard fasteners.
- Maximum thickness depends on model.

Pin-Feed - Thickness $.018 \mathrm{in} .(0,46 \mathrm{~mm})$ maximum. For optimum feeding and stacking no more than 3-part forms are recommended.

- Card stock not recommended.

Single-ply Roll Pape

a. Width - up to 15 in . $(381,0 \mathrm{~mm})$
b. $O D-4 \mathrm{in} .(101,6 \mathrm{~mm})$
c. ID $-.375 \mathrm{in} .(9,5 \mathrm{~mm})$

Note: For more detailed information refer to Forms Design Reference Guide for Printers Form \#GA24-3488.

Figure 6-12 (Part 2 of 2). Forms Specifications

Ribbon Drive Roll (New Style)

The ribbon drive roll has been redesigned to improve the ribbon drive operation. The rubber feed rolls have been replaced by a serrated urethane feed roll assembly. The new ribbon drive shaft assembly (PN 5165590) will eliminate the need for spacer (PN 2632608) and will require a new cassette aligner (PN 2632609). The new style ribbon drive roil assembly should be installed on all $3284 / 86$ printers presently experiencing excessive replacement of drive roll or experiencing ribbon feed problems.

1. Remove the cassette aligner (PN 2632609), the ribbon drive roll (PN 2632584), and the spacer (PN 2632608). Scrap locally.
2. Install new cassette aligner (PN 2632609). Mount aligner flush with shoulder on mounting plate.
3. Install new ribbon drive roll assembly (PN 5165590). Adjust collar for minimum end play without binding.

Card Jumpering

An error exists in the $-X$ and -O 3284 and 3286 MLTGs in reference to jumpering of the motor control card. Correct jumpering for the motor control card in position G2 for 3284/3286 Models 1 and 2 and E2 for 3284/3286 Model 3 is as follows:

Card PN 8521429 EC716936 for 3284 jumper 1-3
Card PN 8521488 EC717487 for 3284 jumper 2-3
Card PN 8523248 EC7 18946 for 3284 jumper 2-3
Card PN 8526969 EC741250 for 3284 jumper 2-3

Card PN 8521429 EC716936 for 3286 jumper 1-2
Card PN 8521488 EC717487 for 3286 jumper 1-3
Card PN 8523248 EC718946 for 3286 jumper 1-3
Card PN 8526969 EC741250 for 3286 jumper 1-3
The counter and compare card location H2 3284 and 3286 Models 1 and 2 should be jumpered as follows:
3284 and 3286 Model 1 jumper $2 \cdot 3$

3284 and 3286 Model 2 jumper 1-2
The card plugged in the $Z 2$ position in the 3284 Mod 1 and 3286 Mod 1 printers has pre-wired jumpers on it. This card is used in Mod 1 printers only and does not require any additional jumpers.

Transducer-To-Emitter Wheel Clearance

Before powering on a 3284 or 3286 printer, the transducer-to emitter wheel clearance must be checked. Manually move the print head back and forth and listen for the sound of the transducers rubbing on the emitter wheel. If the transducers are damaged in any way, they should be replaced. Damaged transducers may cause intermittent erratic printer operation. The transducers should be adjusted according to the transducer adjustment procedure in the MLTG.

Preferred Alternative Transducer Adjustment

Figure 6-13 gives the complete procedure for the preferred alternative adjustments of the transducer.

referred Alternative Transducer Adjustment - Complete Procedure

his complete procedure can be used whenever a transducer problem is encountered, and offered as an alternative to separate procedures, 6.5.2, 6.5.3, and 6.5.5, found in Section 6 of the MLTG. An oscilloscope is required to perform this procedure.
The following transducer adjustment can be made easier on non-VFIC machines. Add a mper to F2U02 to F2U10 (mod $1 \& 2$) or D2J06 to D2J13 (mod 3) for a continuous print pattern in offline mode.
his loop print will work on print patterns 1 and 2 , and on the print buffer.
It can be useful for scoping, line feed problems, or checking for intermittent problems.
A. Emitters and Transducers Adjustment

Note: Later production version printers use different transducers and emitter wheel semblies. The later version printers can be identified by the increased width of the rsion], and the part number stamped the new transducer has seven digits versus six digits stamped on the earlier transducer. Clearances for the earlier version are given in steps 3 and 4 , and for the later version in steps 5 and 6 .
bjective: To align the emitter wheels with transducer tips, and to obtain the proper ai ap on all transducers.

Adjustmen

1. Remove dc power (see 6.4.2 of MLTG). Remove emitter cover (2 screws). Loosen the emitter wheel screws $A A$, and position the assembly so that the emitter wheels align with the transducer tips. Tighten the screws

Note: The wheel may not be centered under the transducer; however, the alignment should be the same on both wheels.
2. Loosen the transducer block clamping screws \mathbb{B}, and adjust the eccentrics to position INTAIN DOW SCREWS.
3. Loosen the transducer clamp screws C , and insert a 0.002 -in. $(0,06-\mathrm{mm})$ brass feeler
 On THE TRANSDUCER, AND tIGHTEN THE SCREWS.
Check 0 or 0.001 -in. ($0,03-\mathrm{mm}$) clearance by inserting the 0.001 -in. brass feeler gauge wheel is rotated been the transducer tips and the emitter wheel. When the emitter

Note: Check several points on wheel with gauge to prevent possible damage to the emitters and transducers when power is turned on

Figure 6-13 (Part 1 of 3). 3284/3286 Transducer-Adjustment Procedure
. Loosen the transducer clamp screws C , and insert a 0.003 -in. $(0,08-\mathrm{mm})$ brass feeler gauge (PN 1863715) between the transducer tip and the tooth of the emitter wheel MAINTAIN DOWNWARD PRESSURE ON THE TRANSDUCER, AND TIGHTEN the screws.
6. Check for 0.002 -in. $(0,05-\mathrm{mm})$ clearance by inserting the 0.002 in. brass feeler gauge PN 2200006) between the transducer tips and the emitter wheel. When the emitter wheel is rotated, there should not be any drag on the gauge. Scope on A1 board to check the output of the transducers (step 7).
Note: Check several points on the emitter wheel with gauge to prevent possible dan Note. Check several points on the emiter wheel win gauge to pre
7. With an oscilloscope, check both feedback transducers and print-right transducer for minum output of 750 milifivolis. (Typical output is about 2 volits.) See waveshap If output does not meet requirements recheck air gap between emitter wheel . Hansducers (steps 3 and 4 , or steps 5 and 6).
circuit board locations A1A2B 10, A1A2BO4, and A1A2B07 as shown in . Use ground location A1A2D08.
Note: To ensure correct wiring of transducers, use an ohmmeter to check for contin wity between the following points:

D TB3H (brown wire) to A1A2B10 (Print-Right Transducer) TB3G (black wire) to A1A2D08
TB3E (brown wire) to A1A2B04 (Forward Feedback Transducer)
TB3F (black wire) to A1A2D08
TB3D (black wire) to A1A2D08 (Reverse Feedback Transducer)
Proceed to procedure B, Stepper-Motor Speed Adjustmen

Front View
© Typical Transducer Output at TB3 One Cycle: $2.0 \mathrm{~ms}(3284)$ 1.2 ms (3286)
ion: 1 V Volts/Division: 1 V Sync: Internal Coupling DC, Slope Plus Source: Internal Channel 1 only Note: The leading edge of the waveshape should have a shorter rise time than the trailing edge. If not, the transducer is either wired backward or defective.

B. Stepper-Motor Speed Adjustments

CAUTION

- Do not make transducer adjustments while printing. Print wire damage may result.
- The speed of the printer will vary greatly with only a small change in the position of the adjusting eccentric.
- Stepper-motor advance pulses that vary more than 150 usec may be due to binds in leadscrew, excessive drag on ribbon, stepper-motor circuit failures, or other failures. Eliminate binds before making motor-speed adjustments (6.5.1 of MLTG).
- Critical or difficult-to-adjust stepper-motor speed may be a result of:
- Defective printer PC board
- Defective emitter amplifier card (01A.A1B2)
- Defective stepper motor assembly
- Defective emitters
- This adjustment must be made with print carrier returning at low speed.
- Adjust forward transducer with the head moving to the right
- Adjust reverse transducer with the head moving to the left.

Forward Speed Adjustment:

1. a. Set CE switch to PRINT PATTERN position.
b. Install the ribbon cassette.
c. To make carriage move without printing, perform power-on reset operation
2. Sync on and look at the output of the forward transducer at point A1B2-J12.
3. Loosen two mounting screws on forward feedback transducer mounting plate, and adjust eccentric for proper trace A. Press mounting plate toward emitter wheel, and tighten mounting screws.

Reverse Speed Check and Adjustment:

Note: Disable high-speed return by jumpering the slowdown margin switch (A1G2-B06 to G2-D08 Models 1 and 2, A1E2-B06 to E2-D08 Model 3).

1. Sync on and look at the output of the reverse transducer at point A1B2-D12.
2. Loosen two mounting screws on the reverse feedback transducer mounting plate, and adjust eccentric to obtain proper trace A as the carriage moves in a reverse direction. Press mounting plate toward emitter wheel, and tighten mounting screws.
3. Remove the jumper used to disable high-speed return, and check that the carrier returns at high speed.
4. Proceed to proceciure C, Print Carrier and Print Emitter Adjustment.

A Typical Speed Adjustment Trace

3286 Time/Division: 0.2 Millisecond
Volts/Division: 2 Volts
Mode Channel: 1
Sync: Internal Coupling DC, Slope Plus
Source: Internal Channel 1 Only

3286

3284

3284

Time/Division: 0.5 ms
Volts/Division: 2V
Mode Channel: 1
Sync: Internal Coupling DC, Slope Plus
Source: Internal Channel 1 only

Note: Allowable variation is 1.85 ms to 2.08 ms before adjustment is required When adjusting, the 1.92 ms to 2.08 ms tolerance should be maintained.

Figure 6-13 (Part 2 of 3). 3284/3286 Transducer-Adjustment Procedure

C．Print Carrier and Print Emitter Adjustment

objectives
．To position the left end of the carrier support shaft flush with the side casting and then to align the edge of the print carrier with the milled ring on the carrier support shaft．
．To align the middle scribed line on the print emitter wheel to the print－right transducer tip．
To position the print position pointer to indicate print position 1 ．
Note：If the following adjustment is required，recheck the stepper－motor speed adjust－ ments（procedure B）．

Service Check：Return the carrier to print position 1 and check that：
．Left edge of carrier aligns with milled ring 因 on left end of carrier support shaf 2．Print－right transducer tip［D］aligns to center scribed line on print emitter wheel． cates print position 1 G

If the carrier is off the scribed line $⿴ 囗 \square$ one print position $(0.100 \mathrm{in}).(2.54 \mathrm{~mm})$ ， adjust the left margin switch．If the carrier is off the scribed line less than one print position（ 0.100 in ．），make the following adjustment．

Adjustment：
1．Place machine in offline status．
2．Loosen the setscrew and position the left end of the carrier support shaft flush with he side casting［B］．Tighten the setscrew（may be on right side of carrier support shaft）．
3．Loosen the 2 coupling screws 뎌 to disconnect the leadscrew from the stepper
motor．
Turn power off，then on，to perform a POR．The stepper motor will start．Move the head manually to the right margin．The stepper motor will reverse．Now move the head back to the left margin．The stepper motor wili stop in the detented pos－ tion $(\bar{A} \bar{B})$ if the margin switch works correctly．
5．If not already done，remove the emitter cover（ 2 screws）．
Note：Minor misalignment（within the limits of the eccentric）can be corrected by positioning the print－right transducer in relation to the print emitter wheel．

6．Loosen the two print．right transducer mounting block screws \mathbb{E} and，using the eccentric adjusting screw，position the mounting block to center the scres
tain downward pressure on the transducer block，and tighten the screws．
Tain downward pressure on the transducer block，and tighten the screws． AI on the carrier support shaft．Ensure that the coupling flange is against the Loosen，the emitter wheel clamp screws FI，and align the middle scribed line with the print－right transducer tip．Tighten the screws．Ensure that the whee centered under all transducers．
9．Loosen the two print－position pointer screws G ］move the pointer left or right indicate print position 1 ，and tighten the screws．

Note：The following adjustent is made after the $3284 / 3280$ priter is runnin and up to its proper speed．
．Jumper pin A1G2B06 to A1G2D08 Models 1 and 2，A1E2B06 to A1E2D08 Model 3 （－Slow Down Switch）．
Connect pin A1J3B02 Models and 2，A1C3B02 Model 3，to the＂External Trigger Input＂plug of the scope．
2．Sync the scope on a negative－going signal
Look at the＂+ Motor is Equal to Zero＂signal at pin A1G3D05 Models 1 and 2 ，
Model 3 ，with scope channel number at pin A1J5B07 Models 1 and 2，A1C5B07
Loosen the two mounting screws on the Print Right Transducer，and adjust the eccentric so that the third＂Hammer Drive＂pulse is centered between the first two ＂Motor Equal to Zero＂pulses
Replace the emitter cover（ 2 screws）
17．Check margin switch adjustment（6．5．4 in MLTG）．

Time／Division： 2.0 ms （3284）
Volts／Division： 2 V
Voltr／Division： 2 V
Mode Channel：Alternat
Sync：External Trigger
Negative Slope

Time／Division： 1.0 m
Volts／Division： 2 V
Sync：External Trigger，Negative Slope

Improved Glare Shield

An improved glare shield is available from Mechanicsburg. If the shield in your machine fits improperly and/or slides forward temporarily binding the top cover, order a new glare shield PN 2495731, PR Code 34 from Mechanicsburg. Use service Code 34, and record ECA 012 for 3284 \& 3286 Mod 1 \& 2, or ECA 011 for 3284 \& $3286 \operatorname{Mod} 3$.

Cover Interlock

Do not permanently disable the cover interlock switch. If the switch is disabled, the user will be exposed to a potential safety hazard. Use the following procedure to correctly adjust the cover interlock switch.

Depending on how the cover interlock switch was originally assembled, it can be actuated by the north or south pole of the operating magnet (horseshoe magnet) but not both. The correct relationship between the operating magnet and the CE bypass magnet (part of the assembly) can be established by observing which pole of the operating magnet repels the bypass magnet. The pole of the operating magnet which repels the bypass magnet should be positioned so that it approaches the switch first as the cover is being closed and should not pass beyond the switch when the cover is fully closed.

Before making any adjustments to the operating magnet mounting bracket, ensure that the inside plastic cover PN 2495628 is fully seated in the screw slots. This establishes the correct vertical location of the switch.

When the above relationships are established, adjust the operating magnet as follows:

1. For the front-to-rear adjustment, provide approximately 0.060 in . $(1.52 \mathrm{~mm})$ clearance between the inside plastic cover and the front of the magnet by sliding bracket PN 1804717 forward until the magnet just contacts the inside plastic cover as the top cover is being closed. Now, reposition the bracket towards the rear approximately 0.060 in . $(1.52 \mathrm{~mm})$ to obtain the required clearance.
2. For the left-to-right adjustment, provide approximately 0.120 in . $(3.04 \mathrm{~mm})$ clearance between the inside plastic cover and the left edge of the magnet by sliding the magnet PN 2495691 to the left until it just contacts the inside plastic cover as the top cover is being closed. If the magnet contacts the plastic cover, then reposition it to the right approximately 0.120 in . $(3.04 \mathrm{~mm})$.

Note: Optional EC 141990 provides for adjustment of the cover interlock switch operating magnet in the vertical direction, which increases the reliability of this adjustment. For machines without this adjustment capability, order optional EC 141990 (ECA 019).
3. For the vertical adjustment, adjust the magnet plate PN 1804718 to position the bottom of the operating magnet 0.060 in . (1.52 mm) above the bottom of the interlock switch. This relationship can be checked by removing the platen assembly and observing through the left platen knob hole (with the cover fully closed).

Note: The adjustment can be checked as follows (the Ready lamp can be used if available):
a. Power off the printer.
b. Move the cover to a position that is from 0.25 in . $(6.35 \mathrm{~mm})$ to 0.50 in . $(12.7 \mathrm{~mm})$ from the fully closed position. This distance should be measured on the cover closure point directly in front of the operating magnet. Check for zero ohms resistance (use the CE meter) between the following points:

3284/86 Models 1 and 2 - A1F2S04 and any D08 pin
3284/86 Model 3 - A1D2G06 and any D08 pin
c. Raise the top cover and activate the CE bypass by attracting the CE bypass magnet to the bypass position. Verify that the CE bypass magnet is repelled by the cover interlock operating magnet as the cover is closed.

Covers should not be switched between machines without readjustment of the magnet assembly. To assist in the evaluation of the cover interlock performance, code all the time spent diagnosing cover interlock problems as major code 000.

Data Check

Sense and status of DATA CHECK with UNIT SPECIFIED and/or an X printed in the text is usually caused by a defective buffer card, socket B4, B5, C4, C5. If a character is distorted or missing without a DATA CHECK and UNIT SPECIFIED and/or an X in the printout, the character generator card in J 2 is probably defective. If replacement of these cards does not resolve your problem, refer to the 3284/3286 MLTG.

Crash Stopping and/or Equipment Check

1. Crash stops at the left margin may be caused by improperly assembled left margin switches. Two reed switches are required for slow and one read switch is required for stop. It is possible that the reed switches were installed in the wrong slots in the switch assembly. The slot closest to the wires attached to the switch assembly should ; be empty and each of the other three slots should contain a reed switch. ' these reed switches are not installed in the correct slots within the margin switch assembly, order a new assembly PN 2495539. Also check the wiring to the switches.
2. The above symptoms can also be caused by loose reeds in the left or right margin assemblies (2495539 and 2495540).
3. Equipment checks, carrier slamming into the left margin, or carrier not reaching the left margin may be caused by the incorrect printer assembly or incorrect PC board being installed on a 3284 or 3286 . The printer assembly can be identified by reading the PN stamped in the base of the mechanical printer assembly. The PC board can be identified by removing it from the printer and reading the PN etched in the board.

The correct PNs for the respective machine types are in the following chart:

3284

Printer assembly	PN 2642460	PN 2642490
PC board assembly	PN 2632611 or	PN 2495781 or
	PN 2642553	PN 2642552
PC board etched \#	PN 0373569	PN 0373568

Refer to logic page ZZ101.

If you have the incorrect PC board, order a new PC board assembly.

+5 V Power Supply Failure

Loss of +5 V may be due to loose diodes. Before replacing the power supply, PN 2582950 , or PC board PN 2582963, make sure CR3 and CR4 mounting nuts are tight. CR3 and CR4 are located at the top of the PC board and are the only diodes mounted with hex nuts.

Power Supply Service Information

Intermittent and difficult to diagnose problems in 3271, 3272, 3284, and 3286 machines may be caused by excessive ripple on the power supply voltages. The ripple may be caused by loose capacitor mounting screws in the power supply. On your next service call, these screws should be checked as follows:

1. If screws are loose, tighten them. (Refer to ECA 037.)
2. If screws appear to be tight, loosen the screws one full turn and retighten them.

Ripple can be checked using an oscilloscope. Maximum allowable ripple is as specified in Figure 1-1 (Section 1). MLTG Page B-2 shows DC power distribution to the logic board and should be used when checking power supply voltages.

If you are replacing the 3284/3286 power supply printed circuit board because of burned land patterns at the $A C$ input connector pins 3 and $4(24 \mathrm{Vac})$, a permanent fix can be made by cutting transformer leads 12 and 14 at the connector and soldering directly to diodes CR1 and CR2 on the board. Securely wrap the transformer lead around the anode lead of the corresponding diode and solder. See drawings 7.4 and 7.7 in the 3284/3286 Troubleshooting Guide (SY27-2315).

When replacing the LVPS in $3271,3272,3284$, and 3286, tighten the two upper mounting screws in the machine frame. Failure to do this can result in personal injury if the power supply drops after removal of the front cover.

Equipment Checks

The following is a checklist for intermittent and difficult to diagnose EQUIPMENT CHECKS:

1. Forms motion switch - defective or maladjusted
2. Cover interlock switch - defective or maladjusted.
3. End of forms switch - defective or maladjusted.
4. Print emitter transducer - defective or maladjusted.

Note: All emitters should have a minimum of .001 clearance to the highest point on the emitter wheel.
5. Power supply capacitors loose or making poor contact.
6. Check index pawl for lubrication or binds.
7. Check index link for adjustment.
8. Transducer cable shields, part of cable PN 2570242, may short to ground and cause equipment checks. This cable runs from the logic gate socket A2 to the 15 -position connector near the cable feed through hole at the top of the power supply. The shields for the transducer cables are exposed at the 15 -position connector end of the cable, and may short to ground where the cable clamp holds the cable to the frame. These shields should be protected with electrical tape.

Index Pawl Carrier Return Spring Breakage

On some early " A " frame printers, the index pawl carrier return spring, PN 1175330, (refer to Parts Catalog S126-0006-2, fig. 7, item 20) was subject to premature breakage due to interference with the " A " frame front leg. The index pawl carrier return spring should be anchored to the line selector hub, and the open side of the hook should be up. This should be done as part of your next service call and the time should be recorded as Service Code 08.

Indexing on Power-On Reset

If the printer indexes for approximately 15 seconds after a power-on reset, the machine should be checked for the following EC:

Model	ECA	EC Number	New Card PN	Location
1 or 2	009	718977	8523248 or 8526969	01A-A1G2
3	005	718946	8523248 or 8526969	01A-A1E2

If the EC is not installed, order the EC which is applicable to your machine. If, after installation of the EC, indexing still occurs on POR, replace the B2 card, PN 8526065.

- DANGER

A potential safety hazard from sharp edges exists if the top cover window is broken. The edges of the broken window (PN 2495724 or PN 2642424) are very sharp. The CE should respond immediately to any service call about a broken window and be very cautious in handling the pieces of the window.

Maintenance Monitor

Printers manufactured after May 1974 do not have a maintenance monitor. The carbide print head was introduced into the production line in May 1974 and since the carbide print wires SHOULD NOT be stoned, the maintenance monitor was removed. Carbide print heads can be identified by black paint in the heads of the allen screws of the print magnet assemblies. Preventive maintenance on machines without a maintenance monitor should be done based upon the monthly frequency in the PM routine chart in the MLTG.

Printer PC Board and MST Card Damaged

CAUTION

The loss of cooling due to a broken motor drive beit (PN 1804937) or a broken fan drive belt (PN 2495683) could cause damage to the PC board or the MST cards in the printer assembly. Mandatory ECA034 must be installed to eliminate this exposure.

Corrections and Additions to 3284/3286 Parts Catalog S126-0006-4

Fig.	Item	Description of Correction
2	18	PN 2495724 has grooves for mounting screws.
2	18	PN 2642424 has studs in place of grooves for mounting.
2	37	PN 2642437 is obsoleted and replaced by PN 2642431.
4	11	PN 5861753 desc should be CARD ASM-7 wire printer.
4	12	PN 2642552 desc should be BOARD ASM, PC 3286.
4	12	PN 2642553 desc should be BOARD ASM, PC 3284.
4	22A	PN 0736535 desc should be SWITCH ASM, MICRO.
4	22A	PN 2495769 desc should be SWITCH, REED.
4	39	PN 2495679 desc should be RACK, RIBBON DRIVE.
4	57	PN 2495630 OBSOLETE.
4	57	PN 2495585 OBSOLETE.
*4	57	PN 1804867 PRINT HEAD ASM, 7 POSITION CARBIDE.
* 4	57	PN 1804868 PRINT HEAD ASM, 8 POSITION CARBIDE.
4	59A	PN 2495578 OBSOLETE.
* 4	59A	PN 2640788 OBSOLETE.
*4	59A	PN 1805671 magnet and hammer asm-end POS, CARBIDE, BRONZE MAGNET.
4	59B	PN 2495586 OBSOLETE.
* 4	59B	PN 2640787 OBSOLETE.
* 4	59B	PN 1805672 MAGNET AND HAMMER ASM, MIDDLE POSITION, CARBIDE, DULL GRAY MAGNET.

Fig.	Item	Description of Correction
4	72	PN 2495634 should be PN-2495625.
5	29	PN 1117883 clevis asm - adjustable 2 per machine.
6	3	PN 1128527 desc should include 27 teeth.
6	3	PN 1135192 desc should include 36 teeth.
9	11	PN 2642563 includes a 4×9 timing disc asm.
9	11	PN 2642565 includes a 4×7 timing disc asm.
10	10	PN 2640791 desc should be ROLL, BELT RETAINING, 3284.
*10	10	PN 2632600 ROLL, BELT RETAINING, 3286.
10	16	PN 2640792 desc should be PULLEY ASM, 3284.
*10	16	PN 2632586 PULLEY ASM, 3286.
13	11	PN 5214955 is obsoleted and replaced by PN 846371.
13	21	PN 2481207 and PN 375435 are interchangeable - delete the LOCAL and REMOTE from their description.

4-22A, and note in Figure 5, detail B-Switch is not part of cable asm. 2495749.

Fig.	Item	Description of Correction
5	85	PN 1863930 should be 1863630
13	41 A	PN 5214456 fuse 6 A
13	41 B	PN 5267682 label fuse 4
13	41 C	PN 512137 fuse 5 A slo blow
13	41 D	PN 5267687 label fuse 5
13	41 E	PN 5214925 fuse holder
13	41 F	PN 5267675 bracket
13	41 G	PN 10170 screw
13	41 H	PN 5214437 wire nut
14	11	PN 2495749 ltem 19 should be deleted from description.
15	39 A	Should be slide switch, CE 3284/86 Ribbon Cartridge PN 1136970.

Indexing Problems

On installation and prior to making adjustment to the indexing mechanism, be sure the entire mechanism is lubricated; refer par. 8.5 in the 3284 and 3286 MLTG. In addition to those items in par. 8.5 , the platen bushings should also be lubricated. It may be necessary to remove the bushings so the shaft may be cleaned and lubricated with IBM No. 23 grease or equivalent before reinstalling the bushings. If adjustment is necessary after lubrication, refer to MLTG par. 6.7.12. If the indexing mechanism is maladjusted and the index pawl contacts the overthrow stop, you may break the index link. The improved index link is PN 1863642 and clevis (2 req) PN 1117883.

The set screws in the platen variable guide may loosen due to vibration. This causes indexing failures and should be corrected as part of your next 01 or 08 call.

Refer to Fig. 6, items 9 and 10, in the Parts Catalog, S126-0002-2:

1. Remove the set screws PN 1175106 from the platen variable guide PN 1203742.
2. Put a drop of IBM cleaner (PN 450608-6 oz. can) or equivalent into the set screw holes and allow the cleaner to dry.
3. Put a drop of Loctite ${ }^{*}$ sealant EPN 605960 or equivalent into the set screw holes.
4. Tighten the set screws firmly.

There are two ECs available to correct a problem of a missing index during a multiindexing operation. These are optional ECs and should be ordered if required.

Model 1 \& 2	ECA 005	EC 718555
Model 3	ECA 004	EC 717958

[^5]
VFIC RPQ Service Information

General Service Information

The vertical forms index control (VFIC) RPQ, when used in conjunction with special preprinted forms and a special software instruction, provides for automatic vertical positioning of paper forms to specific line locations designated by the customer. It is necessary for the operator to align the forms (via the platen vernier) to position the first line of print any time forms are inserted in the printer. Thereafter, alignment is maintained via VFIC.

Reliable operation of VFIC is very dependent upon properly designed forms. This and other special considerations, such as limitations and programming information, are covered in the RPQ's Custom Feature Description Manual, GA27-2753-3.

The VFIC RPQ consists of a photosensor device and associated circuitry. All of the unique logic is located on one card (K4 card in models $1 \& 2$ or F4 card in model 3). The photosensor device consists of an infra-red light emitting diode and a photo transistor. The sensor is strategically positioned so the index mark will interrupt the light beam as the mark passes the sensor and thereby positions the form for the next line of print.

A VFIC operation is initiated by the decode of a forms feed character (HEX ' OC ') in the data stream. This starts paper indexing which continues until it is halted by recognition of the index mark by the photosensor. If no index mark is detected within 128 indexes (192 indexes, if ECA 035 installed), the printer ceases to index any further, and a VFIC error condition is automatically signalled to the printer's host system. At the host system, the error condition is manifested by the following sense (3272 unit) or sense and status (3271,3275 units) information:

If control unit is a 3272 unit:
Intervention Required (Bit 1)
Equipment Check (Bit 3)
Unit Specify (Bit 5)
If control unit is a 3271 unit:
Unit Specify (Byte 0, Bit 5)
Device End (Byte 0, Bit 6)
Intervention Required (Byte 1, Bit 3)
Equipment Check (Byte 1, Bit 4)
If control unit is a 3275 unit:
Device End (Byte 0, Bit 6)
Intervention Required (Byte 1, Bit 3)
Equipment Check (Byte 1, Bit 4)
A power-on reset is required to reset these error indications, unless ECA 035 is installed, in which case the VFIC reset switch should be used.

Forms Considerations

The forms for the VFIC RPQ must be designed to the specs called out in form
GA27-2753 for reliable operation.

1. Location of the mark. Specs in form GA27-2753, Fig. 1.
2. Print contrast signal of the mark minimum spec 0.8 . Black ink is recommended for the mark to meet this spec.
3. VFIC margin must be free of all marks other than VFIC mark.
4. Thickness of the form maximum of 0.014 in . $(0.356 \mathrm{~mm})$.

5. Fastening methods:

a. Temporary (crimps) or flexible fastening methods are recommended.
b. Forms having full width processed carbon may cause problems if the carbon extends into the VFIC margin. The carbon may affect the PCS readings or it may show through fastener holes or perforation holes. Ideally, the carbon should not extend into the VFIC margin.
c. Glued forms cause feeding problems because of the small diameter of the platen and should be avoided.

VFIC RPQ Adjustment Hints

All VFIC adjustments are covered in the following MLTGs:

$3284 / 86-1 \& 2$ VFIC MLTG	SY27-2341
$3284 / 86-3$ VFIC MLTG	SY27-2342

There are three positioning adjustments for the VFIC sensor which should be made with the alignment tool, PN 5244758 (shipped with the printer). When making the front/back adjustment (par. 6.10.9 of MLTG), it is important that the sensor be adjusted so both diodes in the assembly are aligned to the horizontal line in the " H " on the alignment tool, PN 5244758. The VFIC sensitivity control should then be adjusted per the MLTG.

If operation is not reliable after these adjustments have been made, it may be due to forms. As a temporary measure, these adjustments may be optimized to the customer's form. With a sharp knife, cut an index mark out of the customer's form and then use this form as a template for making the sensor head positioning adjustments.

If customer forms are not within the specifications of GA24-3488, notify the customer of his possible continued exposure to forms movement problems.

Note: General information from the GA24-3488 manual can be found under the heading "Forms Design Consideration and Specifications" in Section 8 of this handbook.

VFIC RPQ Failure Analysis

For VFIC type failures, refer to ECAs 035, 041, 044, and 045, if applicable.
Skipping extra pages (failure to recognize the index mark):

1. Out of specification forms - specifications for location of the mark, size of the mark, and Print Contrast Signal (PCS) of the mark are given in the Custom Feature Description Manual, GA27-2753.
2. Defective or maladjusted photosensor (PN 5244707) - there are three positioning adjustments. Refer to the VFIC MLTG for correct procedures.
3. Defective VFIC card

3284/3286 Models 1 \& 2 location K4
3284/3286 Model 3 location F4
4. Defective or maladjusted forms motion switch.
5. Slow movement of the index mark past the sensor. The sensor is self-biasing, so if the forms slow down while the mark passes the sensor, the sensor can self-bias faster than the mark can affect the sensor. Items to be considered that could cause the form to slow down are:
a. Index mechanism and paper path adjustments
b. Forms thickness
c. Forms weight
d. Forms output should not be allowed to stack on top of the input supply
6. Adjustment of VFIC sensitivity control.

Stopping at the wrong place on the form:

1. The VFIC margin must be free of printed information. Targets, bleed lines, hard fasteners, crimp fasteners, or spot carbons may be detected as index marks by the photosensor.
2. Heavy, stiff or glued forms may make the paperweight bounce which would be recognized as an index mark.
3. If the carbon extends into the VFIC margin, the carbon may show through the horizontal perforations.
4. Defective or maladjusted photosensor PN 5244707.
5. Defective VFIC logic card

$3284 / 3286$ Models $1 \& 2$	location K4
$3284 / 3286$ Model 3	location F4

6. Adjustment of VFIC sensitivity control.

Variable Margin RPQ EB3995

Extra indexes may occur on a machine with variable margin stop RPQ EB3995 if the customer's program is using new line codes, and the right margin switch is set too far to the left. The right-hand margin switch should be positioned far enough to the right so it will not 'make' prior to the new line code.

Safety - DC Power Cable

The dc voltage distribution cable should be inspected for insulation breakdown.
Cable assembly PN 2570243 supplies dc voltages to the back panel of the logic gate. The individual wires of this cable are held against the back of the board by black plastic straps pressed onto the pins of the logic board. On your next 01 or 08 call, please inspect these cable wires to see that the insulation is not being damaged by being pressed against the back panel pins. Relocate the wires as necessary to eliminate pressure between the wires and logic pins.

Too Many Jumper Pins on Card PN 8523248

Some of the motor control cards PN 8523248 were manufactured with four jumper pins instead of three. If you have any of these cards, they should be altered as follows:

Hold the card with the shroud down and the component side facing you, then cut off the second pin from the top.

Card Location:
Models 1 and 2 A1G2
Model 3 A1E2

5's and/or 9's Printing for NL or EM Orders

The printing format is determined by the write control character (WCC) on a write command or the copy control character (CCC) on a copy command (3271 only).

In formatted mode, the line length is specified in the WCC or CCC as 40,64 , or 80 characters per line and NL or EM orders are not executed. Instead, they are printed as graphics " 5 " and " 9 ", respectively.

In unformatted mode, an NL order in the buffer causes the printer to perform a new line function, and an EM order terminates the printing operation. In unformatted mode, there are no graphic characters printed for the NL or EM characters.

If a printer prints " 5 " or " 9 " when it is known to be in unformatted mode, suspect the following components:

```
3284/3286 Models 1 & 2
    ONLINE/OFFLINE SWITCH (INTERMITTENT)
    Printer A1F2 card
    Printer A1H2 card
    Printer A1J2 card
```

3284/86 Model 3
ONLINE/OFFLINE SWITCH (INTERMITTENT)
Printer A1C2 card
Printer A1D2 card
3275 01A-A1L2 card

ALD Version Level Feature Identification

The version level of ALD pages is an indication of what features and RPQs are covered by that page. The version level is located adjacent to or directly below the page number, e.g.,

Page	Ver	EC Lev	or	BP101
BP101	000	717474		000

The following is a cross-reference of ALD version levels to feature or RPQ names:

Version	Feature or RPQ
000	Base
001	Katakana
002	Dual Case RPQ 8K0366
007	Vertical Forms Index Control (VFIC) RPQ EB4324
A17	VFIC and Katakana
A27	VFIC and Dual Case

Stepper Motor and Speed Adjustment Service Hints

Stepper motor resistance check.

From To	Color Code	Resistance
EC4-M--EC4-H--	Black to Red	3.2 ohms + or -5%
EC4-L--EC4-F--	White to Blue	3.2 ohms + or -5%
EC4-B--EC4-H--	Red/white to Red	6.4 ohms + or -5%
EC4-D --EC4-F--	Blue/white to Blue	6.4 ohms + or -5%

Critical or difficult to adjust stepper motor speed may be a result of:

- Defective printer PC board
- Defective emitter amplifier card (01A-A1B2)
- Defective emitters
- Defective stepper motor assembly

MLTG Updates

The following MLTG updates have mistakes which you should correct in your copy.
Technical Newsletter (TNL) SN31-0051 for 3284-3 MLTG SY27-2316-2 should be corrected as follows:

1. Page D-2 A, typical speed adjustment trace is incorrect, the correct example is on page 6-28.
2. Adjustment step 7 - jumper pin, A1E2B07 should be pin A1E2B06.

Technical Newsletter (TNL) SN31-0052 for 3286-3 MLTG SY27-2317-2 should be corrected as follows:

1. Page 3-1 paragraph 3.2.5 - The word FAST in the last sentence should be FACT.
2. Page 6-28 - Time/division under the scope waveform should read 0.2MS instead of 0.5 MS .
3. Page D-2 - Time/division under the scope waveform should read 0.2MS instead of 0.5 MS .
4. Page D-3 - In adjustment step 7, jumper pin A1E2B07 should be pin A1E2B06.

New MLTG for 3284/86 models 1 \& 2 SY27-2315-3 should be corrected as follows:

1. Page 2-1 - The part number for the forms guide will be changed when a new guide is released.
2. Page $5-9$ - Test point $\mathrm{G} / 11$ should read: "-RIGHT MARGIN GATE".
3. Page 5-36 - The time/division shown under the scope trace should read as follows: 0.5 MS for 3284 or 0.2MS for 3286.
4. Page 6.28 - The time for 3284 under the scope trace should be 1.92 MS instead of 1.93 MS .
5. Page D-1 - The time/division for the scope trace should read as follows: 0.5 MS for 3284 or 0.2MS for 3286.

Ribbon Jamming or Feeding Problems

The ribbon cassette latching lever (PN 2632671) should be formed to correct jamming problems which may exist with some cassettes.

Some cassettes were produced undersized, which allows too much latching clearance. This condition can be corrected by forming the cassette latch level (PN 2632671) item 4 of Figure 10 in 3284/86 Parts Catalog, S126-0006-2.

Form the cassette latch lever as follows:

1. Power the machine off.
2. Open the top hinged cover.
3. Open the cover over the carrier worm shaft.
4. Position the print head so you have access to the cassette latch lever.
5. Twist the cassette clockwise and observe the clearance between the cassette and the ear on the right side of the cassette latch lever.
6. If any clearance is observed, form the ear to the left to eliminate any clearance.
7. Return the machine to operating status and observe for proper operation.

If experiencing jams on newly installed ribbon cassettes, it could be due to improper installation. It should be emphasized to user personnel that the cardboard strip protecting the cassette entry should not be removed until after the cassette has been latched in place. When reinstalling a ribbon cassette which has been in use, ribbon slack should be kept out of the cassette entry area when latching the ribbon in place. Rotate the feed roll by hand several times to verify proper feeding before returning to operation.

An improved ribbon drive roll is available from Mechanicsburg.

Ribbon Drive Roll

The ribbon drive roll has been redesigned to improve the ribbon drive operation. The rubber feed rolls have been replaced by a serrated urethane feed roll assembly. The new
ribbon drive shaft assembly (PN 5165590) will eliminate the need for spacer (PN 2632608) and will require a new cassette aligner (PN 2632609). The new style ribbon drive roll assembly should be installed on all 3284/3286 printers presently experiencing excessive replacement of drive roll or experiencing ribbon feed problems.

Installation Instructions

1. Remove the cassette aligner (PN 2632609), the ribbon drive roll (PN 2632584), and the spacer (PN 2632608). Scrap locally.
2. Install new cassette aligner (PN 2632609). Mount aligner flush with shoulder on mounting plate.
3. Install new ribbon drive roll assembly (PN 5165590). Adjust collar for minimum end play without binding.

RIBBON DRIVE ROLL	* CASSETTE ALIGNER	RIBBON DRIVE ROLL
OLD STYLE	(P/N 2632609)	NEW STYLE
(P/N 2632584)		(P/N 5165590)

* The cross-sectioned portion of the aligner has been removed on current level and only the current level aligner should be used with the new style drive roll.

Variable Margin RPQ EB3995 Parts Information

Parts information for RPQ EB3995 is available on logic page ZZ202, part number 2570155 , which can be ordered for addition to the logics. In lieu of this logic page, the following is a list of parts used on this RPQ:

PN 2495539	Margin switch asm, left hand - one per machine.
PN 2495540	Margin switch asm, right hand - one per machine.
PN 2495548	Spring. One per asm, 2 per machine.
PN 2495516	Detent - one per asm, 2 per machine.
PN 2495549	Cap, switch mounting - one per asm, 2 per machine.
PN 2495527	Indicator - one per asm, 2 per machine.
PN 81693	Screw, upper - 2 per asm, 4 per machine.
PN 2495677	Cable asm, one per machine.
PN 2495550	Bar, switch mounting, one per machine.

Forms Tractor RPQ WD4031 Service Information MLTG - SY27-2356-1 Custom Feature Description Manual - GA27-2773-0

Problems with the forms tractor manifest themselves as forms-feeding problems and/or equipment checks which are a result of detection of a mechanical hang condition.

For' forms-feeding problems, make the following checks and take corrective action as required.

1. Verify that the correct top cover is installed by observing the hole the platen knobs project through. On tractor machines, the lower half of that hole is larger than the top half.
2. Verify the presence of spacer PN 120437 on top cover mounting bolts directly under platen knobs. This spacer should be between the top cover and the bolt retaining clip.
3. Verify that guide PN 1804900 is mounted lower on the top cover so the forms entry is aligned with the tractor paper guide.
4. a. Verify presence of a small rubber pad PN 1804786 glued in the V groove in the front of the mechanical printer asm base.
b. Verify the presence of two rubber pads PN 1804901 glued to the rear of the mechanical printer asm base.
c. These three rubber pads should mate with the ribs on the inside of the top cover asm, and their purpose is to raise the top cover to provide adequate clearance from the paper feed path to the top cover.
5. Check for free movement of the tractor shafts. Binds in this area may be due to the following:
a. Tractor chain tension (refer to MLTG par. 4.3).
b. Idler gear wink (refer to MLTG par. 4.5).
c. Tractor shaft side frames not perpendicular to the tractor shafts - form as necessary.
d. Bent tractor shafts can be identified by observing the clearance from the tractor door extension to the platen while advancing the platen. If the clearance varies excessively, one or both of the tractor shafts could be bent repair or replace.
e. Interference between top cover and tractor asm.
6. Check for $0.060(1.52 \mathrm{~mm})$ to $0.090(2.28 \mathrm{~mm})$ in. between the platen and lower guide of forms entrance chute.
7. Check for correct adjustment of index link (MLTG par. 4.8) and index pawl stop adjustment (par. 4.1).
8. Check for proper forms drag adjustment (MLTG par. 4.6).
9. Check tractor alignment to scribed line (MLTG par. 4.2). Note: Due to variation in customer forms, it may be necessary to customize this adjustment to the customer's forms.
10. Check timing of forms moving switch per base machine (MLTG par. 6.7.11).
11. Check carriage cam release adjustment. Note: The unlatch clearance spec is wrong in the picture; the correct unlatch clearance is $0.010(0.25 \mathrm{~mm})$ to 0.020 in . (0.508 mm) as stated in step 2 of objectives.
12. For proper horizontal print alignment, the carrier support shaft should be projected 0.060 in . (1.52 mm) to left of the side casting. Refer to step 2 of the adjustment in basic MLTG page 6-24; the shaft should project 0.060 in . (1.52 mm) to left (not flush as shown). Note: If VFIC RPO EB4324 is installed on a machine with forms tractor, there is no height adjustment and all other positioning adjustments of the sensor are done with special tool PN 5244697 which is part of the ship group.
13. Remove and discard tractor door extensions PN 1804891 and PN 1804892.
14. Adjust tractor door clearance by forming the door stop tab for 0.025 in .10 .635 mm) to 0.045 in . (1.143 mm) door clearance.

Parts catalog information for the tractor RPQ is in Appendix B of the MLTG, form SY27-2356. The following are additions and corrections to that appendix.

PN 1804793 - Top cover asm, complete - order on MES from Raleigh.
PN 1804774 - Top cover asm, painted covers only, order on MES from Raleigh.
PN 1804786 - Rubber spacer, top cover asm, front V groove.
PN 1804825 - Platen, 6 LPI, order on MES Raleigh.
PN 1655203 - Platen, 8 LPI, order on MES Raleigh.
PN 1804761 - Gear, drive for tractor, part of platen.
PN 1804775 - Shield, safety, over gear train for tractor asm.
PN 1804891 - Guide, extension of left tractor door.
PN 1804892 - Guide, extension of right tractor door.
PN 0186393 - Screw, mounting for guides PN 1804891 and PN 1804892.
PN 0309043 - Washer, mounting for guides PN 1804891 and PN 1804892.
PN 1804901 - Rubber spacer, top cover asm, rear, 2 glued to frame.

Logic Boards

Prior to replacement of a logic board, the following checks should be made:

1. Check the dc voltage distribution cable hold-down straps to see that wires are not pinched.
2. Check voltage terminations to see if they are making good contact, or if they have disturbed or loosened the wire wraps on its pin or adjacent pins.

If it becomes necessary to replace a board, the following table should help in identifying the correct board and EC level to order:

Basic Machines:

3284/86 Model 1 or 2, Board PN 2625202 - EC7 18551 (Note 1)
3284/86 Model 3, Board PN 2625200 - EC717488 (Note 2)

VFIC RPQ Machines:

3284/86 Model 1 or 2, Board PN 2609972 - EC742212 (Note 3)
3284/86 Model 3, Board PN 2609974 - EC742863 (Note 4)

Notes:

1. EC 718551 was the only change to the board since first customer ship and it was an EC level change only (no board wiring).
2. EC 717488 is first customer ship EC level and there has been no board wiring ECs since.
3. EC 742212 requires a K 4 card, PN 8527309 or 8528255 , and EC 742212 should be ordered to get the paper work and an additional label for the machine if the EC level is upgraded by replacement of a board.
4. EC 742863 requires a F4 card, PN 8527309 or 8528255 , and EC 742863 should be ordered to get the paper work and an additional label for the machine if the EC level is upgraded by replacement of a board.

VFIC FORMS SPECIFICATIONS

Forms Size

In general, the dimensions of forms applicable to RPQ EB4324 are identical with those specified in the 3284/3286 section of the Form Design Reference Guide for Printers, Order No. GA24-3488. One notable exception is that the vertical perforation on the left side of the form is nominally 0.600 inch (15.240 mm) from the left-hand edge instead of 0.500 inch (12.700 mm).

Single Part Forms - Thickness Considerations

Customers using single part forms on their VFIC machines must use a paper in the 15 to 24 pound range.

Multipart Forms - Thickness Considerations

Customers employing multipart forms on their VFIC machines should consider the following when designing forms:

1. Use only paper in 12 - to 24 -pound bond range.
2. Total forms thickness should not exceed 0.014 inch (0.355 mm) maximum.
3. If spot carbon is used behind the first part, it must start to the right of the VFIC margin.

Multipart Forms - Fastening Considerations

Multipart forms require some method of fastening to hold the carbon in place. Temporary (crimps) or flexible fastening methods are recommended.

Forms having full width processed carbon with fastenings on either or both sides may be used provided that the fastenings do not interfere with the VFIC marks on the left side of the forms. Forms having narrow carbon fastened on the right side may also be used. Glued forms cause a feeding problem in the printer because of the small diameter platen and must not be used.

Note: In those cases where a customer elects to have more than one index mark imprinted on a paper form (in order to effect several, but distinct, printout operations on each form) the customer should be aware that VFIC printers are not capable of distinguishing the specific operations intended, or related to each index mark. Therefore, should the occasion arise that an index mark is not sensed by the VFIC sensor head, the paper form will automatically advance, and be positioned to the next index mark of that paper form or to one of another form. This would result in a prescribed printout operation designated for a specific location on a paper form occurring in another location of that form or on some other form. Hence, operator intervention is required to reposition the paper forms whenever this condition occurs.

Index Mark - Size and Location

The dimensions of the index mark and the location of the mark on the form are to be as indicated in Figure 6-14.

Ink-Color/Paper-Color Combinations

Black ink is recommended for the index mark in order to meet a 0.8 minimum print contrast signal (PCS) value. However, any ink-color/paper-color combination that meets a 0.8 PCS value is acceptable. PCS is defined as follows:

PCS $=\frac{\text { Reflectance of Paper }- \text { Reflectance of Printed Area }}{\text { Reflectance of Paper }}$
PCS measurement is to be made with the infrared probe of an 081 Kidder Tester*, filtered with an 87C Kodak Gelatin Filtert (or equivalent). Measurement of multipart forms must be made on the entire paper package with all parts in place, rather than on the first part alone.

[^6]

Figure 6-14. VFIC Form, Locations and Dimensions

Section 7. 3288 Line Printer

Contents

3288 CEM/Service Aid Index 7-2
3288 Symptom Fix List 7.3
3288 Card Substitution List 7-6
Basic Unit 7.6
Mechanical Printer Assembly Cards 7.6
Features and RPQs $7-7$
3288 Model 2 EC Cross-Reference 7-14
3288 Service Aids 7-16
Forms Jamming 7-16
VFC Problems 7-16
Forms Design Considerations and Specifications 7-16
Platen Assembly 7-17
Transducer $7-24$
Cover/End of Forms/Throat Switches 7-24
Power Supply 7-26
Parts Catalog Corrections 7-26
Belt Speed Problems. 7-27
Type Belt Part Numbers $7-31$
Installation of Ribbon Cassette 7-31
Ribbon Jamming or Feeding Problems 7-31
Text Print Feature 7-31
CE Test for Text Print Feature $7-31$
Figures
Figure 7-1. 3288 Block Diagram 7.9
Figure 7-2. 3288 A-Gate Card Layout by Function 7-10
Figure 7-3. Logic Board Layout 7-11
Figure 7-4. Printer Card Gate Layout 7-12
Figure 7-5. Print Head Plug Description 7-13
Figure 7-6. 3288 Model 2 EC Cross-Reference Chart (2 parts) 7-14
Figure 7.7. Platen Assembly 7.17
Figure 7-8. Generally Available Form Widths 7-18
Figure 7-9. Recommended Form Lengths 7-19
Figure 7-10. Margin Dimensions 7-20
Figure 7-11. Fastening Requirements for Multiple-Part Forms 7-21
Figure 7-12. Overall Forms Dimensions (2 parts) 7-23
Figure 7-13. Cover/End of Forms/Throat (Hall Effect) Switches 7.25
Figure 7-14. Platen/Ribbon Shield Assemblies $7-27$
Figure 7-15. Print Belt Motor Drive Pulses 7.29
Figure 7-16. Ribbon Lift Arm Assemblies (Old and New Styles) 7-30

3288 CEM/Service Aid Index

1. 3288 Card Sub List
2. Belt Speed Checks
3. Cover Interlock
4. Paper Jams
5. Red Rust
6. Dropping Ready
7. Platen Gauge Kit
8. Transducer Wiring
9. Ribbon Roll Wear
10. Form Jam and/or Speed Checks
11. Isolate Faulty Stepper Motor Capacitors
12. Text Print Feature
13. Ribbon Arms
14. Print Belt Wear
15. New Style Pulley and Belt
16. 3288 Ribbon Shields

Note: Check for additional Service Aids released beyond the last number in this Index.

Section 7. 3288 Line Printer

Figures 7-1 through 7-6 give the locations for the 3288 Line Printer.

3288 SYMPTOM FIX LIST

The following Symptom Fix List should be used to supplement the existing troubleshooting procedures in the MLTG.

Symptom
Belt drive slow and noisy, Not Ready

CE Test Overprints

Drops print positions
Drops ready
Fails to print first buffer load
Hammers fail to fire
Hammers fire on power up, won't Ready
Hammers fire on power up

Hammers pick when powering off, won't Ready
Hammers pick when powering off
Light print or poor impression

Print Belt runs continuously
Prints wrong characters
Ribbon jam

Ripple print failure
Ripple print - slow or offset to right
Type belt drive motor fails to turn
VFC Feature prints one line low on all but first page

VFC restore operation stops short

Fix
Loose flywheel retaining screws, loose belt idler pulley, or oil contamination on belt or belt drive (clean with alcohol)
Text Print Feature installed. Jumper C2U13 to DC return (D08) for test only. See Appendix B in MLTG.
01A-A1A2
PC1 Fuse 1 (-5 V)
Program problem - input length exceeded buffer size
01A.A1A2
PC1 Fuse $2(+8.5 \mathrm{~V})$ or 24 V contactor
Loose screw on power supply capacitor or loose connection power supply terminals
Printer circuit board defective
$01 \mathrm{~A} \cdot \mathrm{~A} 1 \mathrm{~B} 2$ or 24 V contactor
Low 24V, loose connector at J3 plug on board 01E-HS1, HS2
Normal operation for 3288
01A-A1A2
Excessive clearance between drive rollers and drive roller shaft, or idler rollers and idler roller shaft
PC1 Fuse $3(-12 \mathrm{~V})$
01A-A1D2
Printer interposer circuit board defective A13 side
VFC Feature not supported by CICS. Put (FF) Form Feed character in first data position.
Cold solder connection on VFC switch unit

Notes:

1. Intermittent forms jams or dropping Ready can be caused by improper grounding of the metal components in the exiting forms path. Ensure that the spring clip, which is mounted to the frame, is making good contact with the guide plate. This guide plate is located behind the upper paper clamp.
2. Intermittent Sync checks - ensure the following components are free of oil:
a. Type belt
b. Surface of transducer bearing
c. Type belt idler rollers
d. Type belt pulleys

The following symptom index is intended to aid the CE in quick identification and correction of printer failures when they occur. In nearly all cases, an associated MAP is referenced for each symptom. Also, logic cards deemed suspect when that failure symptom occurs are listed (Card Caddy Quick-Call Fix List). The logic cards are listed in the order in which they are likely to fail.

In those cases where symptoms are not referenced to a MAP, references are made directly to those cards that should correct the problem. Should the suspect cards listed for a particular symptom fail to correct the failure, entry into the corresponding MAP must be made in order to further identify and correct the cause of the failure.

Symptom	MAP	Card Caddy Quick-Call Fix List
System Reported Status (CPU Printouts)		
Printer not available; Intervention Required and not Unit Specify	5.6 .2	F2, G2
Printer always responds busy	5.2.3	C2, D2, F2, H2, B2
Printer always responds busy - No Start Print issued	None	G2
Printer responds with Equipment Check and Unit Specify (sync check)	5.1.5	13A, A2, B2, C2, G2
Printer responds with Data Check and Unit Specify (parity error)	5.6.1	J2, J3, J4, J5, H2, C2, G2
Printer responds with Intervention Required (not ready)	5.1.1	G2
Printer responds with Intervention Required, Equipment Check, and Unit Specify (hammer fire check)	5.1.6	A2, B2, 23A, 23C, 23E
Printer causes continuous system interrupts	None	F2, G2
Printer Power and Not-Ready Failures		
Printer not ready without Ops Chk blinking	5.1.1	G2
Printer not ready with Ops Chk blinking	5.8.2	F2, 13A, D2
Sync check	5.1.5	13A, A2, B2, C2, G2
Hammer check	5.1.6	A2, B2, 23A, 23C, 23E
Power failure in printer	5.1.7	B2
Type belt motor does not start or continue running	5.1.3	F2, B2, 13A, 13E
Type belt motor runs, but printer not ready	5.1.4	13A, 13E, B2, F2, C2, G2
Hammers fire on Power Up or Power Down	5.1 .7	B2
No lights; belt does not turn; all DC voltage 0; PTR fan runs.		6.25-amp fuse 01E T1F1
Will not ready.		01A A1H2

Printing and Print Quality Failures

(These failures may be due to out-of-spec forms. Refer to the Forms Design Reference Guide for Printers, GA24-3488, Version 10 or later.)

Fails to print (nothing prints)	5.2 .1	13A, D2, B2, F2, C2, A2, B2, E2
Fails to print (hangs busy)	5.2 .3	C2, D2, F2, H2, B2
Print failures (missing or blank	5.2 .2	23A, 23C, 23E, A2, B2
print positions)		
Inferior printing	5.3 .1	None
Print Xs in place of correct character	5.6 .1	J2, J3, J4, J5, H2, C2, G2
Smudged printing		
Wavey printing		

Continuous printing
Vertical registration failures
Horizontal registration failures
Ribbon smudging
Ribbon failures
Wrong characters print
Some characters missing from printouts
Shadow printing
Light printing
Crooked printing
Vertical character cutoff
Horizontal character cutoff
Symptom
Paper Transport Failures
Forms movement failures
Forms do not move
Forms do not move during printing
but "Carriage Restore" operation works
Carriage feeds continuously
Forms move to wrong position
Skipping wrong
Overspacing
Underspacing
Forms jamming (true paper jam)
Forms jam (false jam detect)
End-of-forms failures
Acoustic failures (paper clamp failure)

Offline Test Mode Failures
CE switch failures
No printout in either mode; Printer
hangs busy
Prints H pattern OK but fails on
ripple print test
Prints H pattern OK but prints all
Xs on ripple test
Prints ripple test OK but fails on H
pattern

Intermittent Failures

Feature Failures

VFC
X-error print
TEXT PRINT (Printer does not
execute line suppress orders)
Operator's Panel
Ops Chk indicator blinking
Indicator
Switch failures
Interlock Failures
5.3.10 E2, C2, D2, A2, B2, H2, F2
5.3.4 None
5.3.5 None
5.3.2 C2, D2, 13A, A2, B2
5.3.7 13E, D2
5.3.8 C2, B2, A2
5.3.11 C2, B2, A2
5.3.2 C2, D2, 13A, A2, B2
5.3.9 None
5.4.4 D2,13E
5.3.5 None
5.3.3 None

MAP Card Caddy Quick-Call Fix List
5.4.1 D2, F2, A2, C2, B2, E2
5.4.1 D2, F2, A2, C2, B2, E2

None C2, D2, B2
5.4.2 F2, C2, D2, 13A
5.7.1 C2, F2
5.7.1 C2, F2
5.4.3 None
5.4.3 None
5.4.4 13A, D2, 23G
5.4.5 13A, D2, 23G

None 13A, D2
5.4.4 D2,13E
5.8.1 F2
5.2.3 C2, D2, F2, H2, B2
5.3.10 E2, C2, D2, A2, B2, H2, F2
5.6.1 J2, J3, J4, J5, H2, C2, G2

None F2, D2, C2, B2, A2
5.5.1 None
5.7.1 C2, F2
5.7.2 D2, C2
5.7.3 C2, D2
5.8.2 F2, 13A, D2
5.8.1 G2, F2, D2, H2
5.8.1 G2, F2, D2, H2
5.8.3 D2, F2, 13A

Key				
MAND $=$ Mandatory EC				
OPT $=$ Optional EC				
CC = Companion Card Required				
BW = Board Wiring Required				
MR = Minimum Rework - functional equivalent to PN listed immediate below it.				
The underlined PN is the latest level card.				
Cards may be substituted up or down as long as board wiring (BW) is not required.				
Basic Unit				
Loc	PN	Key	ECA/EC	Function/Comments
A2--....	2624074		NA/740039	Special Adapter
	4104		NA/741259	
B2------	2624102		NA/740039	Special Adapter
	2624112	MR	NA/741259	
	1590608		NA/741259	
	1590624		NA/744150	
C2-...--	8526674	MR	NA/740865	Adapter
	6065		NA/740865	
	7991		NA/743321	
	7992		10/743321A	Do NOT use with Katakana
	8265		NA/744141	
D2------	8526066	MR	NA/740865	VFC Paper Movement
	6067		NA/740865	
	7307		NA	
	7984	MR	NA/742877	
	7985		8/742877B	
	7995		9/743324	FBM replaces all previous part numbers
E2--...-	8521492		NA/717487	Counters \& Compare
F2--.---	8526675		NA/740865	VFC Carriage Restore
	8528259		NA/743333	
G2-...--	$\begin{array}{r} 8524595 \\ 4596 \\ \hline \end{array}$	MR	NA/740033	SERDES
H2-.....	8521731		NA/717480	ERASE/WRITE/RESET
J2-5----	8521985		NA/717487	Buffer

Features and RPQs

Loc PN	Key	ECA/EC	Function/Comments
C2 $---\underline{8528263}$		NA	Text Prt Feature
D2-- $--\underline{8528264}$		NA	Text Prt Feature

Note: Logic board 01A-A1 (PN 1657198) must be at EC 742879 or higher for the Text Print Feature to work. If no EC level can be found on the board, check for continuity between A1C3D11 and A1D3D06. If continuity exists, the board is at EC 74289, or higher. A special print belt allows printing the 120 -character set.

Figure 7-1. 3288 Block Diagram

Logic Gate Front View Card Side
Figure 7-2. 3288 A-Gate Card Layout by Function

Logic Board Pin Layout
Pin Side
Examples: Pin $1 \Rightarrow$ B6C04
Pin $2 \Rightarrow$ F1D11
Pin $3 \Rightarrow$ H4M06
Pin $4 \Rightarrow$ A4D07

Figure 7-3. Logic Board Layout

Printer Card Gate Connector Details

This illustration is the top view of the card gate assembly in the raised position as seen from the rear of the machine. For ease in determining pin designations, all probing should be done from the rear.

Cards are plugged into rows 2 and 3 . The outside two rows 1 and 4 are for probing. Pins 02 through 13 are connected one-for-one with pins 42 through 53; pins 22 through 33 are connected one-for-one with pins 62 through 73.

To determine a probe pin when given a signal pin, add 40 to the signal pin.
Example: Signal 13C06-Probe 13C46.

*Tolerance $=10 \%$
Figure 7-4. Printer Card Gate Layout

P1, P2, P5, P6, P8, P11

2 pos inline connector 5214573, contact 116614 or 483999 mates with 5214572 . contact 1166115 or 2513254

Plug Description	Positions
P1 - Ribbon Solenoid	2
P2 - Not used	2
P3 - Lower Paper Clamp	4
P4 - Belt Motor	9
P5 - Emitter Potentiometer	4
P5 - Emitter	2
P6 - Contactor	2
P7 - Carriage Motor	9
P8 - Upper Paper Clamp	2
P9 - Paper Jam Sensor	4
P10 - Not Used	4
P11 - AC Fan	6
P12 - Not Used	9
P13 - Potentiometer	3 Note 2
P14 - 24V Interlock	2 Note 2

Notes:

1. When P13 is used, P5 is a 2 -position plug.
2. P13 and P14 are not used on all machines.

Figure 7-5. Print Head Plug Description

6 pos connector 1160983, contact 1166114, mates with 1160977, contact 1166115

4 pos connector 1812491 contact 1166115 or 2513254 mates with connector 1812492, contact 1166114 or 483999

9 pos connector 1166498 , contact 1166115 mates with 1166499, contact 1166114

3 pos connector 1166117 contact 483999, mates with 1166116, contact 2513254

3288 MODEL 2 EC CROSS-REFERENCE

This chart (Figure 7-6) is to be used to determine the need for any of the optional EC changes and to verify the EC level of any machine. To aid in determination the serial number that implemented each change is listed. This list will be updated periodically. It is recommended that a copy of this service aid be kept in 3270 card caddies.

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/ Mand	Feature Affected	Break In Serial \#	Cards Affected		Board Wiring Involved	Card Loc	Card Type	Description
								Old P/N	New P/N				
001	741681	None	None	None	Mand	Basic	NA	NA	NA	None	NA	NA	Change the value of F2 and F6
002	741685	None	None	None	Mand	Basic	NA	NA	NA	None	NA	NA	Shunt stepper motor noise to frame ground
003	741680 D	None	None	None	Mand	Basic	NA	NA	NA	None	NA	NA	Ground covers.
004	742622	None	None	None	Mand	Basic	NA	NA	NA	None	NA	NA	Replace upper paper clamp.
005	742624	None	None	None	Mand	Basic	NA	NA	NA	None	NA	NA	Safety fans
006	742623	None	None	None	Mand	Basic	NA	$\begin{aligned} & 5863988 \\ & 5864257 \\ & 5864320 \end{aligned}$	5864327	None	23G		New jam detect card.
007	742627	None	None	None	Mand	Basic	NA	8522301	1815438	None	13A		Prevent false paper jams.
008	742877	None	None	None	Opt	Basic	NA	$\begin{aligned} & 8526066 \\ & 8526067 \\ & 8527307 \\ & 8527984 \end{aligned}$	8527985	None	A1D2	Z178	Superseded by ECA 009.
009	743324	None	None	None	Mand	Basic	NA	8527985	8527995	None	A1D2	Z178	Reduce ESD problems and fix extra indexes
010	743321	None	None	None	Mand	Basic	NA	$\begin{aligned} & 8526674 \\ & 8526065 \\ & 8527991 \end{aligned}$	8527992	None	A1C2	Z179	Prevent dropping ready after operator intervention
011	743346	None	None	None	Mand	Basic	NA	NA	NA	None	NA	NA	Remove ESD from paper guides to reduce jams
012	743357	None	None	None	Mand	Basic	NA	NA	NA	None	NA	NA	Ground cover to reduce jams and dropping of ready
013	744580	None	None	None	Mand	Basic	NA	NA	NA	None	NA	NA	Install two caps to reduce ESD

Figure 7-6 (Part 1 of 2). 3288 Model 2 EC Cross-Reference Chart

ECA	EC	REA	Pre-Req ECA	Concur or Comp	Opt/ Mand	Feature Affected	Break In Serial \#	Cards Affected		Board Wiring Involved	Card Loc	Card Type	Description
								Old P/N	New P/N				
014	744581	None	None	None	Mand	Basic	NA	NA	NA	None	NA	NA	Belt cleaner and bearing eliminate noise, wear, and red dust
015	744582	None	None	None	Mand	Basic	NA	NA	NA	None	NA	NA	Replace ribbon bar assembly to eliminate ribbon roll wear.
016	742626	None	None	None	Opt	Basic	16604 (sequence)	NA	NA	None	NA	NA	Increase print density and to eliminate ribbon lift up.
017	743355	None	None	None	Opt	Basic	NA	NA	NA	None	NA	NA	Control idler pulley float.
018													WTC only.
019	742639	None	None	None	Opt	Forms Stand	NA	NA	NA	None	NA	NA	Grounds form stand.
020	347977	None	013	None	Mand	Basic	NA	NA	NA	None	NA	NA	Corrects ECA 013.
021	319953	None	None	None	Mand	Basic	63140	NA	NA	None	NA	NA	1. Replace MTLG. 2. Improve ribbon smudge by adding tension to ribbon.

Note: This chart is to be used to determine the need for any of the optional EC changes and to verify the EC level of any machine.
To aid in determination the serial number that implemented each change is listed. This list will be updated periodically. It is
recommended that a copy of this service aid be kept in 3270 card caddies.

Figure 7-6 (Part 2 of 2). 3288 Model 2 EC Cross-Reference Chart

3288 SERVICE AIDS

Forms Jamming

Forms jams and/or belt speed checks may be caused by a defective ribbon shield, PN 1794711. They may be caused by a ribbon shield with an incorrectly formed metal guide, which can be detected by viewing the thin metal guide of the shield from the end. Good shields have a metal guide with a 7 -degree bend that brings the guide to a vertical plane. Defective shields do not have a bend and cause interference with the paper (high drag through the throat area) and underscoring of characters on the last part of the multipart forms.

PN 1794711 is now obsolete. If you have a problem in this area, order the following as required: (1) ribbon shield, PN 1794752 or 1794856, and (2) bearings (grooved), PN 1794805 or 1800540, or bearings (smooth), PN 1794748 or 1821358. (See Figure 7-7.)

Gauge kit, BM 1815365, is required when initially installing the new shield. See par. 6.3.3 of the MLTG, Form SY27-2401-2 or higher level, for proper use of the gauge kit.

Highly Intermittent Jams

You may be experiencing forms jams if the inside corners of the upper paper guide, PN 1811025, protrude into the paper path. Check the guide with a straight edge; if they do jut into the paper path, bend them back in. This problem will show up more when the customer is using maximum width form.

Forms Jamming Due to Wrong Paper Stand and/or to Missing Grounds

1. The 3286 forms stand, which has two shelves, should not be used with the 3288 . This printer must have clearance between the bussel and the top shelf of the forms stand for the paper to drop at least two full pages. The 3286 stand can be modified by removing the top shelf.
2. When using a single-part form, forms jams can occur at the upper paper clamp, if the form does not enter the rear of the machine straight. This usually happens after a skip operation (VFC). The feed holes may also be torn.
3. Static can also cause forms jams. Ensure that all covers forms guides are connected to frame ground. See ECA 003, ECA 011, ECA 012, and ECA 019.
4. Paper can jam behind the upper paper clamp if the bulb seal, between the guide, PN 1815282, and the printer casting, obstructs the paper path. The bulb seal PN 1800936 has been redesigned and is replaced by PN 1794922.

VFC Problems

- Verify that the jumper is installed between 01A-A1C2J06 and 01A-A1C2J08.
- If normal indexing does not occur after each print line, then the trouble is probably not in the VFC feature.
- If restore key operation works properly and programmed skip is not working, replace A1C2 and/or A1F2.
- If restore key operation does not work properly, use the MAPs, SIU, and Appendix B in the MLTG.

Forms Design Considerations and Specifications

Paper Quality

Paper for continuous forms must be of sufficient weight and strength to prevent the margin holes from tearing out during form-feeding, skipping, and ejecting operations. This is important, particularly for single-part forms.

The form when removed from the carton must be flat, and the edges and folds must not be damaged. The assembly of multiple-part forms must be even and the perforations intact when forms are stacked before feeding.

Smooth PN 1821358

Guide Bearings
Shield
Smooth PN 1794748
Grooved PN 1794805

Guide Bearings Shield
Smooth PN 1794748
PN 1794856

Figure 7-7. Platen Assembly

The paper must not be so stiff as to cause improper feeding or excessive bulging, particularly at the outfold, and should be free of paper dust and lint.

Optical character reading applications require high-grade stock and tighter control of paper qualities than paper for other applications. If a prepared document is to be read by an OCR reader, refer to the appropriate reader literature for the proper paper and ink qualities necessary in the form design. Generally, a minimum weight and type of $20-\mathrm{lb}$ bond ($75 \mathrm{~g} / \mathrm{m}^{2}$ OCR form) with a smoothness within a range of 65 to 130 Sheffield units (as measured with a Sheffield Tester*) maximum is recommended. Additional references for OCR specifications are: American National Standard Character Set and Print Quality for Optical Character Recognition (OCR-A), ANSI X3.17-1974, and ANS Character Set for Optical Character Recognition (OCR-B), ANSI X2.39-1975.

Form Width

Figure $7-8$ shows the common form widths which printers are normally capable of handling. Refer to the print format capability of any particular printers.

Note: Narrow width forms contribute to instability of stacker height and may require operator stacker attention. Therefore, wider base forms are recommended.

Form Length

The forms-control method determines the forms-length capability of a printer. See the form-length specifications for each printer. Before ordering a nonstandard form length, consult your IBM sales representative and your forms supplier. Common form lengths are shown in Figure 7-9.

For printing six lines to the inch, the length of the form or document must be evenly divisible by 0.167 in . $(4,24 \mathrm{~mm})$ for single-spacing. Similarly, printing eight lines to the inch requires the length of the form to be evenly divisible by 0.125 in . $(3,18 \mathrm{~mm})$ for single-spacing.

Because all characters can be printed in every position, form length can be reduced and ribbon life extended by printing information side by side.

		Overall Width	
Hole-Hole Width			
4.75	120,7	4.25	108,0
5.75	146,1	5.25	133,4
6.50	165,1	6.00	152,4
8.00	203,2	7.50	190,5
8.50	215,9	8.00	203,2
9.50	241,3	9.00	228,6
9.875	250,8	9.375	238,1
10.375	263,5	9.875	250,8
10.50	266,7	10.00	254,0
10.625	269,9	10.125	257,0
11.00	279,4	10.50	266,7
11.75	298,5	11.25	285,8
12.00	304,8	11.50	292,1
12.844	326,2	12.344	313,5
13.00	330,2	12.50	317,5
13.625	346,1	13.125	333,4
14.375	365,1	13.875	352,4
14.875	377,8	14.375	365,2
15.50	393,7	15.00	381,0
16.00	406,4	15.50	393,7
16.75	425,5	16.25	412,8
17.78	451,6	17.28	438,9

Figure 7-8. Generally Available Form Widths

[^7]\left.| Length | |
| :---: | ---: |
| in. | mm |
| 3.00 | 76,2 |
| 3.50 | 88,9 |
| 3.67 | 93,2 |
| 4.00 | 101,6 |
| 4.25 | 108,0 |
| 5.00 | 127,0 |
| 5.50 | 139,7 |
| 6.00 | 15,4 |
| 7.00 | 177,8 |
| 8.00 | 203,2 |
| 8.50 | 215,9 |
| 10.00 | 254,0 |
| 11.00 | 279,4 |
| 12.00 | 304,8 |
| 14.00 | 355,6 |
| 16.00 | 406,4 |
| 17.00 | 431,8 |$\right\}$

Figure 7-9. Recommended Form Lengths

Vertical Lines

When preprinted vertical lines are required, ruling on the form can split adjacent print positions for assigning particular positions in a columnar field. For best results, however, a vertical line should occupy at least one character space. Preprinted vertical lines should be parallel to the vertical center line through the margin holes, spaced in multiples of $0.100 \pm 0.005 \mathrm{in}$. $(2,54 \pm 0,13 \mathrm{~mm})$.

Horizontal Lines

Preprinted horizontal lines should always be perpendicular to the center line of the margin holes.

Margins

The distance from the form edge to the margin tear strip is normally 0.50 in . $(12,7 \mathrm{~mm})$. See Figure 7-10. However, this dimension may vary for special applications. In such instances, the minimum dimension of the first and last print position carriage translation should be adjusted accordingly.

For a form without a margin perforation, the first (or last) character of a print line should be at least 0.438 in . $(11,1 \mathrm{~mm})$ from the edge of the form. With a friction-feed platen, printing can take place to the edge of the form, except as noted for specific printers.

Margin Holes

Continuous forms having feed holes (margin holes) $0.156 \pm 0.004 \mathrm{in} .(4,0 \pm 0,1 \mathrm{~mm})$ in diameter (see Figure 7-10) in both the right and left margins are preferred. Serrated margin holes 0.156 in . inside diameter (ID) and 0.172 in . outside diameter (OD) ($4,0 \mathrm{~mm}$ ID and $4,4 \mathrm{~mm}$ OD) are also permissible. Spacing between holes, center to center, must be nominally 0.50 in . ($12,7 \mathrm{~mm}$). The margin holes should be free of chads. Presence of chads on the print line can cause loss of printed characters.

To ensure proper feeding, the two vertical rows of margin holes must be parallel. The recommended distance from the edges of the form to the center line of the margin holes is $0.236 \pm 0.028-0.020 \mathrm{in}$. ($6,0+0,7-0,5 \mathrm{~mm}$). For calculation purposes, $0.236(6,0 \mathrm{~mm})$ should be treated nominally as $0.25 \mathrm{in} .(6,4 \mathrm{~mm})$. See Figure 7-10.

To allow for carbon shrinkage and processing tolerances, margin holes in the carbon paper should be 0.156 in . $(4,0 \mathrm{~mm})$ in diameter.

Figure 7-10. Margin Dimensions

Perforations

Perforations should permit easy separation, but should not tear or catch in ordinary handling or feeding through the printer. Perforations should be uniform in length and spacing to ensure proper and efficient tearing.

Margin Perforations: The distance from the edge of the form to the margin perforations is usually 0.50 in . ($12,7 \mathrm{~mm}$); however, this width may vary.

Forms Perforations: Horizontal perforations between forms should be perpendicular to the center line of the margin holes.

Forms Stacking

Forms stacking is affected by relative humidity, number of plies, and form length. For best operation, forms should be preconditioned, not less than 48 hours, in the environment of the printer.

Stacking efficiency diminishes for form lengths less than 8 in . (203 mm) or greater than $12 \mathrm{in} .(305 \mathrm{~mm})$. Test such forms to ensure individual stacking requirements are met. Forms over 17 in . (432 mm) long usually require manual assistance to assure proper stacking, and, for some printers, may extend beyond the limits of the machine. When a forms stand is used, the dimensions of the form should not exceed the dimensions of the stacking tray.

Multiple-Part Forms

The number of legible copies needed is a factor in determining the weight of the paper and carbon to be used in multiple-part sets. Single-part forms of less than $15 \mathrm{lb}\left(56 \mathrm{~g} / \mathrm{m}^{2}\right)$ or more than $24-\mathrm{lb}\left(90 \mathrm{~g} / \mathrm{m}^{2}\right)$ stock should be tested prior to batch ordering of forms.

Multiple-part forms are generally composed of sheets, 12 - to 13 lb stock ($17 \times 22 \mathrm{in} .-500$ sheets: 45 to $49 \mathrm{~g} / \mathrm{m}^{2}$) or less. For special applications, carbonized paper or carbonless forms can be used to obtain extra legible copies.

The carbon paper used in multiple-part forms should be medium carbon, 8 - to $9-\mathrm{lb}$ (30 to $34 \mathrm{~g} / \mathrm{m}^{2}$) or less. Multiple-part forms consisting of more than four parts, and forms with the first part of more than $13-\mathrm{lb}\left(49 \mathrm{~g} / \mathrm{m}^{2}\right)$ paper should be tested under operating conditions to determine the suitability of feeding and legibility.

Registration

In some printers, because of the bend of the form over a platen, a small dimensional difference may occur between printed lines on successive parts of a multiple-part form. This difference, more noticeable on loosely fastened forms, is proportional to the thickness of the form. Because of this, the assembly of multiple-part forms should ensure that all punching and printing is in registration within $0.015 \mathrm{in} .(0,38 \mathrm{~mm})$.

Single-space, eight-lines-per-inch printing is not recommended with $0.095-\mathrm{in}$. ($2,41 \mathrm{~mm}$) type when the registration between lines is critical.

Fastening

The width, length, and number of copies of the form determine the fastening requirements for satisfactory feeding through a printer. If the construction of the form is such that the parts are of different widths, the necessity for, and the method of, fastening the form should be determined by the weight of paper, the width of the parts, and the length of the form (Figure 7-11). For forms over $17 \mathrm{in} .(432 \mathrm{~mm})$ in length, the maximum distance between fastenings should be determined by actual test.

For maximum efficiency, forms should be tightly fastened on both sides to prevent copies from shifting. Print quality and forms feeding are adversely affected by loosely applied plies.

The security of the fastening becomes more important as the number of parts, width of form, or the humidity increases. For relative humidity near 80 percent, both margins should be fastened by a method unaffected by high humidity, such as gluing or stitching.

Forms should be fastened only in the margins. Avoid using metallic staples or any hard fasteners with multiple-part forms. In no case should metal or hard fasteners be located so that they pass the printing unit.

Fastening of forms on the horizontal perforations between margins is not recommended. If a fastening medium is inserted on the perforated line, no printing should be within 0.25 in . $(6,4 \mathrm{~mm})$ above and below the perforated line.

Multiple-part forms in which individual parts vary in width should be tested before quantity-ordering. If multiple-part forms are not fastened, print quality may deteriorate.

The carbon paper must be kept in line with the form by some acceptable method. One method is to use narrow-width carbon glued to the set. Another is to use full-width carbon paper punched with substantially larger margin holes that are approximately centered with the corresponding holes in the form. Oversize marginal holes in the carbon allow for carbon shrinkage and provide the processing tolerance necessary for some commonly used form structures.

One-time carbon paper or carbon-backed paper can also be used. The selection of proper carbon paper or coating is a prime factor in determining the required number of legible copies without excessive smudging. Determine this by making test runs with sample sets of forms containing different qualities of carbon papers, known as write test carriers. Use these carriers with caution to avoid damage to the printer or form.

Form Length		Maximum Distance Between Fastenings	
in.	mm	in.	mm
1 to 5	25,4 to 127,0	5	127,0
5.50 to 11	139,7 to 279,4	11	279,4
11 to 14	279,4 to 355,6	7	177,8
14 to 17	355,6 to 431,8	8.5	215,9

Figure 7-11. Fastening Requirements for Multiple-Part Forms

Print Legibility

The number of legible copies produced depends on the weight of the paper used and the carbon coating.

For multiple-part forms beyond the original and three copies, the paper and carbon should be tested with the proper machine settings to determine the suitability of each combination. Some printers have forms-thickness and/or print-density adjustments to accommodate multiple copies and provide optimum legibility within a range of settings.

Form sets used on one printer (or model of a printer) may not produce acceptable results when used on another printer (or model of the same printer). Tests should be made under actual operating conditions.

Paper (and ribbon) for applications, such as optical character reading, ditto, photooffset, multilith, heat transfer, or similar processes, must be tested to ensure that its use satisfactorily meets individual requirements.

Print legibility on multiple-part forms may vary within a box due to tolerances of the paper and the carbon, temperature, and age of the carbon.

Card Forms

Card forms should be selected from card stock not exceeding $0.009-\mathrm{in} .(0,23-\mathrm{mm})$ thickness. Preferably, card seams or scores should be lapped so that the upper card overlaps the lower card to provide a smooth feeding surface on the front of the form.

Folding specifications recommended for continuous card forms for some printers are three or four up for optimum stacking. See specific printers. Operator attention is normally required to assure efficient stacking on all printers. Long-grain stock is recommended.

Special card forms should be tested to ensure that they satisfactorily meet individual requirements.

Graphics

Graphics specified by the USA and ISO Standard Codes for Information Exchange are available for most system printers. All characters and symbols installed can be printed at every print position. Because of this, form depth can be reduced by using side-by-side printing. For example, ordered-by and ship-to names can be printed on the same line, one on the left side of the form and the other on the right.

In many instances, oblique lines, dashes, and so forth can be used instead of preprinting margin enclosures and separators. However, long vertical lines should be avoided as repeated impact in a single print column can cause ribbon damage when using line printers. The dollar symbol need not be preprinted on a check form because this symbol can be programmed to print immediately to the left of a significant digit.

Special type fonts for plotting and unique symbols can be ordered through an IBM sales representative.

General Forms Specifications

Figure 7-12 gives the overall forms dimensions.
 Carriage Spacing-6 lines per inch only.
[C] The maximum distance from the center line of the left margin hole and center line of print position No. 1 is 0.55 in . (13.9 mm) with the left tractor in leftmost position.
A maximum of 0.50 in . ($12,7 \mathrm{~mm}$) if interchangeability with the $3715,3771,3773,3774$, or 5320 A Model printers is desired.

Forms With $0.50 \mathrm{in} .(12,7 \mathrm{~mm})$ Tear Strips
(Single- or Dual-Feed Carriage)
The distance between the center line of a margin hole and the center line of the first available print position is:
$0.30 \mathrm{in} .(7.6 \mathrm{~mm})$ minimum with odd print position and
0.40 in . ($10,2 \mathrm{~mm}$) minimum with even print position.

The distance between the cente, line of a margin hole and the center line of the last available print position is: $0.30 \mathrm{in} .(7,6 \mathrm{~mm})$ minimum with even print position and 0.40 in . $(10,2 \mathrm{~mm})$ minimum with odd print position. [For a 132-print position printer, the maximum forms width for which these distances are obtainable is 14.375 in .
$(365,1 \mathrm{~mm})$ with left tractor in the leftmost position.]
Note: Separation of the perforation may occur as the 0.30 in . $(7,6 \mathrm{~mm})$ minimum dimension above is approached.

Forms Without Tear Strips
(Single- or Dual-Feed Carriage)
The distance between the center line of a margin hote and the center line of the first available print position is:
0.15 in . $(3,8 \mathrm{~mm})$ minimum with odd print position and
$0.25 \mathrm{in} .(6.4 \mathrm{~mm})$ minimum with even print position.
The distance between the center line of a margin hole and the center line of the last available print position is:
0.15 in . $(3,8 \mathrm{~mm})$ minimum with even print position and 0.25 in . $(6,4 \mathrm{~mm})$ minimum with odd print position. [For a 132 -print position printer, the maximum forms width for which these distances are obtainable is 14.25 in .
$(362 \mathrm{~mm})$ with left tractor in the leftmost position.]
[D] The fixed distance between the center line af the paper feed pins (dual-feed carriage) is $1 \mathrm{in} .(25,4 \mathrm{~mm})$.
Notes:

1. Over 4 -part forms should be tested to assure satisfactory feeding, print quality, and legibility. Modifications in forms fastening techniques, perforations, stiffness or paper quality can often overcome forms processing difficulties.
2. Up to 6-part forms can be used; maximum thickness not to exceed 0.020 in . $(0,51 \mathrm{~mm})$. Ribbon smudging may occur as forms set approaches maximum thickness.
3. a. $\mathbf{6 3 2 0} \mathrm{B}$ and 5320 C Models only:

Cut card stock is not permitted. Continuous card stock forms are generally not recommended. (See IBM System/32 Membership and Mailing List System Design Objectivas,
GH30-0010, or Design Specifications, GH30-0012 for card stock specifications approved for this Industry Application Program or other user applications with card stock requirements that meet such specifications.)
b. All other printers:

Continuous card stock forms are generally permitted. They should be tested to assure satisfactory feeding and smudge acceptability. Cut card stock is not permitted. Card stock should not exceed $0.009 \cdot \mathrm{in}$. $10,23 \cdot \mathrm{~mm})$ thickness. Overlapped glue joints are not recommended.
4. Cutouts are not permitted from 2.75 to 3.25 in. 169,9 to 82,6 mm) from left edge of form with tractor in lof tmost position. Cutouts in this ares may cause a false end-of-forms.
5. No hard or metallic fasteners are permitted.

Figure 7-12. Overall Forms Dimensions

Transducer

- Hard-to-diagnose problems can be caused by the transducer leads being connected backwards inside the unit. Try reversing the transducer leads.
- See MLTG Diagrams 8-20 and 8-21.
- For red dust around the transducer, verify that ECA 014 is installed.
- Transducer out of adjustment can cause horizontal character cutoff in every other position. See par. 6.3.15 in the MLTG.
- The thickness of nut PN 257189 does not allow the transducer bearing support assembly to be disassembled without removing the transducer bracket.

A thicker nut, PN 1794837, may be used which will allow the screw to reach the nut.
An alternative method would be to slide a folded piece of card stock or a feeler gauge under the nut to prevent the nut from falling to the casting.

Order nut when the transducer or bearing is replaced.
Polarity of the transducer wires must be observed.

Cover/End of Forms/Throat Switches

These are Hall Effect switches. Do not use meter resistance scale to test because damage to switch may result.

Note: The old style and new style switches are not interchangeable.
Figure 7-13 illustrates the old and new style Hall Effect switches.

Terminal	Color	Function
1	Yellow	Signal
2	Black	Ground
4	Red	+5 VDC

Terminal	Color	Function
1	Black	Ground
2	Red	+5 VDC
3	Yellow	Signal

Note: The cover interlock switch should be checked on each service call to verify that the belt stops when the cover is open.

Figure 7-13. Cover/End of Forms/Throat (Hall Effect) Switches

Power Supply

- Switched +5 V on the lower logic board at 01A A1B2B13 is routed through the Power On switch. See diagrams $7-4$ and $8-12$ in the MLTG.
- Switched +24 V is routed through the 24 V contactor. See diagram 8-12 in the MLTG.
- The printer assembly card 13 A generates $+8.5 \mathrm{~V},+5 \mathrm{~V}$, and -5 V from the +24 V .

Parts Catalog Corrections

Following are corrections and additions to the Parts Catalog.

Fig.	Old PN	New PN	Description
1.7	5240404	5252756	Switch
$1-35 A$	NA	1842732	Capacitor
$1-88$	615683	NA	O1E-PC1-F1, F2, F3 Fuse 2A SB
$1-89^{*}$	107667	NA	01E-T1-F1 Fuse 6.25A SB
$1-90^{*}$	237395	12471	01E-T1-F2 Fuse 12A MB
$1-91^{*}$	190526	55699	01E-T1-F6 Fuse 10A MB

Note: For locations of fuses, see diagram 8-23 in the MLTG.

$2-91^{*}$	1794681	NA	Latch asm
$3-25^{*}$	1657198	NA	Board logic EC 742879
$4-35^{*}$	1842717	NA	Resistor
$5-15^{*}$	1842666	NA	Cable asm, 4 flat cables from A1Y1-A1Y2-A1Z1-A1Z2
			to A23B-A13C-A23F-A23D
$101-93^{*}$	2731763	NA	Board, interposer
$101-152^{*}$	1589401	NA	Switch asm
$102-3$	1794748	NA	Bearing, flat
$102-3$	1794805	NA	Bearing, grooved
$102-7$	1794752	NA	Shield asm, ribbon (casting mounted)
$102-7$	1794856	NA	Shield asm, ribbon (platen mounted)
$102-13$	1814583	NA	Arm asm, ribbon-right (non-adjustable)
$102-13$	1794776	NA	Arm asm, ribbon-right (adjustable)
$102-20$	1814584	NA	Arm asm, ribbon-left (non-adjustable)
$102-20$	1794775	NA	Arm asm, ribbon-left (adjustable)
$102-31$	1812460	1821401	Flywheel asm
$102-39$	1815348	1794866	Spring, compressor
$102-54$	1815348	1794866	Spring, compressor
$102-66$	1794758	NA	Cleaner
$102-68$	1794753	NA	Bearing
$102-70^{*}$	1794837	NA	Nut hex 8-32 (thicker nut)
$102-153^{*}$	1794561	NA	Emitter, foam backing
$102-154$	1815365	NA	Gauge kit, platen adjustment
$102-155^{*}$	1814592	NA	Bracket, ribbon arm asm (old style) left
$102-156^{*}$	1814593	NA	Bracket, ribbon arm asm (old style) left
$102-149 A^{*}$	1801935	NA	Platen, basic (ribbon shield mounts on
			front casting)
$102-149 A^{*}$	1794824	NA	Platen basic (ribbon shield mounts
			on platen)
$103-43^{*}$	1794941	NA	Bracket, ribbon cassette alignment
$104-131^{*}$	1810951	NA	Switch asm (old style)
$104-131^{*}$	1589291	NA	Switch asm (new style)
$105-24$	1800936	1794922	Seal
$108-31^{*}$	1582879	NA	Resistor, lower paper clamp
*Additions to Parts Catalog			

Belt Speed Problems

Belt speed checks occur under t:. c c:ferent conditions: while printing and while starting the stepper motor.

While Printing

This is a result of the belt's slowing down below an acceptable limit, usually as a result of extremely heavy paper binding the belt. Check paper patch clearance. The problem may also be caused by a marginally adjusted cover or print unit interlock switch.

Forms jams and/or belt speed checks may be caused by a defective ribbon shield, PN 1794711.

Forms jams and/or belt speed checks may be caused by a ribbon shield with an incorrectly formed metal guide. This can be detected by viewing the thin metal guide of the shield from the end. Good shields have a metal guide with a 7 -degree bend that brings the guide to a vertical plane. Defective shields do not have a bend and cause interference with the paper (high drag through the throat area) and underscoring of characters on the last part of multipart forms. (See Figure 7-14.)

PN 1794711 is now obsolete. If you have a problem in this area, order the following: Gauge kit, B/M 1815365, is required when initially installing the new shield. See par. 6.33 of the MLTG, Form SY27-2401-2, or higher, for instructions on the use of the gauge kit.

Figure 7-14. Platen/Ribbon Shield Assemblies

While Starting Stepper Motor

This failure is a result of the oscillator and the motor getting out of step with each other. This usually falls into two categories:

1. The motor will detent and lock up without any sound. This is most likely the printer control card 13-A.
2. The motor will detent, then growl. It may or may not be turning slowly. This is caused by the oscillator running at its rated speed, but not the motor.

The following items can contribute to this problem:
a. Marginally adjusted cover or print unit interlock switches.
b.* The ribbon drive belt too tight or rubbing on the motor mounting plate or on the bottom of the print belt. Place the card stock under the ribbon cassette mounting bar to tilt the bar so the belt will not rub.
c.* The ribbon drive belt rubbing on the ribbon cassette mounting bar. This is usually caused by the ribbon drive belt gear being upside down on the stepper motor shaft.
d.* The ribbon shield interfering with belt.
e. Contaminants on platen and belt. The belt rubs on the platen; therefore, a very smooth finish is required. Contaminants will greatly increase the friction between the two surfaces. If contaminants are the source of the problem, the pulleys may have to be replaced, depending on what the contamination is. (Use of improper cleaning solvents destroys the pulley material.)

The belt and platen must also be cleaned with alcohol or Freon. Do not try to save time by cleaning the platen with the print unit in the machine. Take the print unit off to do a good job of cleaning the platen.
f. * The ribbon clutch solenoid is improperly adjusted, causing the ribbon to be engaged during stepper motor start-up. The clutch could be nipping just a little to cause the problem.
g.* The pulley top out. If the free-floating pulley rides up too high and comes in contact with the cover (the name given to the part on top of the pulley that has the finger holes in it), the belt must go down to achieve an equilibrium point. When the belt drives down, it puts excessive force on the two front bearings, causing wear and binds. An adjustable clevis is available if this is the problem. Order the following four parts, or order ECA 017:
(1) PN 1812463 Clevis
(2) PN 1794808 Eccentric
(3) PN 1794809 Pin
(4) PN 186929 Screw

Adjust the eccentric for 0.150 in . between the top of the pulley and the underside of the idler pulley cover.
h.* The pulley pivot bearing may have a bind and need a drop of No. 6 oil.
i.* Check for binds in floating pulleys, and replace if necessary.

Belt speed checks can be caused by a loose flywheel, PN 1812460, and/or cover, PN 1812464. The reason for their coming loose may be the result of overtightening the flywheel/cover retaining screw, PN 1091035. Over-tightening this screw can deform the flywheel/cover, causing them to wobble and resulting in the screw-loosening.

This problem can be fixed by ordering B/M 1794686 to replace flywheel PN 1812460 and/or B/M 1794685 to replace cover PN 1812464. These Bills of Material contain a flywheel/cover of the same part number. They have a counterbore on the underside of the mounting hole to accept a spacer PN 1794754, also included in the Bills of Material.

- We have even had reports of defective belts causing belt speed checks.

Failure in both modes could be caused by a defective print belt drive motor, printer control card (13A), motor driver card (13E), transducer/emitter assembly and/or cabling, and damage to the print belt transducer/emitter projections.

The asterisked items cause excessive crag on the stepper motor where it is the most susceptible to failure, that is, during startup. We can detect these in the following manner.

Static Test: Insert the gram gauge, with the X10 blade, in one of the holes in the front of the belt; it should require $\mathbf{1 5 0}$ grams or less of force to keep the belt moving at a constant velocity. If you have a borderline condition, use the dynamic test that follows.

Dynamic Test: An oscilloscope can be used to provide an indication of correct stepper motor and belt operation. The scope pictured below (Figure 7-15) shows examples of good and bad drive pulses at the P-4 connector with the motor running. The P-4 connector has six positions. The four motor drive pulses can be obtained on the two double black and the two double yellow wires located on the P-4 connector.

Notice the portion of the pulse that goes below OV. That is called "reserve torque." Reserve torque should be at about $\mathbf{- 2 2}$ to -25 V if there is no excessive drag on the belt and pulleys. You can now make adjustments or replace parts and get an immediate indication if the drag has been affected.

Additional benefits of this scope procedure are found by looking at all four phases. Loss of amplitude on the positive portions of two phases might indicate a bad capacitor. Low voltage on the -25 V on one or two phases could indicate a defective stepper motor.

Waveshape, as well as amplitude, can be an indication of a problem.
Scope setup: All pictures taken with a times 10 probe. Voltage: 2V/Div; Time: $1 \mathrm{MS} / \mathrm{Div}$; Trigger: Internal plus DC Input; Chan 1: Motor Drive Pulse (measured at P-4 connector).

C3 and C4 are located at the rear behind the electronics gate, or on the right side frame. C3 and C4 are 3 mfd . See diagram 8-19 in the MLTG for motor drive circuit.

Figure 7-15. Print Belt Motor Drive Pulses

Failure of Typebelt Startup, Wear at Bottom Edge of Typebelt, Noisy Idle, Ribbon Damage or Jam, Smudge Print, Drop Ready, or Some Positions Fail to Print or Overprint
These are some of the problems caused when the typebelt drive or idler pulleys are not free to float up and down. When running, these pulleys should not be at their upper or lower limit. When not running the pulleys must freely move up and down. A quick check of pulleys binding is to observe pulleys as the typebelt tension is removed. Both idler and drive pulleys should drop. If pulleys do not drop, or are in a "top out" or "bottom out," investigate the following areas:

1. Binds in pulley movement. (Pulleys should move up freely with light finger pressure and drop back down, the first and every time they are tested.)
a. Pulley cage spring wrapped into bearing cage: replace with spring PN 1794866.
b. Bearing cage retainer rings with too small inside diameter: replace bearing retainers PN 1801941.
c. Flat spot on pulley shaft: replace motor or idler shaft.
2. Misaligned idler shaft (pulley "top out").

If the free-floating pulley rides up too high and comes in contact with the cover (the name given to the part on top of the pulley that has the finger holes in it), the belt must go down to achieve an equilibrium point. When the belt drives down, it puts excessive force on the two front bearings, causing wear and binds. An adjustable clevis can be installed if this is the problem. Order PN 1812463 clevis, PN 1794808 eccentric, PN 1794809 pin, and PN 0186929 screw, or order ECA 017.
3. Pulley bearing cage being held too high.

Incorrect 1/2-inch spring used before 4/77; replace with 1/4-inch spring PN 1794866.
4. Drive pulley "bottom out."

Many 3288 printers shipped to date have the drive pulley very close to a "bottom out" condition where float downward is severely restricted. Some machines may have been shipped where no downward float exists.

Two specific situations arise because of this condition:

- Belt may rise off the left-hand guide roll.
- Belt may be forced downward.

Shims are required to achieve a float condition of the drive pulley. Put enough shims as required, that result in an equal amount of upward and downward movement from the float position.

The shims are to be placed between the front assembly casting and the right-hand side of the print belt drive motor mounting plate, as follows:
a. Loosen the two left-hand motor mounting screws.
b. Remove the right-hand motor mounting screw.
c. Raise the right side of the motor, install the shims, and put the right-hand screw through the shims.
d. Tighten all three motor mounting screws.

The following may be used:
. 004 shim PN 104371
. 006 shim PN 45664

Because of the interaction, the right-hand idler pulley float should also be checked for equal amount of upward and downward movement from the float position. To verify, hold the outside rim of the pulley at opposite sides and lift. The pulley should move up and down freely.

Type Belt Part Numbers

USA English	EBCDIC	PN 1795184
Belgium/France	EBCDIC	PN 1795184
Italy	EBCDIC	PN 1795184
Austria/Germany	EBCDIC	PN 1795188
Nor/Den	EBCDIC	PN 1795189
Swed/Fin	EBCDIC	PN 1795190
Spanish-Speaking	EBCDIC	PN 1795191
UK	EBCDIC	PN 1795192
Portuguese-Speaking	EBCDIC	PN 1795193
ASCII-A		PN 1795194
ASCII-B		PN 1795195
Katakana- 128-Char. Set	EBCDIC	PN 1795200
Text Print 120-Char. Set USA English		PN 1795224

Installation of Ribbon Cassette

- Power must be off when a new ribbon is being installed. Dropping power de-energizes the ribbon drive clutch solenoid, allowing the ribbon to move when turning the idler wheel.

Ribbon Jamming or Feeding Problems

- Excessive use of ribbons can be caused by worn ribbon drive rolls.

When ribbon rolls are being replaced, all six rolls must be replaced at the same time.

After replacing the rolls, the CE should loc-tite the screw holding the driven stack of rollers. This screw has a tendency to back out.

The CE should also make sure the torsion spring on the ribbon pressure handle is replaced with the loop towards the rear of the machine. With it on backwards, insufficient pressure is put on the drive roll.

- A new ribbon drive unit, PN 1794829, is available to improve ribbon feeding. The idler bracket, PN 1794954, is a new field replaceable unit within the drive unit. If the drive rolls are worn on the new ribbon drive unit, replace three drive rolls, PN 1794953, and the idler bracket, PN 1794954. New rolls are not black.
- Ribbon jams can be caused by the right end of the cassette being mounted incorrectly. A cassette interlock bracket is released to prevent this problem. Order PN 1794941.
- If you are having ribbon tracking problems the new style ribbon guides are adjustable. Order the new style part numbers shown in Figure 7-16.

Text Print Feature

- There are two cards in the Text Print Feature, A1C2 PN 8528263 and A1D2 PN 8528264 . Also, the 01A-A1 board PN 1657198 must be at EC 742879 or higher. Use of the EBCDIC belt allows printing the 64 -character set. Use of the Text Print Belt allows printing the 120 -character set.

CE Test for Text Print Feature

- If every third line overprints on CE test, the Text Print Feature is installed. Overprinting is caused by the index suppress function (normal). To overcome the index suppress function, jumper C2U13 to DC return (GND). See Diagrams A4 and E1 in the MLTG. Remove the jumper after test.

Figure 7-16. Ribbon Lift Arm Assemblies (Old and New Styles)

Section 8. Synchronous Data Link Control (SDLC)

Contents

Problem Development Procedures 8.3
Problem Repair Procedures. 8.5
Card Replacement 8.5
Preliminary Checks 8.6
3270 SDLC Cards 8.6
Block Diagram, Data Flow, Card Layouts, Message Formats, Status and Sense, and Sequences and Responses 8-6
Figures
Figure 8-1. Card Replacement Chart 8-5
Figure 8-2. $\quad 3271$ Models 11 and 12 CU Functional Block Diagram $8-7$
Figure 8-3. 3275 Models 11 and 12 Remote Interface and Control Unit Data Flow - EBCDIC 8-8
Figure 8-4. 3271 Model 11 and 12 Board Layout and Card Locations - A-Gate 8-9
Figure 8-5. $\quad 3275$ Model 11 and 12 Card Layout by Function - B-Gate 8-10
Figure 8-6. I-Format, Data Message (3 parts) 8-11
Figure 8-7. Sense/Status Message Format 8-14
Figure 8-8. Command Reject (CMDR) Message Format 8-15
Figure 8-9. Non-Sequenced Message Format 8-16
Figure 8-10. Supervisory Message Format $8-16$
Figure 8-11. Command Reject Status Bytes 8-17
Figure 8-12. Request and Response Format 8-18
Figure 8-13. Remote Status and Sense Byte Definition (2 parts) 8-19
Figure 8-14. Remote Error Status and Sense Responses and Requests (2 parts) 8-21
Figure 8-15. Remote Status and Sense Conditions 8.23
Figure 8-16. Device Addressing for 3271 Control Unit Models 11 and 12 8.23
Figure 8-17. Online and Offline Sequence/Response Diagram 8-24
Figure 8-18. SDLC Read Type Command Sequence/Response Diagram 8-25
Figure 8-19. SDLC Write Type Command Sequence/Response Diagram 8-26

Section 8. Synchronous Data Link Control (SDLC)

PROBLEM DEVELOPMENT PROCEDURES

The following procedures provide information on how to diagnose and repair problems that occur intermittently. Prior to performing the procedures, Fast Test and Online Tests should be run several times to gather as many symptoms of the problem as is possible. The following procedures assumes that the Fault-Finding Tape Tests and Error Codes did not provide a repair.

If you are not sure of a YES or NO decision, assume the decision to be NO. If a YES decision does not provide a repair, go to the NO decision to continue.

1. Is there more than one device failing?

No Yes

Is the problem associated with only one device adapter?
No Yes

2. Can the problem device(s) be swapped with a non-failing device?

No Yes
Swap the devices at the device end of the coaxial cable. Does the problem follow the original failing device?
No Yes
There is a device problem. Go to appropriate device Troubleshooting Guide to repair.
3. Is there wrong data on the display screen or in the printout?

No Yes
Does the display problem occur only when receiying data from the host system?
No Yes
There is a Write problem. Go to D. or or (if 3271) in Problem Repair Procedure.

Swap the display at the device end of the coaxial cable.
Does the problem follow the original failing display?
No Yes
There is a display problem. Go to 3277 Display Station Troubleshooting Guide to repair.

There is a Read problem. Go to in Problem Repair Procedures.
4. Does the 3270 system detect the problem (Status)?

No Yes
Does the problem occur only when transmitting data to the host system? No Yes

There is a Read problem. Go to in Problem Repair Procedures.
Does the problem occur during polling or when attempting to establish connection with the host system?

There is a communications problem. Go to (A) B or , Problem Repair Procedures.

There is a write problem. Go to or or (if 3271) in Problem Repair Procedures.
5. Does the host system detect the problem?

No Yes
One of the following problems exists:
a. A communications problem. Go to A , or in Problem Repair Procedures.
b. A telephone line or equipment problem.
6. Does problem occur at a specific time of day?

No Yes
The problem might be associated with one of the following:
a. Power Company power.
b. Customer equipment such as:
(1) Elevators
(2) Business machines
(3) Radio frequency (RF) interference
c. Telephone line crosstalk (especially at midday).
7. Did the 3270 system ever operate correctly?

No Yes
The problem might be associated with one or more of the following:
a. New customer job application (host system problem).
b. Recent modification at the host system.
c. Recent EC or MES on 3270 system.
8. Are there any other symptoms of the problem?

No Yes
Go back to the beginning of these Problem Development Procedures and look for the symptom that most closely matches the problem.
9. Do any of the following conditions exist?
a. No symptoms.
b. No procedures left to try.
c. Too intermittent.
d. Problem appears to be external to 3270 system; however Modem, TP line and host system initial checks have not revealed the problem.
No Yes
Call for assistance. Assistance will be required to provide:
a. A data stream analysis (using data trapping equipment and traces).
b. The latest Symptom/Fix information.
c. Repairs for problems external to the 3270 system.

A symptom of the problem has been overlooked. Start at the beginning of the Problem Development Procedures.

PROBLEM REPAIR PROCEDURES

Card Replacement

Before replacing any of the cards in Figure 8-1, do the preliminary checks following the chart.

Problem	Intermittent Problem Description	Unit Type	Card Replacement
(A)	Fails to communicate with host system at any time (Solid Timeout)	$\begin{aligned} & 3271 \\ & 3275 \end{aligned}$	$\begin{aligned} & \text { A2-K2, A2-G2, A2-E2, A2-C4, } \\ & \text { A2-H2, A2-J2, A1-J2, A2-D2, } \\ & \text { A2-F2, A2-L2 } \\ & \text { B-K2, B-G2, B-E2, B-N2, B-H2, } \\ & \text { B-J2, A-G2, B-M2, B-F2, B-L2 } \end{aligned}$
B	Fails during communication of line control; might be Timeout (Not reads or writes)	$\begin{aligned} & 3271 \\ & 3275 \end{aligned}$	$\begin{aligned} & \text { A2-K2, A2-G2, A2-H2, A2-J2, } \\ & \text { A2-D2, A2-E2 } \\ & \text { B-K2, B-G2, B-H2, B-J2, B-D2, } \\ & \text { B-E2 } \end{aligned}$
C)	Fails during communication due to unexpected status from attached device(s).	3271	A1-B2, A1-C2, A2-F2, A2-G2, A2-E2, A2-K2, A1-K2, A1-F2, A1-L2, A1-J2, A1-P2, A2-J2, A2-D2, A1-N2, A1-H2, A2-H2, A1-M2, Device Adapter
	Fails during communication due to unexpected status.	3275	$\begin{aligned} & \text { B-E2, B-G2, A-D2, A-F2, A-C2, } \\ & \text { B-F2, A-G2, A-E2, B-K2, B-J2, } \\ & \text { B-H2 } \end{aligned}$
(D)	Fails to write data correctly to device.	3271	A2.J2, A2-H2, A2-D2, A2-C4, A2-L2, A2-G2, A1-G2, A1-F2, A1-D2, A1-M2, A2-E2, A1-H2, A1-P2, A1-J2, A1-B2, A1-C2, A1-K2, Device Adapter, Buffer
	Fails to write data correctly (assume display works correctly).	3275	$\begin{aligned} & \text { B-J2, B-H2, B-M2, B-N2, B-L2, } \\ & \text { B-G2, B-D2, B-B2, B-C2, A-E2, } \\ & \text { A-G2, A-C2, A-D2, A-F2 } \end{aligned}$
E	Fails to read data correctly from device.	3271	A2-E2, A2-J2, A2-D2, A2-C4, A2-L2, A2-G2, A1-E2, A1-F2, A1-P2, A1-D2, A1-C2, A1-K2, A1-B2, A1-G2, A1-J2, A1-H2, A1-M2, Device Adapter
	Fails to read data correctly.	3275	$\begin{aligned} & \text { B-M2, B-N2, B-L2, B-G2, B-D2, } \\ & \text { B-A2, B-C2, A-E2, A-G2, A-C2, } \\ & \text { A-D2, A-F2 } \end{aligned}$
F	Fails to execute Orders correctly.	3271	A1-F2, A-D2, A1-K2, A1-N2, A2-D2, A1-H2, A1-E2
		3275	$\begin{aligned} & \text { B-B2, B-C2, B-D2, A-E2, B-J2, } \\ & \text { B-M2 } \end{aligned}$
G)	Fails on Copy command.	3271	$\begin{aligned} & \text { A-C2, A1-H2, A1-J2, A1-K2, } \\ & \text { A1-P2, A1-N2 } \end{aligned}$

Figure 8-1. Card Replacement Chart

'Preliminary Checks

Before replacing any cards, do the following:

1. Check voltage ripple levels (below) and tighten all power supply capacitor screws.

Power Supply	Voltage	Regulation	Ripple	Pin Number	
				3271	3275
TSR	+5V dc	$\pm 8 \%$	$\pm 8 \%$	A2-K2D03	B-K2D03
TSR	$+8.5 \mathrm{~V} \mathrm{dc}$	$\pm 8 \%$	$\pm 8 \%$	A2-K2D11	B-K2D11
TSR	-5 V dc	$\pm 8 \%$	$\pm 8 \%$	A2-L2D06	B-L2D06
Standard	+5 V dc	$\pm 10 \%$. 25 V	A2-D2D03	B-D2D03
	$+34 \mathrm{~V} \mathrm{dc}$	$\pm 10 \%$	1.0 V	Not used	A-M2D11
	+8 V dc	$\pm 12 \%$. 35 V	Not used	$\left\{\begin{array}{l}\text { Voltage Dis- } \\ \text { tribution } \\ \text { Board }\end{array}\right.$
	$-12 \mathrm{~V} \mathrm{dc}$	$\pm 4 \%$. 01 V	A2-K2D06	B-K2D06

2. Inspect cables for visible damage.
3. Check for loose or poorly seated cards and cables.
4. Inspect signal and frame ground for tight connections.

Cards in each problem group are listed with the most likely problem listed first and the least likely last (left to right, top to bottom). It is recommended that two to five cards are swapped or replaced at a time (depending upon problem rate of occurrence).

3270 SDLC CARDS

3271	3275	Card PN	3271	3275	Card PN
01A-A2E2	01B-A1E2	8527912	01A-A2J2	01B-A1J2	8527910
		8527990			8527989
		8563024			8527993
		8564136			8563036
		8565453			8564131
01A-A2F2	01B-A1F2	8527909			8564139
		8563025			8564140
		8563038	01A.A2K2	01B-A1K2	
		8563040			8527914
		$\begin{aligned} & 8564147 \\ & 8565009 \\ & \hline \end{aligned}$	01A-A2L2	01B-A1L2	$\begin{array}{r} 8527908 \\ 8526954 \\ \hline \end{array}$
01A-A2G2	01B-A1G2	8527911	01A-A2D2	01B-A1M2	8527897
				(EBCDIC)	8565456
01A-A2H2	01B-A1H2	8527311	01A-A2D2	01B-A1M2	8527899
		8527994		(ASCII)	8565458
		8563037			
		8564138	01A-A2C4	01B-A1N2	8526685

Note: Underlined cards are the latest level.

See Figures 8-2 through 8-19.

Figure 8-3. 3275 Model 11 and 12 Remote Interface and Control Unit Data
Flow - EBCDIC

Figure 8-5. 3275 Model 11 and 12 Card Layout by Function - B-Gate

Table 1. Assignments for Internal 6-Bit Structured Data

This byte is a Write Control Character (WCC only for Write commands. For any other command, it is the first data byte.

Bits 2-7		Graphic	EBCDIC	ASCII
00	0000	SP	40	20
00	0001	A	C1	41
00	0010	B	C2	42
00	0011	C	C3	43
00	0100	D	C4	44
00	0101	E	C5	45
00	0110	F	C6	46
00	0111	G	C7	47
00	1000	H	C8	48
00	1001	1	C9	49
00	1010	¢, [, I	4A	5B
00	1011	.	4 B	2 E
00	1100	$<$	4C	3 C
00	1101	1	4D	28
00	1110	+	4E	2B
00	1111	I,I,!	4 F	21
01	0000	\&	50	26
01	0001	J	D1	4A
01	0010	K	D2	4 B
01	0011	L	D3	4 C
01	0100	M	D4	4 D
01	0101	N	D5	4 E
01	0110	O	D6	4 F
01	0111	P	D7	50
01	1000	0	D8	51
01	1001	R	D9	52
01	1010	!, , ,	5A	5D
01	1011	\$	5B	24
01	1100	*	5 C	2A
01	1101	1	5D	29
01	1110	;	5 E	3B
01	1111	$\neg \neg \wedge$	5 F	5 E
10	0000	-	60	2D
10	0001	1	61	2 F
10	0010	S	E2	53
10	0011	T	E3	54
10	0100	U	E4	55
10	0101	v	E5	56
10	0110	w	E6	57

	2-7	Graphic	EBCDIC	ASCII
10	0111	X	E7	58
10	1000	Y	E8	59
10	1001	z	E9	5A
10	1010	い	6A	5 C
10	1011		6B	2 C
10	1100	\%	6C	25
10	1101	-	6D	5F
10	1110	>	6E	3E
10	1111	?	6 F	3 F
11	0000	0	F0	30
11	0001	1	F1	31
11	0010	2	F2	32
11	0011	3	F3	33
11	0100	4	F4	34
11	0101	5	F5	35
11	0110	6	F6	36
11	0111	7	F7	37
11	1000	8	F8	38
11	1001	9	F9	39
11	1010	:	7A	3A
11	1011	\#	7B	23
11	1100	©	7C	40
11	1101		70	27
11	1110	=	7E	3D
11	1111	"	7F	22

The following characters are internally handled as 6 -bi structured data: write control, copy control, attribute, CU and device address, buffer address, and status and sense When any of these characters is received, only the low-orde 6 bits are used, and the rest are ignored. When any of these characters is transmitted, the appropriate EBCDIC code is assigned, and, if the ASCII Code Transmission feature is installed, an ASCII code translation is made. The EBCDIC ade assignment is done so that the 6 -bit code can be epresented by a graphic character. Note that this table is an overlay of EBCDIC columns 4.7 hex on EBCDIC columns C-F hex

TRANSMISSION HEADER (TH)

Byte	Bit	
0	0,1,2,3	Format identifier field - This configuration of FID bits defines the number of transmission headers (TH) and request/response headers (RH) required. 3270 sends FID 3 (0011)
0	4, 5	11 - Indicates a complete basic information unit (BIU); i.e. the I-field associated with the TH is a complete unit.
		10 - Indicates that the I-field associated with the TH is the first I-field in the BIU. 01 - Indicates that the I-field associated with the TH is the last I-field in the BIU. 00 - Indicates that the 1 -field associated with the TH is an intermediate 1 -field within the BIU.
0	6	Flow indicator - Sent as a 1 when the 3270 CU sends a response. Sent as a 0 when the 3270 CU sends a request.
0	7	Expedited flow indicator - Sent as a 0 in all cases except when sending a clear response.
1	0	Logical unit/system services control point -3270 stores this bit when received from the controller. When sending a response to the controller in reply to a request, the 3270 returns this bit as it was received.
1	$\begin{aligned} & 1,2,3,4 \\ & 5,6,7 \end{aligned}$	Device address - Bit 1 is always set to 1 . Device address 0 is used when communicating with 3275 display station.

Figure 8-6 (Part 3 of 3). I-Format, Data Message

REQUEST/RESPONSE HEADER (RH)

Byte	Bit	
0	0	Request/response bit - The 3270 CU sends the RR bit to the controller as a 0 to indicate a request. It is sent by the 3270 CU as a 1 to indicate a response.
0	1,2	Request/response unit type and subsystem control indicator bits respectively. They are stored but not checked.
0	3	Not used (always 0).
0	4	Format indicator - When the 3270 CU generates a request, the format indicator bit is sent as a 0 . When sending a response, the 3270 sends this bit as it was received from the controller.
0	5	Sense data included indicator - The 3270 sends this bit as a 1 when sense data is transmitted, and as a 0 when sense information is not sent to the controller.
0	6,7	Not used by the 3270 (always 1)
1	1, 2, 4, 5, 6	Not used by the 3270 (always 0)
1	0	Direct response - Indicates to the 3270 CU that a response must be sent when the specified command operation has been completed.
1	3	Exception response - An EX response is generated by the 3270 CU if an error condition (other than an SDLC error) is detected while executing a command.
1	7	Pacing control - Pacing is a response which allows the 3270 CU to indicate to the controller when message data can be sent for a device. Used when executing a command at a printer; at this time, pacing control is also used when performing a command operation at a display station.
2	0	Begin bracket - Used by the 3270 CU in conjunction with the Pseudo bid command. Decrements the poll counter in the 3270 CU .
2	1	End bracket - Indicates that the current chain is the last chain in a bracket.
2	2, 3, 5, 6, 7	Not used (always 0)
2	4	Code selection indicator - This bit identifies the transmission code as EBCDIC (0), or ASCII (1).

Note: This chart is intended to show those bits that must
be on for a S / S message. For all other bits, see I-Format,
Figure 8-6, Sheets 1 and 2.

Figure 8-7. Sense/Status Message Format

Figure 8-8. Command Reject (CMDR) Message Format

Response

0	1	2	3	4	5	6	7	
0	1	1	F	0	0	1	1	
0	0	0	F	1	1	1	1	Non-Sequenced Acknowledgment (NSA)
1	0	0	F	0	1	1	1	Request ON LINE (ROL)

0	1	2	3	4	5	6	7
1	1	1	P_{k}	0	0	1	1

Figure 8-9. Non-Sequenced Message Format

Figure 8-10. Supervisory Message Format

The Command Reject (CMDR) response is sent by the 3270 CU to report the following error conditions:

1. Receipt of a command code with valid BCC but which is an invalid command or a command not implemented for the 3270 CU .
2. Receipt of a frame with valid BCC that contains an I-field and a command which should not be sent with an I-field.
3. Receipt of an l-format frame with valid BCC which contains an illegal N_{r} count in the C-field.
4. Receipt of an I-format frame in which the information field is too large to be accommodated by the available buffer space in the 3270 CU .

Byte 1 is the C -field that caused the CMDR response.
Byte 2 contains the Ns_{s} and Nr sequence counts that existed immediately prior to establishing the CMDR response.
Byte 3 indicates the reason for the CMDR.
Bit W is set to 1 when the C -field returned in byte 1 represents an invalid or nonimplemented command.

Bit X is set to 1 when the C-field returned in byte 1 is considered invalid because the frame contained an information field not allowed with the command sent.

Bit Y is set to 1 when the information field associated with the valid and implemented C-field contained in byte 1 was too long for the available buffer space in the 3270 CU . This condition never occurs when bit X is set.

Bit Z is set when the receive Nr sequence count contained in the C -field in byte 1 is out of the range.

Figure 8-11. Command Reject Status Bytes

Response	Request format sent by the controller:			Response formatsent in reply by the 3270 CU :			Explanation
	DR	EX	P	DR			
Definite response with pacing	1	0	1	1 1	0 1	1	Indicates successful completion of a read or write type or copy command by a display station; or a write type or copy command by a printer. 1. Indicates that an error occurred during transmission of read data. In this case, the response may be preceded by a sense RU request containing an abort indication. 2. Indicates that an error was detected while obtaining a device buffer. Note: The printer operates in positive response with pacing mode only. Therefore, when a command has been executed by a printer the 3270 CU always responds with positive response with pacing (101 or 111) regardless of the request received.
Exception response with pacing	1	1	1	0 1	0 1	1	Indicates successful completion of a read or write type or copy command by a display station. 1. Indicates that an error was detected while obtaining a device buffer. 2. Indicates that an error occurred during transmission of read data. In this case a sense RU request with an abort segment indication is transmitted before the response.
No response with pacing	0	0	1	0	0	1	Applicable to commands executed by display stations only. An error response ($\mathrm{EX}=1$) is not sent regardless of how the operation ends. The 3270 CU transmits only an isolated pacing response.
Definite response no pacing	1	0	0	1	0	0	Applicable to display station command operations only. The response description is the same as described above for positive response with pacing, except that the pacing bit is always set to 0 .
Exception response, no pacing	1	1	0	0	0	0*	Applicable to display station command operations only. The response format is the same as explained above for exception response with pacing, except that the pacing bit is always set to 0 .
No response no pacing	0	0	0	0	0	0*	Applicable to display station command operations only. The 3270 CU does not send a response.

*A response format 000 indicates that no response is sent.
Figure 8-12. Request and Response Format

Bit No.	Bit Definition
	S/S Byte 0:
0	Path Error - For the 3271, this bit is set if the device address received (bits 1 through 7 of TH byte 2) is invalid, or if the device adapter card for the indicated address is not installed. For the 3275, this bit is set if the device address is not 100000 (bits 1 through 7 of TH byte 2). Intervention Required (IR), S/S byte 3, bit 3, may also be set with this bit.
1,2	Reserved
3	Request Error - This bit is set if the first byte of the RU is not recognized as a valid command or command function. Command Reject (CR), S/S byte 3, bit 2, is set when Request Error is set.
4	Request Reject - The bit is set if a pseudo bid command or begin bracket bit (set in the RH) is sent to a device that has an attention pending.
5,6,7	Reserved.
Bit	
No.	Bit Definition
	S/S Byte 1:
0,1,2,4,5	Reserved.
3,6,7	These bits are set with request reject (bit 4, byte 0)
	S/S Byte 2:
0,1,2,3	Reserved.
4	Device Busy (DB) - This bit indicates that the addressed device is busy executing an operation. The device is busy when executing an erase all unprotected command, or a print operation, accepting data from the Operator Identification Card Reader, or performing various keyboard operations (Erase Input, Backtab and Clear).
5	Unit Specify (US) - This bit is set if any S/S bit is set as a result of a device-detected error.
6	Device End (DE) - This bit indicates that the addressed device has changed from unavailable to available and not ready to ready, or busy to not busy. When a printer goes from busy to not busy, a positive response with pacing is generated instead of DE.
7	Reserved.

Figure 8-13 (Part 1 of 2). Remote Status and Sense
Byte Definition

Bit No.	Bit Definition
0.1	S/S Byte 3:
2	Reserved. Command Reject (CR) - This bit is set upon receipt of an invalid or illegal 3270 command.

3 Intervention Required (IR) - This bit is set if:

- A copy command contains a "from" device address in its data stream which specifies an unavailable device.
- A command attempted to start a printer but found it not ready. The printout is suppressed.
- The 3271 receives a Pseudo Bid sequence for a device which is unavailable or which became not ready during a printout.
- The 3270 CU receives a command for a device which the 3271 has logged as unavailable and not ready.

Equipment Check (EC) - This bit is set if:

- A printer character generator error occurred, or the printer became mechanically disabled.
- The 3270 CU detected bad parity from the device, or data transmitted in a device reply.

Note: The data check (DC) bit may also be set.
Data Check (DC) - This bit indicates detection of a parity or cursor check in either the 3271 or a device buffer, or in the 3275 buffer, or that the 3271 detected bad parity from the device.

Control Check (CC) - This bit is not used for the 3275. For the 3271, this bit indicates a timeout check. A timeout check occurs when a device fails to respond to 3271 communications within a specified time period or when a device fails to complete an operation within a specified time period.

Operation Check (OC) - This bit, when set alone, indicates one of the following:

- Receipt of an illegal buffer address or of an incomplete order sequence on a write or erase/write command.
- The device did not receive a CCC or a "from" address on a copy command.
- Receipt of a read, read modified, copy, or erase all unprotected command with TH mapping field bits not equal to 11 (i.e., a complete BIU).
- An I/O interface "overrun" is detected. This occurs if a data byte follows a read buffer, read modified, or erase all unprotected command, or if more than two data bytes follow a copy command.

This bit is set with Control Check, Intervention Required, Data Check, or Data Check with Unit Specify, to indicate that the errors that set these sense bits were detected while the 3270 CU was executing an operation with the "from" device during a copy command.
Figure 8-13 (Part 2 of 2). Remote Status and Sense
Byte Definition

Status/Sense Bits	Explanation	
	Response	Request
PE (Address not available)	Bits 1 through 7 of TH byte 2 are not a valid device address or the device adapter card is not installed in the 3271.	NA
CC	A timeout check is caused by the addressed device. The operation is tried twice before the CC bit is set.	NA
CC, OC	The "from" device fails to complete an operation or to respond to the 3271 within a specified time period (timeout check) during a copy command operation.	NA
DC	1. The 3271 or 3275 detects a parity or cursor check in its buffer during a command operation. 2. The 3271 detects bad parity on data received from the addressed device. The operation is attempted twice before the $D C$ bit is set.	A parity error is detected by the 3271 on a data transfer to the NCP as a result of a poll or a parity error detected in the 3275.
DC, US (3271 only)	1. A parity check or cursor check is detected by the addressed device on the data it is sending to the 3270 CU . 2. The device detects a parity or cursor check in its buffer during a command operation.	A parity check or cursor check is detected by the polled device on the data it is sending to the 3271 CU .
$\begin{aligned} & \text { DC, OC } \\ & \text { (3271 only) } \end{aligned}$	The 3271 detects a parity check on the data transferred from the "from" device during a copy command operation.	NA
DC, OC, US	Sent when the "from" device detects an internal parity or cursor check while performing the copy command.	NA
IR	The addressed device is not available or the addressed printer is not ready.	NA
$\begin{aligned} & \text { IR, OC } \\ & \text { (3271 only) } \end{aligned}$	The from device is not available on a copy command.	NA
IR, EC, US	The addressed printer is mechanically disabled and cannot recover.	NA
OC	1. The copy command data stream contains more or less than two bytes (the CCC and the "from" device address). The copy command is aborted.	NA
	2. One or more data bytes followed an erase all unprotected command (buffer overrun).	NA
	3. A data byte followed a read type command in the data stream received at the device.	NA
OC, US (3271 only)	The device has a locked buffer during a copy command operation. (Refer to paragraph titled "Copy Command" in the section on Commands and Orders).	NA
EC, US (3271 only)	A character generator error or a mechanical failure is detected at the printer but recovery occurs.	NA

Figure 8-14 (Part 1 of 2). Remote Error Status and Sense Responses and Requests

	Explanation	
Status/Sense Bits	Response	Request
RE, CR	An invalid command is detected (first byte of data). For example, a copy command is sent to the 3275. Character generator error (3275 only) in printer.	NA
EC DC	Transmit parity error has occurred. If a buffer was obtained during the operation, the data check bit is also set. The poll bit finds a device which was previously recorded as busy, as not busy. Transmission of an I frame with read or write type data resets this bit.	Bad parity from a device (3271 only). NA
DE	Thevice which was previously recorded as unavailable or not ready, as available and ready.	
IR	The addressed printer is out of paper, power has been turned off, or the printer cover is open. Power is off at the 3284 model 3 printer or a malfunction is detected.	NA
DB EC	The "from" device receiving a copy command is busy. The device is busy performing an operation, a printout, reading data from the Operator Identification Card Reader, or performing a keyboard operation. The addressed device is busy.	NA
OC, DB		

Notes:

1. There are other conditions of multiple status that can occur which are not included here; for example, an unpredictable catastrophic card failure or multiple error conditions occurring simultaneously could cause an undefined combination of status and sense bits. If a multiple status condition occurs, each bit must be checked separately to determine the cause(s) of the failure.

Figure 8-14 (Part 2 of 2). Remote Error Status and Sense Responses and Requests

Sense/ Status Bit	Detected during 3270 Operation	
	Transmitted as:	
	Response	Request
PE (Address		
not available)	D. P	
CC	D. P	
CC, OC	D, P	
DC	D. P	D. P
DC, US	D, P	D. P
DC, OC	D, P	
DC, OC, US	D, P	
IR	D, P	
IR, OC	D. P	
IR, EC, US	P	
OC	D. P	
OC, US	D. P	
EC, US	P	
FIE, CR	D. P	
EC	D. P	D, P
DC, US, DE	D. P	
IR, EC	D	
DE	D, P	D. P
OC, DB	D, P	
RR	D. P	
DB	D, P	

[^8]Figure 8-15. Remote Status and Sense Conditions

Device	TH Address Field
Number	Bits: 1234567
0	1000000
1	1000001
2	1000010
3	1000011
4	1000100
5	1000101
6	1000110
7	1000111
8	1001000
9	1001001
10	1001010
11	1001011
12	1001100
13	1001101
14	1001110
15	1001111
16	1010000
17	1010001
18	1010010
19	1010011
20	1010100
21	1010101
22	1010110
23	10100111
24	1011000
25	1011001
26	1011010
27	1011011
28	1011100
29	1011101
30	1011110
31	10111111

Figure 8-16. Device Addressing for 3271 Control Unit Models 11 and 12

Note: Only SDLC bytes that are significant for the sequence being illustrated are shown in the diagram.
$\mathrm{P} / \mathrm{F}=$ poll/final bit
$\mathrm{I}=$ information frame
dash $(-)$ above a letter $=$ not set to 1.

Figure 8-17. Online and Offline Sequence/Response Diagram

RH, 24.bit request/respons
 request and response formats. $\begin{aligned} & \text { ren } \\ & \text { bit, poll/final bit contained in the field }\end{aligned}$
Note: A number of DR. EX, and P requestresponse formats are available.

Figure 8-18. SDLC Read Type Command Sequence/Response Diagram

The controlle sends an I frame containing a write tyee command with the BB bit set in the RH. The normal write
C.RNR

reperitive bytes: initial and ending F, A. and FCS bytes are omitted from diagsam

Description
 send one of three possible repieses. It the controller requested d response in the Ret, the 3270 CU sends the response
trame followed by

A write respond within 75 ms. or RR as the last transmission if a request was not sent by the controller.

The 3270 Cu sends read data in groups of two frames. If an error is dete ected an exception response is sent to the co
troller, as shown in "Eror Sequences." Figure 8.13 Read T Type Command, sequence Response Diagram.

Figure 8-19. SDLC Write Type Command Sequence/Response Diagram

Appendix A. 3270 System Publications

The following is a list of publications for the 3270 system:

Title

$3271 / 72$ CU Parts Catalog	S126-0004
$3275 / 77$ DS Parts Catalog	S126-0005
$3284 / 86$ Printer Parts Catalog	S126-0006
3288 Printer Parts Catalog	S126-0008
3271 Mod 1 and 2 MLTG	SY27-2311
$3271 / 75-11$ \& 12 MLTG	SY27-2476
3272 MLTG	SY27-2312
3275 Mod 1 \& 2 MLTG	SY27-2313
3275 Dial MLTG Mod 1 and 2	SY27-2329
3275 Dual Case MLTG Mod 1 and 2	SY27-2344
3275 Model 3 MLTG	SY27-2359
3277 MLTG	SY27-2314
3277 Dual Case MLTG	SY27-2345
3277 Signature Display MLTG	SY27-2357
$3277-1$ 1980-C24 Printer Attachment MLTG	PN 1841015
$3275-1$ \& 2/3277-2 Radiation Control Mod MLTG	SY27-2358
$3284 / 86-1 ~ \& ~ 2 ~ M L T G ~$	SY27-2315
$3284 / 86-1 ~ \& ~ 2 ~ A P L ~ M L T G ~$	SY27-2420
$3284 / 86-3$ MLTG	SY27-2457

3284/86-1 \& 2 Margin Stop Variable MLTG SY27-2334
3284/86-3 Margin Stop Variable MLTG
3284/86-1 \& 2 VFIC MLTG
3284/86 VFIC MLTG
3284/86-1 \& 2 Dual Case MLTG
3284/86-3 Dual Case MLTG
3284/86 Forms Tractor MLTG
IDR-M Card Reader MLTG/Parts
3288-2 MLTG
3270 System Installation
CUSTOMER MANUALS

3270 IDS Introduction	GA27-2739
3270 IDS Operator's Guide	GA27-2742
3270 IDS Installation Manual	GA27-2787
3270 IDS Component Description	GA27-2749
3270 IDS Problem Determination Guide	GA27-2750
3270 IDS RFT Guide	GA27-2774
Forms Design Reference Guide for Printers	
Custom Feature Descriptions (RPQs)	GA27-2752
3284/86 Printer Margin Stop Variable	GA27-2753
3284/86 Printer VFIC	GA27-2758
3270/IDS Dual Case Feature	GA27-2773
3284/86 Printer Forms Tractor	GA27-2775
3270 IDS Signature Display	
Assembly of Coaxial Cables and Accessories for	GA27-2805

Customer Manuals (cont)

Title

Introduction to the IBM 3270 Data Analysis-APL Feature Introduction to Programming the IBM 3270

DIAGNOSTIC USER MANUALS

IBM Maintenance Diagnostic Program - Local 3270 Online Tests
IBM Maintenance Diagnostic Program - Remote 3270 Online Tests
IBM Maintenance Diagnostic Program - Remote 3270 D99-3270C Online Tests/3705 NCP
IBM Maintenance Diagnostic Program - 3270 Display System SNA Online Tests

Form No.

GA27-2788
GC27.6999

D99-3270A
D99-3270B

D99-3270D

3270 SYSTEM TEST TAPES

The following is a list of pre-recorded test tapes for the 3270 system:

3271 EBCDIC Leased Line Tape	SY27-2318
3271 ASCII Leased Line Tape	SY27-2319
3275 EBCDIC Leased Line Tape	SY27-2320
3275 ASCII Leased Line Tape	SY27-2321
3275 EBCDIC Dial Tape	SY27-2325
3275 ASCII Dial Tape	SY27-2326
$3271 / 3275$ SDLC Tape	SY27-2412

Appendix B. 3270 Tools and Test Equipment

Tool Part No.		3272	Mach	T 277				Description
18463					x	x		Stoning Tool
450459					X	X		Gram Gauge
453212	X	X	X	X	X	X	X	General Logic Probe
453705							x	Unlatch Tool
1655219			x					3275 SNA-IF Overlay
1655220	X							3271 SNA-IF Overlay ****
1655221	X							3271 MLPXR Overlay
1744195	X		x					CRAU-SDLC****
1814629							${ }^{*}$	Platen Gap Gauge
1830679	X	X	X	X	X	X	X	SIU (AII)
1842748							X^{*}	3288 SIU Overlay
2525953					X*	x*		Feeler Gauge 0.001 in. $(0.0254 \mathrm{~mm}$)
2565170			X^{*}	${ }^{*}$				Alignment Mask**
2577899				${ }^{*}$				Alignment Mask***
2617969					${ }^{*}$	${ }^{*}$		Wire Cleaning Tool
2621412	X*	X*		X	X	X	X	Coaxial Cable 6 ft . (1.83 m)
BM2621480	X	X	x	X	X	X	X	Overlay Set (SIU)
2640796					X	X		PC Board Check Tool
5492081	x	X	x	X	X	X	X	Jumper Wire
*These tools are included in the shipping group for the machine. **This mask is used on 3275 and 3277 Model 2. ***This mask is used on 3277 Model 1. ****These tools used for SDLC.								

Index

```
Addressing:
    Device for 3271 Control Unit Models }11\mathrm{ and }12\mathrm{ (SDLC) 8-23
    Remote Control Unit and Device 1-58,1-59,1-60
    3 2 7 2 \text { Device:}
        16 or Fewer Devices per 3272 1.50
        17 or More Devices per 3272 1-50
Analog Cards, 3277 5-21,5-28
Assignments for Internal 6-Bit Structured Data (Fig. 1-24) 1-42
Asynchronous Status and Sense Conditions, Local (Fig. 1-36) 1.55
Attention ID (AID) Configurations (Fig. 1-26) 1-45
Attention ID (AID) Encoding 1.31
Attribute Character Bit Definition (Fig. 1-6) 1.24
Block Diagrams:
    3271 Models }1\mathrm{ and 2 (Fig. 2.1) 2.7
    3271 Models }11\mathrm{ and 12 (Fig. 8-2) 8.7
    3272 (Fig. 3.1) 3.7
    3275 Models }1\mathrm{ and 2 (Fig. 4-1) 4.7
    3275 Models }11\mathrm{ and 12 (Fig. 8-3) 8-8
    3277 (Fig. 5-1) 5-9
    3284/86 (Fig. 6-1) 6-7
    3288 (Fig. 7-1) 7.9
Buffer Orders and Order Codes (Fig. 1-30) 1-49
Cables, Flat, 3271 2-20
Cabling Error, 3271 2-20
Card Caddy Lists 1.9
Card/Gate Layout by Function:
    3271 Models }1\mathrm{ and 2 2-11
    3271 Models }11\mathrm{ and 12 8-9
    3272 3.9
    3275 Model' }1\mathrm{ and 2 4-12
    3275 Models }11\mathrm{ and 12 8-10
    3277 5-10
    3284/86 6-9,6-10
    3288 7.10
Card Jumpering (3284/86) 6-30,6-41
Card Replacement Chart (SDLC) 8-5
Card Substitution Lists:
    3271 Models 1 and 2 2-12
    3271 Models }11\mathrm{ and 12 8-6
    3 2 7 2 ~ 3 . 1 0
    3275 Models 1 and 2 4.17
    3275 Models 11 and 12 8-6
    3277 5-11
    3284/86 6.11
    3288 7.6
Coaxial Cable Check 1-15
Coaxial Cable Information:
    3271 2-20
    3272 3-16
    3277 5-24
Coaxial Cables and BNC Connectors 1.5
```


Commands:

Control Type (BSC)	$1-76$
Control Type (SDLC)	$8-26$

Copy (BSC) 1.76
Copy (SDLC) 8-26
Erase All Unprotected (BSC) 1-76
Erase Write (BSC) 1.76
Erase Write (SDLC) 8-26
General Description (BSC) 1.43
Read Buffer (BSC) 1-78
Read Buffer (SDLC) $\quad 8.25$
Read Modified (BSC) 1.78
Read Modified (SDLC) $8-25$
Write (BSC) 1.76
Write (SDLC) 8-26
Control-Type Command Sequence/Response Diagram (BSC) 1-76
Control Unit Addressing (Remote) 1-58
Control Unit Sequence Latches and Table of Sequences $\quad 1-21$
Control Words 1-27,1-28
Controls and Indicators 1-67
Copy Control Character (CCC) (Fig. 1-28) 1-47
Crash Stopping or Equipment Checks 6-35
CU Control Word Formats (Fig. 1-16) 1-33
CU CW1 Detected on 3277 Device 1-27,1-31
CU CW1 Detected on 3284/3286/3288 1-28,1-31
CU CW1 Scoping Points 1-31
CU Data Word Format (Fig. 1-15) 1-33

Data Analysis - APL Feature Character Interchange Codes (Fig. 1-23) 1-40
Device Addressing for 3271 Control Unit Models 11 and 12 (SDLC) 8-21
Device Addressing, 3272-16 or Fewer Devices per 3272 (Fig. 1-31) 1-50
Device Addressing, 3272-17 or More Devices per 3272 (Fig. 1-32) 1-50
Device Addressing (Remote) (Fig. 1-37) 1-58
Device Buffer Transfer (Data Words) to CU (Fig. 1-17) 1.35
Device End Lost 2-22
Device Serdes 1-35,1-36
Display Status Word (Fig. 1-8) $\quad 1-9$
Display Status Word Detected on 3271 Control Unit 1 1-26
Display Status Word Detected on 3272 Control Unit 1 1-27
EC Cross-Reference Lists:
$3271 \quad 2-15$
$3272 \quad 3-13$
3275 4-23
3277 5-15
3284/86 6-15
$3288 \quad 7-14$
EIA Connectors:
$3271 \quad 2-24$
$3275 \quad 4-34$
Ending Status and Sense Conditions - Local (Fig. 1-35) 1-53
Equipment Checks or Crash Stopping 6-35
Error Status and Sense Responses 1-62
Error Status and Sense Responses and Requests, Remote (SDLC) 8-21
Example of Maintained Connection, Sequence/Response Diagram, Dial Feature (Fig. 1-49) 1.84

```
Facilities Error Recognition System (FERS) 1.14
Feature Identification, Version Level:
    3275 4-32
    3284/86 6.42
Flat Cables, 3271 2-20
Forms:
        Jamming 6-26,7-16
        Standard Specifications 6-28,6-29,7-16,7-18,7-19,7-20,7-21,7-23
        VFIC Specifications 6-46,6-47,6-48
    Forms Tractor RPQ WD4031 Service Information 6.44
    Frame Format, (SDLC) 8-11
    General Logic Probe 1-20
    General Poll 1.43
    General Poll and Specific Poll, Sequence/Response Diagram (Fig. 1-42) 1-70
    Ground Checks 1.7
    Ground Loops 1.7
    Hex Codes:
    ASCII 1.38,1-42
    EBCDIC 1-37,1-39,1-40,1-42
1-Format, Data Message (SDLC) 8-11
Index Failures 6-25,6-36,6-38
Indicators and Controls (Fig. 1-41) 1.68
Initial Selection 1.43
Initial Selection w/Error Status 1.43
Initial Status and Sense Conditions - Local (Fig. 1-34) 1.52
Interface, Control Unit to Device 1-3
Interface, Control Unit to Device, RPQ AB4820 (5000 Feet) 1-4
Interface Code:
    Data Analysis - APL Feature 1-40
    U.S. ASCII 1-38
    U.S. EBCDIC 1.37
Intermittent Troubleshooting Procedures (SDLC) 8-3
Keyboard Information 5-22,5-23,5-24
Light-Emitting Diode (LED) 1.20
Lightning Protection 5.25
Line Adapter Installation (3275) 4-33
Line Cords 5.23
Line Error ECs 3271 2.20
Line or Modem Scoping Procedure:
    3271 2.21
    3275 4-30
Local and Remote Command Codes (Fig. 1-25) 1.43
Logic Board Information:
        3275 4-32
        3277 5-27
        3284/86 6-46
        3288 7-10,7-11
    Logic Levels -3270 VTL 1.6
    Logic Manual Storage 1-17
    Logic Probe, General 1-20
    Maintenance Monitor (3284/86) 6.37
    Manual, Logic Storage 1-17
    Message Buffer Bit Assignment 1-35
    Missing Grounds 1-17
```

MLTG Updates (3284/86) 6-43
Modem or Line Scoping Procedure 2-21
Motor Control Card Jumpering 6.41
Multiplexer Shift Register Bits 1.35
New Line/End of Message Orders Printing as 5's and 9's 6.42
Non-Sequenced Message Format (SDLC) 8-16
Online and Offline Sequence/Response Diagram (SDLC) (Fig. 8-17) 8-24
Order Codes and Buffer Orders $1-49$
Parts Catalog Corrections and Additions 3284/86:
Forms Tractor RPQ 6-44
Standard 6-37
Variable Margin RPQ 6-44
Platen Assembly (3288) 7-17
Platen/Ribbon Shield Assemblies (3288) $7-27$
Poll, General and Specific 1.43
Poll Sequences, General and Sepcific:
Addresses 1-58
Sequence/Response Diagram 1-72
Power Supplies, Voltages 2-23,6-34
Power Supply Ripple (Fig. 1-1) $1-6$
Print Belt Motor Drive Pulse (3288) 7-29
Print Head Plug Description (3288) 7-13
Printer Cover Window Hazard 6-37
Printer Printed Circuit Board Damage 6-37
Printer Status Word (Fig. 1-9) 1-29
Printer Status Word Detected on 3271 Control Unit 1-26
Printer Status Word Detected on 3272 Control Unit 1-27
Probe, General Logic 1-20
Problem Development Procedures (SDLC) 8-3
Problem Repair Procedures (SDLC) 8.5
Quote Marks on Screen, 3275 4-33
Read Modified Command (BSC) 1-44
Read Type Command:
Sequence/Response Diagram, BSC (Fig. 1-46) 1.78
Sequence/Response Diagram, SDLC 8-25
Remote Control Unit and Device Addressing (Fig. 1-37) $1-58$
Remote Error Status and Sense Responses and Requests, SDLC (Fig. 8-14) 8-21
Remote Status and Sense Byte Definitions:
BSC (Fig. 1-38) 1-61SDLC (Fig. 8-13) $\quad 8-19$
Remote Status and Sense Conditions:
BSC (Fig. 1-40) 1-66
SDLC (Fig. 8-15) 8.23
Request and Response Format, SDLC (Fig. 8-12) 8-18
Request for Test (RFT) 1-19
Request/Response Header (RH), SDLC 8-13
Ribbon Jamming/Feeding Problems $6-30,6-43,6-44,7-31$Ribbon Lift Arm Assemblies (3288) $\quad 7.30$
Ripple, Power Supply 1 -6
SDLC 8-3
SDLC Card List 8.5
SDLC Frame Format $8-11$
Selection Addressing, Sequence/Response Diagram (Fig. 1-44) $1-74$
Sense Bit Description (Fig. 1-29) 1-48

Sense/Status Message Format (SDLC) 8.14

Sequence Latches 1.21

Sequence/Response Diagrams (Remote BSC):
Control-Type Commands (Fig. 1.45) 1.76
Example of Maintained Connection (Fig. 1-49) 1.84
Poll Sequences, General and Specific (Fig. 1.42) $\quad 1.70$
Read-Type Commands (Fig. 1-43, 1-46) 1-72,1-78
Selection Addressing Sequence (Fig. 1.44) 1.74
Status Message Transmission with Dial Feature (Fig. 1-50) $\quad 1.86$
TCU - Initiated Transmission (Fig. 1-48) 1.82
3275 Initiated Transmission (Fig. 1-47) 1-80
Write - Type Commands (Fig. 1.45) 1.76
Sequence/Response Diagram (SDLC):
Online and Offline (Fig. 8-17) 8-24
Read Type Command (Fig. 8-18) $\quad 8-25$
Write Type Command (Fig. 8-19) $\quad 8.26$
Serdes, Device 1-35,1-36
Serial Clock Transmit (SCT) Test Point $\quad 2-20$
Service Aids:
$3270 \quad 1.15$
$3271 \quad 2-20$
$3272 \quad 3.16$
$3275 \quad 4.30$
$3277 \quad 5-21$
3284/86 6.25
$3288 \quad 7.16$
Shipping Group (3277) 5-26
Specific Poll $\quad 1.43$
Specific Poll Sequence/Response Diagram 1.70
Specific Poll w/Status Msg 1.43
Status and Sense Byte Definitions, Remote:
BSC 1.61
SDLC 8.19
Status and Sense Conditions:
Asynchronous Local (Fig. 1-36) 1.55
Ending, Local 1.57
Remote (BSC) 1.66
Status and Sense Responses, Error 1.62
Status and Sense Responses and Requests, Remote Error (SDLC) 8.21
Status Byte Bit Assignments (Fig. 1-33) $\quad 1.51$
Status/Control Word (3271) (Fig. 1-11) 1 1-30
Status/Control Word (3272) (Fig. 1-10) 1.30
Status Message Transmission with Dial Feature, Sequence/Response Diagram (Fig. 1-50) 1.86
Status/Sense Message Format (SDLC) 8.14
Status Word Sent by Device (Fig. 1-18) 1.36
Status Word Waveform (Fig. 1-12) $\quad 1.30$
Status Words 1-26,1-27
Status Words Scoping Points $\quad 1.42$
Stepper Motor and Speed Adjustment Service Hints (3284/86) 6-42
Supervisory Message Format (SDLC) 8-16
Symptom Fix Lists:
$3271 \quad 2.3$
3272 3-3
3275 4-3
3277 5-3
3284/86 6.3
$3288 \quad 7-3$
System Grounding, $3270 \quad 1.8$
System 3.8000 bps 2.22

```
TCU-Initiated Transmission, Sequence/Response Diagram, Dial Feature
    (Fig. 1-48) 1-82
TDAT 2-23
Test Point - Serial Clock Transmit (SCT) 2-20
Test Request Function 1-17
Test Tape Form Numbers A-2
Tools and Test Equipment:
    AMP Tool 1-17
    General Logic Probe 1-20
    SIU 2-23
    TDAT 2.23
    3270 System B-1
Transducer Adjustments 6-31
Transmission Header (TH) (SDLC) 8-13
United States I/O Interface Code - ASCII (Fig. 1-20) 1-38
United States I/O Interface Code - EBCDIC (Fig. 1-19) 1-37
Variable Margin RPQ EB 3995 Service Information 6-41,6-44
Version Level Feature Identification:
    3275 4-32
    3284/86 6-42
VFIC Form - Locations and Dimensions (Fig. 6-14) 6-48
VFIC RPQ Service Information 6-39,6-40,6-46
Voltage Jumpers, 3271 2-20
VTL Logic Levels 1-6
Write Command 1-43
Write Control Character (Fig. 1-27) 1-46
Write-Type and Control-Type Commands, Sequence/Response Diagram, BSC
    (Fig. 1-45)
        1-76
Write-Type Command Sequence/Response Diagram, SDLC (Fig. 8-19) 8-26
6-Bit Structured Data (SDLC) 8-12
3270:
    Commands 1-43
    Control Unit to Device Interface 1-3
    Control Unit to Device Interface (RPQ AB4820) 1-4
    CU Message Response to Polling or Read Modified Command (Fig. 1-43) 1-72
    Recommended Card Caddy Lists 1-9
    Service Aids 1-15
    System Grounding (Fig. 1-2) 1.8
    System Publications A-1
    Tools and Test Equipment B-1
3271:
    A-Gate Card Layout by Function (Fig. 2-2) 2-11
    Card Substitution List 2-12
    CU Functional Block Diagram (Fig. 2-1) 2-7
    EC Cross Reference 2-15
    EIA Connections 2-24
    Remote Commands 1-43
    Service Aids 2-20
    Symptom Fix List 2-3
3272:
    A-Gate Card Layout by Function (Fig. 3-3) 3-9
    and Device Addressing, 16 or Fewer Devices per }3272\mathrm{ (Fig. 1-31) 1.50
    and Device Addressing, 17 or More Devices per 3272 (Fig. 1-32) 1-50
    Buffer Storage Address Control (Fig. 3-2) 3-8
```

```
3272 (Cont'd):
    Card Substitution List 3-10
    Control Unit Data Flow (Fig. 3-1) 3-7
    EC Cross-Reference 3.13
    Service Aids 3.16
    Symptom Fix List 3-3
3275:
    A-Gate Card Layout by Function, Display (Fig. 4-6) 4.12
    A-Gate Card Layout by Function, Model 3 (Fig. 4-8) 4-14
    B-Gate Card Layout by Function, Dial (Fig. 4-10) 4-16
    B-Gate Card Layout by Function, Leased (Fig. 4-7) 4.13
    B-Gate Card Layout by Function, Model 3 (Fig. 4-9) 4-15
    Card Substitution List 4-17
    Display Data Flow (Fig. 4-1) 4.7
    EC Cross-Reference 4-23
    EIA Connections 4-34
    Initiated Transmission, Sequence/Response Diagram, Dial Feature(Fig. 1-47) 1.80
    Remote Commands 1-43
    Remote Interface and Control Unit Data Flow (Dial), ASCII (Fig. 4-5) 4-11
    Remote Interface and Control Unit Data Flow (Dial), EBCDIC (Fig. 4-4) 4-10
    Remote Interface and Control Unit Data Flow (Leased Line), ASCII (Fig. 4-2) 4.8
    Remote Interface and Control Unit Data Flow (Leased Line), EBCDIC (Fig. 4.3) 4-9
    Service Aids 4-30
    Symptom Fix List 4-3
3277:
    A.Gate Card Layout by Function (Fig. 5-2) 5-10
    Card Substitution List 5.11
    Data Flow (Fig. 5-1) 5.9
    EC Cross-Reference 5.15
    Service Aids 5.21
    Symptom Fix List 5-3
3284/3286:
    EC Cross-Reference 6.15
    Model }1\mathrm{ and 2 A-Gate Card Layout by Function (Fig. 6-2) 6-8
    Model 1 and 2 A.Gate Card Layout by Function, Dual Case RPQ (Fig.6.3) 6.8
    Model 1 and 2 A.Gate Card Layout by Function, VFIC RPQ (Fig. 6-4) 6-9
    Model }1\mathrm{ and 2 Functional Block Diagram (Fig. 6.1) 6.7
    Model 3 A.Gate Card Layout by Function (Fig. 6.5) 6.9
    Model 3 A.Gate Card Layout by Function, Dual Case RPQ (Fig. 6-6) 6.10
    Model 3 A-Gate Card Layout by Function, VFIC RPQ (Fig. 6.7) 6.10
    Model }1\mathrm{ and 2 Card Substitution List 6.11
    Service Aids 6.25
    Symptom Fix List 6.3
    VFIC Printer Forms Specifications 6.46
3288:
    A.Gate Card Layout by Function(Fig. 7.2) 7.10
    Block Diagram (Fig. 7.1) 7.9
    Card Substitution List 7-6
    EC Cross-Reference 7.14
    Logic Board Layout 7-11
    Printer Card Gate Layout 7-12
    Service Aids 7-16
    Symptom Fix List 7.3
4800/7200-bps Installation (3275) 4-33
8000-bps - System 3 2-22
```

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604
IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591
IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

[^0]: *Trademark of North American Philips Company, Inc.

[^1]: Figure 4-11 (Part 5 of 11). 3275 Models 1 and 2 EC Cross-Reference Chart

[^2]: Figure 4-11 (Part 6 of 11). 3275 Models 1 and 2 EC Cross-Reference Chart

[^3]: 2568924 is the latest level analog card and replaces 2565080.

[^4]: *2568924 is the latest level analog card and replaces 2565080.

[^5]: *Trademark of Loctite Corp.

[^6]: *Kidder Machinery Division, Moore Business Forms Inc., Dover, New Hampshire
 \dagger Eastman Kodak Co., Rochester, New York

[^7]: *A product of Sheffield Corporation

[^8]: Legend:
 NA - Not applicable
 D - Display (3277 or 3275)
 P - Printer

