SA23-2643-00

First Edition (1990)

This edition notice applies to the /BM RISC System/6000 POWERstation and POWERserver Hardware
Technical Reference — General Information Manual.

The following paragraph does not aprly to the United Kingdom or any country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS 1S” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions; therefore, this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines
and programs), programming, or services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce such IBM products, programming,
or services in your country. Any reference to an IBM licensed program in this publication is not intended to
state or imply that you can use only IBM’s licensed program. You can use any functionally equivalent
program instead.

Requests for copies of this publication and for technical information about IBM products should be made to
your IBM Authorized Dealer or your IBM Marketing Representative.

©Copyright International Business Machines Corporation, 1990. All rights reserved.

Note to US Government Users — Documentation and programs related to restricted rights — Use, duplication,
or disclosure is subject to the restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

Trademarks

The following trademarks apply to this book:

IBM is a registered trademark of International Business Machines Corporation.

Personal System/2 and PS/2 are trademarks of International Business Machines
Corporation.

RISC System/6000 is a trademark of International Business Machines Corporation.

AlX is a trademark of International Business Machines Corporation.

Preface 1]

iv Preface

About This Book

Purpose

The IBM RISC System/6000 POWERstation and POWERserver Hardware Technical
Reference — General Information Manual is one part of the six—part RISC System /6000
hardware technical reference manual. This manual should be used in conjunction with the
following RISC System /6000 hardware technical reference manuals:

Audience

IBM RISC System/6000 POWERstation and POWERserver Hardware Technical
Reference — Options and Devices (SA23—-2646)

IBM RISC System/6000 Hardware Technical Reference — 7012 POWERstation and
POWERserver (SA23-2660)

IBM RISC System/6000 Hardware Technical Reference — 7013 and 7016 POWERstation
and POWERserver (SA23-2644)

IBM RISC System/6000 Hardware Technical Reference — 7015 POWERserver
(SA23-2645)

IBM RISC System/6000 POWERstation and POWERserver Hardware Technical
Reference — Micro Channel Architecture (SA23-2647).

The information in this manual is for reference. It is intended for hardware and program
designers, programmers, engineers, and anyone else who needs to understand the
operation of the IBM RISC System/6000.

Related Information

PS/2 Monochrome Display 8508 Technical Reference (SA23—-2448)
60/120MB Fixed-Disk Drive Technical Reference (S68X-2314)

PS/2 5.25-inch External Disk Drive Technical Reference (S68X-2348)
4—-Port Multiprotocol Interface Adapter Technical Reference (S33F-5337)
X.25 Co—Processor/2 Technical Reference (S16F—1879)

3270 Emulation Adapter Technical Reference (GA23—-0339).

Preface v

vi Preface

Table of Contents

Chapter 1. Introduction to the RISC System/6000 System 11
DeSCriPtiON i e e i 1-3
Central Electronics CompleXot iiiii it ittt ie it enennenenns 1-3
Workstation Hardware iiiiiiiiiiniiiiinnaeenennns 1-6
SGR 2564 Processor ChipSetottt ii it 1-9
SGR 2032 ProcessorChipSet ..ottt ittt i e, 1-16
Chapter 2. RISC System/6000 ProcesSSorscceeeeeeeenscsansans 2-1
[=T e] o (1] o P 2-5
Document Conventionscoitiiiiri it ittt ittt e e 2-5
SysStemMS OVerVIeW it i i i it it e e e e e 2-6
Instruction Formatsttt it iie et 2-7
Memory Addressingc.viiiiiiiiieit ittt et e, 2-14
BranCh ProCeSSOr ..ottt ittt i ittt ettt et e 2-16
Supervisor Linkage Instruction ittt it i, 2-23
Trap INStructionS ittt ittt i i i i e et it 2-24
Condition Register Field Instruction iiiiiiiiin... 2-25
Condition Register Logical Instructions, 2-25
Fixed—Point ProcessorRegistersciiiiiiiiininnnnrnennenns 2-29
Fixed—Point ProcessorInstructionscciiiiiiininnnennnnn. 2-31
Fixed—Point Store Instructionsottt 2-37
Fixed—Point Load with Update Instructions i, 2-42
Fixed—Point Store with Update Instructions 2-46
Fixed—Point Move Assist Instructionscoiiiiiiiiiiian.. 2-49
Fixed—Point Address Computation Instructions 2-53
Fixed—Point Arithmetic Instructions ittt 2-54
Fixed—Point Compare instructionsccoiiiiiiiiiiinnnnnnnn. 2-65
Fixed—Point Logical Instructionscciiiiiiiiiiiiiennennn.. 2-67
Fixed—Point Rotate and Shift Instructions o i, 2-73
Floating—Point ProcessorOverviewccciiiiinenennnnnnanenns 2-91
Floating—Point Data Representationcciiiiiiiennnnnnnn. 2-97
Floating—Point EXCeptionsc.coiiiiriiriiiriiiernnnnennennnnn 2-103
Floating—Point Resource Managementcciiitiiinenennnenn. 2-111
Floating—Point ExecutionModelsccoiiiiiiinreeinnnenennns 2-111
Floating—Point Processor Instructionsc..iiiiiienienrnnnnnss 2-114
Chapter3.Memoryccevvivivennnnns Cettietiessesasesennnns 31
Virtual Memory i i i et 3-3
SYStEM MEMOrYt i i it e it e it 3-3

Preface vii

Chapter 4. System /O Structureccceveieirerecrennssnsccennns 4-1

[1= ot o T o 4-3
Bit and Byte Numbering Conventions ittt 4-9
O BUS PIotoCOISiiiiiii ittt e ie e c e e et e e 4-15
ProgrammingModel i e i e 4-23
Special Facilitiesvovtiiiiniiiii ittt i et nrararnsnaneaennns 4-70
Systeml/OandStandard /Ol PR 4-78
Exception ReportingandHandlingccoiiiiiiiiiiiiiinnnen, 4-80
ImplementationDetailsc.iiiiiiiiii i i e, 4-80
Chapter 5. Vital ProductData Ceterecarieans eeenas 5-1
[L= (T o 5-3
Keyword Descriptor Summaryo i ittt it it r e 5-5
Hardware VPD Descriptor Summaryo iinininnieiniinrnnananens 5-10
Micro Channel Adapter Requirementsccoiiiiiiiiinennnnns 5-13
Sample Layout of the Micro Channel Adapter VPD 5-17
Chapter 6. Initial Program Load (IPL)ROMcccveveveneses ceese 6-1
1 L= T T o (T PP 6-3
IPLROM Componentscovuieienenreneneneneenneannsonensanns 6-6
IPL ROM Functional Characteristicscccviiiiiiiiiinnenns 6-14
o T 0o Te [T P 6-18
Chapter 7. Keyboard/Tablet/Speaker Adapterccciivenennnns 7-1
[=T To o 1T 7-5
System Interface: Input/Output Operationsto Adapter 7-7
Adapter Commandsc.itiiinriririnnetariiae et 7-14
Adapter Speaker Controlcciiitiiit it i i e i e 7-27
Adapter RAS and Security Functionsottt 7-31
Keyboard Device SupportNotescoiiiiiiniiiiiiiiiiinennn. 7-37
Adapter Design NOteSciiiiiin it it ie e ieennnaraennannans 7-37
Adapter and Keyboard Initialization Procedureccovvunt, 7-41
Standard I/0 Adapter Board to Device Interfaceccntn. 7-43
Chapter8.Keyboardcciiiiiiiiiniicercennncennssnnnnnnnns 8-1
[1= Yo 1o (T 8-3
Power—-On Routineciiiiiiii ittt it iei e tieteereaaraanan 8-4
Sequential Key—Code Scanningc.oviiiiiiiiiinrennienrenrenns 8-4
Commands fromthe Systemttt iiiiiiiiiiinene. 8-5
Commandstothe Systemiiiiiiiiiiii i iiinnarenanannns 8-6
£ Tz Lo I 07 o [T e 8-7
Clock And DataSignalscoiiiiiiinniinennennnenenensennenns 8-15
Keyboard Character Codescviiiiii it ittt ittt e eneannnns 8-17
Shift Status ..ottt i i i e i i i te e et 8-22
Lo T=T: |- T P 8-23
Key Position Layout iiiiiiiiiiiiinie i naranneaanns 8-23
Keyboard Layoutscoiiiiiiinin ittt e teneneienrneaeanens 8-24
Cablesand Connectorsoiiiiti ittt ittt et 8-29
Specifications i e i et e e 8-29

viii Preface

Chapter 9. 3-Button MouUSec.ivcitiiternnerncncncncrananas 9-1

[LT (T P 9-3
Operation MOdeSciiiiiiiiii it it e it e e 9-3
(00T 111 4T T Lo - P 9-4
Data RePOMtottt i it e e i i e 9-6
ErrorHandling . ..ot e e e 9-7
Data Frame ...t i i i i i e it i e e e e e 9-7
Data TransmissiONcoiiiiiiiit ittt ittt ittt 9-7
Electrical Interfacet e 9-8
Operational Characteristicsccviiiii it i e nnn 9-9
Connector Specificationscoiiiiiiii it i i e 99
Chapter 10. Micro Channel AdapterSupportcceiivennn. 10-1
DeSHPtiON e 10-3
IBM Micro Channel Optional Features Supported 10-4
Configurationot i i et 10-5
RISC System/6000 Configuration Procedurescccvvvnenn.. 10-6
Other Micro Channel Adapter Design Considerations 10-6
Adapter Configurations Supported i i i 10-7
10141 T=T 0 o T PO 10-7
a1 PP 10-9
Micro Channel Architecture Deviations, 10-10

Preface ix

X

Preface

Chapter 1. Introduction to the RISC System/6000
System

Chapter Contents
1 1= T Tt {7 (T o P 1-3
Central Electronics Complexottt iiee e, 1-3
Workstation Hardware ittt 1-6
SGR 2564 Processor ChipSetcciiiiiiiiii ittt 1-9
Fixed=PointUnit i i i it ii i 1-9
Floating—Point Unitci ittt inrenrneararanns 1-10
Instruction Cache and Branch ProcessingUnit 1-10
DataCache Unitc.ciiiiiiiiiii it ittt ieenrnencnnanns 1-11
Memory Control Unit it it et it ieirneeeannnss 1-12
10 1 1-12
SGR 2564 Processor Pipelineottt 1-14
SGR 2032 Processor ChipSet ..ottt ittt iieiennns 1-16
RISC System/6000 Table TopModelc.cciiiiiiiiinnnnnnn. 1-17

Introduction 1-1

1-2 General Information Manual

Description

The RISC System/6000 unit is a second—generation RISC machine. Like earlier RISC
processors, the RISC System/6000 unit employs a simple register—oriented instruction set
that is completely hardwired, and features a pipelined implementation and an efficient
storage hierarchy. This enables the processor chip set to run an instruction almost every
cycle. Unlike earlier RISC processors, however, the RISC System/6000 unit employs several
advanced architectural and implementation features including separate instruction and data
caches, zero—cycle branches, multiple instruction dispatch, simultaneous running of fixed—
and floating—point operations, and overlapped running of register—register (RR) operations
and load and store commands. As such, the RISC System/6000 unit combines the simplicity
of a RISC instruction set with sophisticated hardware design techniques to achieve a short
cycle time and a low cycles—per—instruction (CPI) ratio. In a single cycle, four instructions
can be run simultaneously: a branch instruction, a fixed—point instruction, a floating—point
instruction and a Condition register logical instruction. Counting the floating—point
multiply—add instruction as two operations, this yields a peak run rate of five operations per
cycle.

Central Electronics Complex

The RISC System/6000 SGR 2564 and SGR 3064 processor chip sets central electronics
complex (CEC) contains up to eleven semi—custom chips: a fixed—point unit (FXU), a
floating—point unit (FPU), an instruction cache and branch processing unit (ICU), four data
cache units (DCU), a memory control unit (MCU), an input and output unit (IOU), and a clock
chip (CLK). Every memory board contains two data multiplexing modules and one control
module for interleaving. The SGR 2564 and SGR 3064 processor chip sets share the same
architecture. In this manual, SGR 2564 is used and applies to both the SGR 2564 and SGR
3064 processor chip sets. A block diagram of the SGR 2564 and SGR 3064 processor chip
sets is illustrated in Figure 1 on page 1-4.

Introduction 1-3

1-4

I-Cache Reload (2W) E
..... ‘. .
@w) | | e
— FPU ' |pocu| | m
: : r
I-Bus (2W) : : y
ICU i DCU :‘__, B
aw) . 'M-Bus| 0
L Fxu [pcu| EWL Y
| | d
| | L] -
P-BUS (1W) I ! |bcu| oy
~ I —
System /O Bus
(2w)
IPL

ROM[—® Mcu [«

IoU |[¢&—

TCW
RAM

Micro Channel
Figure 1. SGR 2564 and SGR 3064 Processor Chip Sets

The ICU contains a two—way set—associative 8K-byte instruction cache. It runs branch
instructions, Condition register logical instructions, and supports interrupts. In most cases,
branches cost zero cycles because the ICU looks ahead in the instruction stream and
removes branches from the stream. In a given cycle, the ICU can dispatch two instructions,
two to the FXU, or two to the FPU, or one to the FXU and one to the FPU, by way of the
I-bus shown in Figure 1. The floating—point unit contains a full 64—bit double—precision
floating—point data flow and conforms to the IEEE 754 binary floating—point standard with
software support. Floating—point instructions can run in parallel with fixed—point instructions
for maximum performance. The FXU contains the general purpose registers and the
arithmetic logic unit, and runs all fixed—point instructions. The FXU includes an address
translation and data protection unit that makes precise interrupts easier to implement with
minimal performance penalty. The FXU also provides the directories and control for the data
cache, and controls the running of both fixed—point and floating—point load and store
instructions.

General Information Manual

Four DCUs provide a four—way set—associative 64K-byte data cache, and form a four-word
interface to memory, a two—word interface to FPU, and a single—word interface to FXU.
DCUs contain error checking and correction (ECC) and bit steering logic. They provide the
data path for Direct Memory Accesses (DMA), and supply the path for I-cache (instruction
cache) reloads. The MCU contains the controls and configuration registers for system
memory. The MCU provides the data path between I/O and processor chip set for I/0
(Input/Output) load and store instructions. The MCU also interfaces to the ROM that
contains the system initialization code for the processor chip set (also referred to as the
initial program load read—only memory (IPL ROM)).

The processor bus (P-bus) shown in Figure 1 on page 1-4 is used to send the address to
the MCU for D—cache (data cache) reloads (by FXU) and for I-cache reloads (by ICU). It is
used for |-cache translation look-aside buffer (TLB) reloads (by FXU), and for I/O loads and
stores (by FXU). The P-bus is also used for moves to and from special registers, (for
example, Segment registers, Link register, and Machine State register) between FXU and
ICU. The system I/O bus is used to transfer the DMA data between the IOU and system
memory by way of the DCU, and provides a path for I/O load and store operations between
the FXU and the IOU by way of the MCU.

The I/O unit contains an I/O channel control unit (IOCC) that generates the Micro Channel
interface. The IOCC uses the data stored in translation control word (TCW) and tag tables
for address translation and data protection during I/O operations.

Introduction 1-5

Workstation Hardware

1-6

The RISC System/6000 deskside and rack models have a processor board with a processor
chip set and up to eight memory board connectors. The models with the SGR 2564 chip set
require that the memory boards to be installed in pairs. On models containing the SGR 2032
chip set, memory boards do not have to be installed in pairs. These models have separate
I/0 Boards with eight Micro Channel slots and separate Standard I/O Boards as shown in
Figure 3 on page 1-8. '

The table top RISC System/6000 models have a processor board with a SGR 2032 chip set.
The processor board plugs into the connectors on the system board. The system board also
has two memory board connectors and four Micro Channel slots as shown in Figure 6 on
page 1-17.

* Keyboard/Tablet/Speaker Adapter

: v '

* Two EIA-232 Serial Ports ! J' D '

* Parallel Port ' FP X

* Diskette Adapter E | ::'_. (ol '

R I I ke : T FX) !
: : ; L D) '
v : ; I 1t08 |
b : .. [Rom—LMe !
' Standard I/0 Board | ' X
s .+ _Micro Channel » 10U Processor |
Prime, Board '

D B I T R R T TR A Y - - -

1/0 Board
oar System_r---B
Micro Channel]

1 I/0 Slots 8

Figure 2. RISC System/6000 Deskside and Rack Organization

The Micro Channel prime interface from the processor board, shown in Figure 2, is attached
to the I/0 Board where it is buffered (B) and feeds eight Micro Channel I/O slots. These I/O
slots can be occupied by Micro Channel boards such as file adapters, tape drive adapters,
LAN adapters (Ethernet or Token Ring), display and graphics adapters, coprocessors,
terminal emulators, and printer adapters. The I/O Board also contains the system 1/O
functions. One system 1/O function is the On Card Sequencer (OCS) micrmontrbllgr, which
initializes the processor chip set during IPL and controls the built-in self test (BIST
sequence. Other system I/O functions on the I/O Board are nonvolatile random access
memory (NVRAM) for configuration and error logging, operator panel interface for error
display, time—of—day clock, computer reset register, and system status and configuration
registers. The Standard I/O Board contains the interfaces and connectors to keyboard,
mouse, tablet, parallel printer port, diskette, and two EIA-232 serial ports. See the specific
system manual for the interfaces and connectors supported.

General Information Manual

Figure 3 on page 1-8 shows the physical layouts of the processor board, IO Board, and
Standard 1/0 Board. Shown on the processor board are the floating—point unit (FP),
fixed—point unit (FX), instruction cache unit (1), four data cache units (D), memory control
unit (MC), and one or two I/O units (I0U). In addition, the clock chip (CLK), and IPL ROM
are also shown. The clock chip has several crystal oscillators around it that vary in speed
depending upon the processor chip set. Five 1M-bit dynamic random access memory
(DRAM)s that make up the translation control word (TCW) and tag memory are shown at the
lower right hand corner. They are used by IOCC for address translation and data protection
during /O operations. Eight memory slots are shown on the right. The IPL ROM is next to
the MC chip.

The processor board also carries some Vendor Technology Logic (VTL) parts. The two
multiplexers (Mux) shown below the IPL ROM are used to multiplex 16 interrupt lines from
the 1/0 Board to 4 I/O unit inputs. The 64K bytes by 8 OCS ROM and two accompanying
latches are at the lower right corner. This ROM holds the test data for the On Card
Sequencer (OCS), which resides on the |/0 Board, and the latches are used to multiplex and
demultiplex the address and data lines.

Introduction 1-7

Processor —
COnnector§ . ,
FX|| D D
CLK C I] :{]
| :) ' Power
MC C |] Connectors
‘ ‘ L | | 1]
of o]y, e
TCW OCS ROM
— 00000 gt
—/1]
| II II
I/O Board 1 CI |] —
2 U1 1 J [Buffers| — Operator
3 O 1 j L] OCS Panel
Standard /0 Connector
4 L1 1] Board Connector
i 1]
: [: Power
———— 11—
, Micro Channel Connectors System 1/0 Connector
| —— m—
==:
L_.I.__l
Standard
I/O Board Parallel
Printer 0 .)
EIA-232 I/0 Board Connector
ElIA-232
Tablet
Keyboard Diskette
Mouse —
Figure 3. RISC System/6000 Deskside and Rack Processor board, 1/0O Board, and Standard I/O
Board.

The processor board carries a host of tie—up and tie—down resistors, and decoupling
capacitors not shown in Figure 3. There are also electromagnetic compatibility (EMC)
connectors that couple the chassis ground to board ground in order to minimize the
radio—frequency interference (RFI). Power connectors are shown at the right, and the I/O
Board connector is at the lower right corner of the processor board.

The I/0O Board is placed next to the processor board, and is attached to it by way of a
connector as shown in Figure 3. The I/O Board contains eight I/O slots and provides a
connector to the operator panel seven—-segment light emitting diodes (LEDs). The I/O Board
holds the OCS, system I/O, and a collection of additional VTL parts to implement its
functions.

The Standard 1/0 Board fits right behind the I/0 Board, and is attached to it through a
connector shown in Figure 3. The Standard I/O Board provides interfaces and connectors to
keyboard, mouse, tablet, parallel printer port, diskette, and two EIA-232 serial ports.

1-8 General Information Manual

SGR 2564 Processor Chip Set

As mentioned earlier, the SGR 2564 processor chip set implementation is partitioned into six
different semi—custom designed Very Large Scale Integration (VLSI) chips. The features of
the chips are summarized in the following subsections.

Fixed—-Point Unit
FXU decodes and runs all fixed—point instructions and floating—point load and store
instructions. Both fixed— and floating—point instructions go to the |-buffers of FXU and FPU,
and are run concurrently in FXU and FPU. In addition, FXU contains the address translation,
data protection, and D—cache directory units.

Its functions include:

Instruction decode. (Contains four instruction prefetch and two decode buffers.)
FXU and FPU synchronization logic.
Real-time clock and decrementer facilities.

Controls for floating—point load and store operation. Address generation and data cache
controls for floating—point load and store instructions are generated by FXU.

Register—to—register (RR) operations. The FXU has a register file that holds thirty—two
32-bit general purpose registers. The register file has five ports. Three ports are read
ports and two are write ports (3R,2W). The five ports can all be read and written
simultaneously. The hardware associated with the register file implements full bypass
(register forwarding) to eliminate hold—offs when two dependent operations (ops) follow
each other, and performs register tag allocation so that load operations do not hold off the
RR-ops as long as there are no dependencies.

Instruction runs. RR ops, fixed and floating load and store operations, interrupts, string
and character ops, and I/0 load and store operations.

Arithmetic-logic unit, shifter, and rotator.

Fixed—point multiply and divide operations implemented in hardware. Multiply takes 3 to 5
cycles and divide takes 19 to 20 cycles.

Address translation unit. Two—-way set-associative TLBs with 64 entries in each set.
Segment registers. Sixteen 32-bit segment registers.

Hardware TLB reloads. TLB misses are serviced by hardware that has significant
performance advantages over other RISC implementations where TLBs are reloaded by
software. FXU searches the Hash Anchor table (HAT) and Page Frame table (PFT), and
updates the PFT as required.

Data protection. Page protection and data locking are implemented in hardware.

Address translation for I-cache TLB reloads. When there is a TLB miss in ICU, FXU
brings the PFT entry from the memory, sends it to ICU over the P-bus, and performs the
required PFT updates.

Data cache control, directories, and least recently used (LRU) hardware contain a
four-way set associative data—cache directory with 128 entries in each set.

Store buffers. Data and address of one fixed—point store instruction can be held in this
buffer waiting for a convenient time to be put into the D—cache. In addition, there is a
four—entry pending store queue for floating—point store instructions.

Introduction 1-9

¢ Running floating—point load and store instructions.
o Request generation for data cache reload operations.

o Data cache operations such as cache line flush and cache line invalidate.

Floating—Point Unit
Unlike typical floating—point co—processor chips, the Floating Point Unit (FPU) is tightly
coupled with the rest of the processor chip set. FPU and FXU are equal—priority and
independent functional units. They receive the instructions from ICU at the same time and
run them concurrently. At a given cycle, a fixed— and floating—point instruction can be run
simultaneously. FPU has a full 64-bit double—precision data flow, runs floating—point
arithmetic ops (multiply, add, divide, subtract), performs conversion between single and
double precision, and synchronizes on floating—point load and store operations. FPU
conforms to IEEE 754 binary floating—point standard with software support and performs
IEEE 64-bit double—precision operations.

The FPU functions include:

o Accumulate instruction (A X B + C) is the key feature of the FPU. The multiply and add
operation is run with a single round and with the same delay as a multiply or an add. This
reduces the instruction path length by combining two instructions into one and provides
exceptional floating—point performance. Due to the 64-bit data flow, the FPU can run a
double—precision multiply, add, or accumulate every cycle. The multiply—add operation, by
only rounding the final result and producing the full 105 bit intermediate product, provides
significantly enhanced precision.

¢ Register renaming is used to increase the overlap of the running of floating— and fixed—
point functional units. This allows floating—point load and store operations to be run
independently from the floating—point arithmetic operations and makes it possible to carry
on load operations to a target register of a floating—point instruction while the
floating—point operation is still going on. This is done by remapping the target register to
one of the remap registers. As a result, the FXU can perform floating—point load
operations without having to wait for previous floating—point arithmetic operations to be
completed.

o Thirty-two architected 64—bit floating—point registers, six rename registers, and two divide
registers.

o Hardware divide.

e The leading zero anticipator avoids the full delay of a leading zero detector. This provides
overlap of addition and normalization.

Instruction Cache and Branch Processing Unit
The ICU contains a two—way set associative 8K—byte I-cache with a line size of 64 bytes.
The ICU processes branch instructions and Condition register (CR) logical instructions.
Then, it removes them from the instruction stream and dispatches the rest of the instructions
to fixed— and floating—point units. In most cases, fixed— and floating—point units receive an
uninterrupted instruction sequence and do not see the effect of the branches. This is
referred to as zero—cycle branches. Usually, unconditional branches cause no delay in the
pipeline. Conditional branches that are not taken (fall-through) also have no penalty
because ICU dispatches the branch—not-taken path to FXU and FPU before figuring out the
outcome of the branch. Of course, the branch—not-taken path instructions are cancelled if
the conditional branch is taken. The branch-taken path is fetched from the I-cache arrays
but is not dispatched to FXU and FPU. Conditional branches that are taken may delay the
pipeline by 0 to 3 cycles depending on on how much earlier the Condition register was set.

1-10 General Information Manual

The compiler tries to move the condition code setting instruction far enough ahead of the
conditional branch to minimize the conditional-branch penality.

The ICU performs the following functions:

o Instruction caching. Contains a two—way set associative 8K-byte cache, directories, and
hardware to support a Least—Recently-Used (LRU) replacement algorithm.

e Instruction address translation. Contains a two—way set associative translation look-aside
buffer (TLB) with 16 entries in each set.

¢ Instruction fetching. A maximum of four instructions can be fetched from the cache arrays
in a single cycle.

e Instruction dispatching. Dispatches a maximum of four instructions per cycle: two
instructions internally to branch and condition—register units and two instructions
externally to FXU and FPU.

¢ Branch run with zero—cycle branches.
« Condition register logical instruction run.
¢ Interrupt control.

¢ Manipulation of architected registers.

Data Cache Unit
The SGR 2564 chip set has a four-way set associative 64K-byte of data cache divided into
four data cache chips of 16K-byte each. The cache-line size is 128 bytes and the cache is
implemented as a store—back cache to minimize the memory bus traffic. (When the data is
stored in the D—cache, it is not sent to memory. The data is written into memory only when a
dirty line is replaced.) DCU supports fixed— and floating—point load and store operations, and
provides a path from memory for I-cache reload and DMA operations. D—cache provides bit
steering and ECC for load and store, I-cache reload, DMA, and memory scrub operations.
D-cache directories, LRU hardware, dirty-bit information, and TLBs are in the FXU.

The main features of the DCU include:

¢ The collection of four D—cache Chips has a four-word interface to system memory for
high—-bandwidth cache reload and store—back operations.

* Separate data interfaces to FXU (1 word) and FPU (2 words).

¢ D-cache reload buffer (CRB). A 128-byte CRB implemented across the four DCUs
receives data from memory, IPL , FXU, and FPU. A load operation can read data from
CRB if the data is from a line that is not yet loaded to cache arrays but is in the CRB. A
fast load—through path that bypasses the cache arrays is provided from the memory bus
to the FXU and FPU to minimize the load operation delays. Unlike simpler cache
implementations, which do not have a CRB, the SGR 2564 processor chip set does not
have to wait for the entire cache line to be brought from memory before it can access the
data required by the load instruction that caused the cache miss. This makes long cache
lines practical, which in return improves the D—cache hit ratio.

o Store—back buffer (SBB). A 128-byte SBB implemented across the four DCUs accepts
data from D-cache array or directly from CRB and passes it to system memory.
Store—-back buffers improve the performance because the data cache arrays are not kept
busy during the store—back sequence. The entire line is loaded in parallel into the SBB,
and the data is sent to the memory over the memory bus in 8 cycles. The DCU can
service the processor chip set during these cycles because the arrays are freed up by

Introduction 1-11

SBB. In addition, the store—back data can be left in the SBB and stored back later if a
higher priority memory access is pending.

¢ |—cache reload buffer (IRB). This receives data from memory or IPL ROM, and sends it to
the I-cache. The data from system memory is processed through ECC and bit—steering
logic. This buffer is also used for memory scrubbing.

¢ |/O DMA buffer (IOB). Buffers the data between system memory and I/0. The DMA traffic
goes between DCU and IOCC by way of the system 1/O bus.

e ECC (single-bit correct, double-bit detect) and bit—steering logic for incoming and
outgoing data from and to memory including D— and I-cache reload, DMA, and memory
scrub operations.

Memory Control Unit
The memory control unit (MCU) is the central system controller. The MCU controls the
interface between D—cache and system memory, oversees DMA operations between
memory and the IOCC, provides a data path for I/O loads and stores between the processor
chip set and IOCC, forms an interface to the IPL ROM, and controls memory scrub
operations.

The main features of the MCU are:
e Drives all control lines to memory.
o Controls DMA operations between IOCC and system memory.

¢ Controls memory interface to DCU. MCU informs DCU where the incoming data should
go. The MCU also directs the unloading of DMA and |-cache buffers.

o Controls the memory scrubbing. MCU generates the addresses and records any memory
errors DCU detects.

¢ Controls reading and writing of bit—steering registers.

e Contains the Bank Configuration registers, which indicate the size and starting point of
each bank of system memory.

¢ Provides a data—path for I/O load and store operations between the processor chip set
and IOCC.

o Performs arbitration for the memory bus.
* Provides an interface to initial program load read—only memory (IPL ROM).

o Collects external interrupts from the IOCC, decrementer, power supply, and system
memory.

I/0 Unit
The I/0 unit (I0U) contains an I/O channel controller (IOCC) that generates the Micro
Channel Prime interface. The data interface between the processor/system memory and the
I/O unit is by way of the two—word wide system I/O bus. The Micro Channel has a one-word
address bus and a one—word data bus. The IOCC supports an I/O architecture geared for
performance, robustness, and error recoverability. The Micro Channel architecture supports
streaming data, address and data parity, and synchronous exception reporting functions (I/O
load and store commands cause precise interrupts like regular load and store commands).
The main function of the IOCC is to transfer data between system memory and adapters on
the Micro Channel. The processor unit can transfer data to and from the adapters using 1/0
load and store operations, and the adapters can transfer data to and from system memory
using DMA. The IOCC supports both DMA bus masters and DMA slaves. All data transfers

1-12 General Information Manual

support address protection mechanisms to provide data security. Up to 15 DMA channels
and 16 levels of interrupts are supported by the IOCC. With the new streaming data mode,
multiple data cycles can be transferred within one bus envelope. This amortizes device
selection overhead across the entire packet and nearly doubles the performance for large
data bursts. Precise 1/0O load and store interrupts improve error recoverability.

The main features of the IOCC include:

¢ Interface to System I/O bus and Micro Channel.

o Programmed I/O (PIO) operations to and from the following address spaces.
- System memory space

Micro Channel I/O space (I/O adapters)

Micro Channel memory space (memory on the Micro Channel)
IOCC space

Architected IOCC registers

Tag and TCW RAM.

¢ |/O load and store operations are performed with or without alignment and with a
protection mechanism. Protection is provided by TCW for system memory and limit
registers for I/O devices.

¢ Handles data to and from DMA slaves.

e Handles data to and from DMA bus masters.

e Address translation for load and store operations and DMA bus masters.
¢ Handles I/O interrupts.

¢ Supports various IOCC commands such as enable and disable DMA, DMA device buffer
flush, lock, and time delay.

Introduction 1-13

SGR 2564 Processor Pipeline
Because of the complexity of the pipeline, various instruction buffers, hold—off conditions,
and the special cases, there are many possible variations and exceptions in the way an
instruction can be run in the RISC System/6000 unit. With that in mind, a typical pipeline for
a register-to—register (RR) operation could be constructed as follows:

------ ICU------p---------FXU----------

I-Cache |[Instruction|instruction| Execute | Write

Access Dispatch | Decode Back
(ICA) (DSP) (DEC) (EX) (WB)

In the first cycle, ICU reads the cache array, then in the dispatch (second) cycle the
instruction is partially decoded to see if it is a branch, and non-l-cache instructions are
dispatched to FXU and FPU. At the third cycle, FXU decodes the instruction, accesses the
register file, and latches up the values read from the register file at the Arithmetic Logic Unit
(ALU) input registers. In the execution (fourth) cycle, the ALU operation takes place. Finally,
the result is written back into the register file in the fifth cycle.

A typical pipeline for a load is as follows:

------ IcU------p----- FXU------94--DCU- 9--FXU--
I-Cache |[Instruction|instruction| Execute |D-Cache| Write
Access Dispatch | Decode Access Back
ALU | TLB
DIR

In the first half of the execution cycle, the ALU operation takes place and the virtual address
is calculated. In the second half of the execution cycle, TLBs are accessed to determine the
real page number and, in parallel, the D—cache directories are accessed to see if the data is
in the cache. In the fifth cycle, data cache is accessed and the data is shipped back to FXU
or FPU where it is latched in a register. And in the sixth cycle, the data is written into the
register file.

The floating—point arithmetic operation pipeline is as follows:

------ ICU------p-------cccccccccccccccccce-FPY--------cccccceccn--
I-Cache |Instruction| Predecode| Rename |Instruction | Execute-1 | Execute=2 | Write
Access Dispatch Decode | (Multiply) (Add) Back

There is a synchronization cycle before the decode operation, and the floating—point
arithmetic operations (multiply, add, accumulate) take two cycles to run.

1-14 General Information Manual

Because the RISC System/6000 unit is pipelined, all these operations are overlapped as
shown in the following illustration, and all the hardware resources are utilized to their full
potential.

Cycle
1 2 3 4 5 6 7 8
Instruction
1 ICA| DSP | DEC| EX wWB
2 ICA DSP | DEC| EX WB
3 ICA | DSP| DEC| EX | WB
4 ICA DSP| DEC| EX wB

As mentioned earlier, the pipeline is not as simple as described in the preceding text
because ICU contains I-buffers and can read up to four instructions per cycle from the
cache array. I-cache can dispatch two instructions per cycle to FXU and FPU. In addition,
both FXU and FPU contain their own |-buffers. ICU looks ahead and runs branches such
that they are in effect taken out of the instruction stream.

Introduction 1-15

SGR 2032 Processor Chip Set

The SGR 2032 processor chip set is a cost—reduced version of the SGR 2564 processor
chip set. The SGR 2032 processor chip set is shown in Figure 4.

I-Cache Reload E
ew ”
(W) i e
— FPU 5 E o
| |DCU| | r
| [y
ICU ! !
I-Bus (2W) —» — g
]]
] Dcu lM—Bus o
]]
—» Fxu ! R -
@w) : d
I 7 J s | |
P-BUS (1W) L™
l System I/O Bus
(2w)
RoM[—*| Mcu [
System /0 Bus (2W)

oy ¢——

TCW
RAM

Micro Channel
Figure 4. SGR 2032 Processor Chip Set

The major differences between the SGR 2032 processor chip set and the SGR 2564
processor chip set are as follows:

e The SGR 2032 processor chip set has only two DCUs rather than four.

¢ Fixed—- and floating—point data buses are dotted together. DCU provides a two—word bus.
Because FXU has only a single-word data interface, it is tied to only half of the bus. DCU
manipulates the data accordingly when FXU is using the bus.

¢ In the SGR 2032 processor chip set, the D—cache line size is 64 bytes (half of the SGR
2564 processor chip set D—cache line size).

1-16 General Information Manual

e DCU sends the data to reload the I-cache over the system I/O bus rather than having a
dedicated |-cache reload bus to ICU.

o The processor chip set has a two—word memory interface rather than a four— word
interface. As a result, the SGR 2032 processor chip set requires a minimum of one
memory board and the SGR 2564 processor chip set requires a minimum of two memory
boards. The minimum memory configuration for the SGR 2032 processor chip set is a
single 8M-byte memory board.

The SGR 2032 processor chip set and the SGR 2564 processor chip set use the same
chips. There are no new part numbers. A mode pin tells FXU, DCU, and MCU if the system
is a SGR 2032 processor chip set or the SGR 2564 processor chip set.

RISC System/6000 Table Top Model
The RISC System/6000 table top model uses the SGR 2032 processor chip set as shown in
Figure 4 on page 1-16. Figure 5 shows the processor board and Figure 6 shows the system
board for the RISC System/6000 table top model.

FPU FXU ICU
CLK DCU DCU MCU IoU
1] L1 I LN

Figure 5. RISC System/6000 Table Top Processor Board

Power Supply
External Diskette Connectors _ Internal Diskette
Connector | | 1 Connector
— —] —L— 1| Operator Panel
Parallel Port Connector
——1— Direct Bus—-Attached
c : 1 Fixed-Disk Connector
[| |] 2 .
I I » Micro Channel
Connectors
| . 1] 4
EIA-232 [J [I | 1 | - U Keylock and
EIA-232 [] ' .] Reset Button
Tablet [J Processor Board Connectors Connector
meyboard % . i
ouse :l, Memory Board —
Battery
,? [e Connectors Connector
Back Fan
Connector

Figure 6. RISC System/6000 Table Top System Board

Introduction 1-17

1-18 General Information Manual

Chapter 2. RISC System/6000 Processors

Chapter Contents

DesCrption e e e e 2-5
Document Conventionst i e i 2-5
SYStEMS OVeIVIEW . .. it i e e e 2-6
Instruction Formatscoo i i e e 2-7
Memory Addressingottt i e e 2-14
Effective Address Calculation i, 2-14
BranCh Processor ot i e e e e 2-16
Branch ProcessorRegisters, 2-16
Branch Instructions i e e 2-20
Supervisor Linkage Instruction i 2-23
Trap INStructionso e e e e 2-24
Condition Register Field Instruction i, 2-25
Condition Register Logical Instructionso, 2-25
Fixed—Point Processor Registerso it iiniininenannnn 2-29
General Purpose Registerst 2-29
Fixed—Point Exception Register 2-29
Multiply Quotient Register i 2-30
Fixed—Point Processor Instructions iiiiiinennn. 2-31
Fixed-Point Store Instructions i 2-37
Fixed-Point Load with Update Instructions oiiennn.. 2-42
Fixed—Point Store with Update Instructions 2-46
Fixed—Point Move Assist Instructions iiiiiiiiin..n. 2-49
Fixed—Point Address Computation Instructions 2-53
Fixed—Point Arithmetic Instructions i i, 2-54
Fixed—Point Compare Instructions ciiiiiiiiiiennn. 2-65
Fixed—Point Logical Instructionst iiiiiiiinnn. 2-67
Fixed—Point Rotate and Shift Instructions 2-73
Fixed—Point Rotate with Mask Instructions 2-73
Rotate Left Inmediate Then Mask Insert (M-Form) 2-73
Rotate Left Then Mask Insert (M—Form) 2-74
Rotate Left Inmediate Then AND With Mask (M—Form) 2-74
Rotate Left Then AND With Mask (M—Form) 2-74
Fixed—Point Rotate Bit Instructions iiiiiien... 2-75
Rotate Right And Insert Bit (X—=Form), 2-75
Fixed—Point Bit Mask Instructions i, 2-75
Mask Generate (X—=Form)ttt i e 2-75
Mask Insert From Register (X-—-Form), 2-76
Fixed—Point Shift Instructions i, 2-76
Shift Left (X=Form)o e 2-76

Shift Right (X—=Form) i i i i e 2-77

Shift Left With MQ (X—Form) it 2-77

Shift Right With MQ (X—=Form)ttt 2-78

Shift Left Immediate With MQ (X-Form)cu.. 2-78

Shift Right Immediate WithMQ (X=Form)t 2-79

Processor Description ~ 2-1

2-2

Shift Left Long Immediate With MQ (X-Form)
Shift Right Long Immediate With MQ (X-Form)
Shift Left Long With MQ (X=Form)t
Shift Right Long With MQ (X—Form) i
Shift Left Extended (X=Form)t i e
Shift Right Extended (X—Form) i
Shift Left Extended With MQ (X—Form) ittt
Shift Right Extended With MQ (X—Form) i,
Shift Right Algebraic Immediate (X-Form) i,
Shift Right Algebraic (X—=Form)ot
Shift Right Algebraic Immediate With MQ (X-Form)
Shift Right Algebraic With MQ (X—Form) iiiiian...
Shift Right Extended Algebraic (X—-Form) oot
Double—Precision Shifts it e
Move To and Move From System Registers Instructions
Move To and Move From Condition Register Instruction
Move From Machine State Register Instruction
Floating—Point ProcessorOverviewc..cooitiiiieninnnnnnnn.
Floating—Point Registers i i i
Floating—Point Status and Control Register
Floating—Point Data Representation iiiiiiiiiiinnnn.
Data Format i i e it e
Value Representation ittt
Binary Floating—Point Numbers i,
Normalized Numbers (+NOR) i
Zerovalues (+0)ottt
Denormalized Numbers (+DEN) i i
Infinities (+INF)o i i i i e ettt
NotaNumbers (NaNS)ot i et eeinens
Normalization and Denormalization ittt
PrECISION ..o e et et e
Roundingooi i e
DataHandling i e
Floating—Point Exceptionsttt i i it et e
Invalid Operation Exceptionot
Definition . ..o e e et
ACHON .ot
Zero Divide Exception ittt e e e e
Definition e
RV {1 4
Overflow Exception i i et
Definition e e e
ResultantValue ittt
Insuring Correct Results ittt
Ve (1o
Underflow Exceptionttt i i e i i i it
Definition e
Action ettt
Inexact Exception i e e
Definitiono e i
Vo (1o o

General Information Manual

2-79
2-80
2-80
2-81
2-81
2-82
2-82
2-83
2-83
2-84
2-84
2-85
2-85
2-86
2-87
2-89
2-90
2-91
2-92
2-93
2-97
2-97
2-98
2-98
2-98
2-99
2-99
2-99
2-99
2-100
2-101
2-101
2-102
2-103
2-105
2-105
2-105
2-106
2-106
2-106
2-107
2-107
2-107
2-107
2-108
2-109
2-109
2-109
2-110
2-110
2-110

Floating—Point Resource Managementciiiiiiinnn.. 2-11

Floating—Point ExecutionModels it iiiiiinann. 2-11
Execution Model for IEEE Operationsc.coiiiiienen.n. 2-111
Execution Model for Multiply—Add Type Instructions 2-113

Floating—Point Processor Instructionsiiiiiiininenn.. 2-114
Floating—Point Load Instructions 2-114

Normalized Operandttt iiintaraeennnnn 2-114
Infinity /QNaN/SNaN /Zeroottt iiininnannn 2-114
DenormalizedOperandc.ciiiiiiin ittt 2-114
Load Floating—Point Single (D-Form)c.coiiiiinnnn. 2-115
Load Floating—Point Single Indexed (X—-Form) 2-115
Load Floating—Point Double (D-Form) ot 2-116
Load Floating—Point Double Indexed (X—-Form)ovut. 2-116
Load Floating—Point Single With Update (D-Form) 2-117
Load Floating—Point Single With Update Indexed (X—-Form) 2-117
Load Floating—Point Double With Update (D-Form) 2-118
Load Floating—Point Double With Update Indexed (X-Form) 2-118
Floating—Point Store Instructions 2-119
No Denormalization Requiredo iiuiiinininennnn. 2-119
Denormalized Operandcoiiiiinin i, 2-119
Store Floating—Point Single (D-Form), 2-120
Store Floating—Point Single Indexed (X-Form) 2-120
Store Floating—Point Double (D—Form) 2-121
Store Floating—Point Double Indexed (X—-Form) 2-121
Store Floating—Point Single With Update (D-Form) 2-122
Store Floating—Point Single With Update Indexed (X-Form) 2-122
Store Floating—Point Double With Update (D-Form) 2-123
Store Floating—Point Double With Update Indexed (X-Form) 2-123
Floating—Point Move Instructions i, 2-124
Floating Move Register (X—Form) i, 2-124
Floating Negate (X—=Form)ottt 2-124
Floating Absolute Value (X—=Form)ttt iinnenenn. 2-124
Floating Negative Absolute Value (X-Form) 2-125
Floating—Point Arithmetic Instructions 2-126
Floating Add (A—Form)t et e e 2-126
Floating Subtract (A—Form)ttt 2-127
Floating Multiply (A—Form) i it ieieinennn 2-127
Floating Divide (A—Form)iiuiiiiininniinininnnennnnn 2-128
Floating Round To Single Precision (X-Form) 2-128
Floating—Point Accumulate Instructions covan. .. 2-129
Floating Multiply Add (A—Form) ...ttt 2-129
Floating Multiply Subtract (A-Form)ot 2-130
Floating Negative Multiply Add (A—Form) 2-131
Floating Negative Multiply Subtract (A-Form) 2-132
Floating—Point Compare Instructions iiiiiaan.. 2-133
Floating Compare Unordered (X-Form)c.ccoviiiennnnn.. 2-133
Floating Compare Ordered (X-Form)cciiiiiiiennnnnn. 2-134
Floating—Point Status and Control Register Instructions 2-135
Move From FPSCR (X—-Form)i ittt ittt i 2-135
Move To Condition Register From FPSCR (X-Form) 2-135
Move To FPSCR Fields (XFL-Form)cciiiriiinnnnnn... 2-136

Processor Description ~ 2-3

2-4

Move To FPSCR Field Immediate (X-Form)

Move To FPSCR Bit 1 (X—Form)
Move To FPSCR Bit 0 (X—Form)

..................................

..................................

Floating Point Roundto SingleModel,

Floating Round to Single Model:
Disabled Exponent Underflow: .
Enabled Exponent Underflow: .
Disabled Exponent Overflow: . .
Enabled Exponent Overflow: ..
Infinity Operand:
QNaNOperand:
SNaNOperand:
Normal Operand:

..................................

...................................

...................................

...................................

...................................

Round Single(sign,exp,frac,G,R,X):t e

RISC System/6000 Instruction Set

General Information Manual

...................................

2-137
2-137
2-138
2-139
2-139
2-139
2-140
2-141
2-142
2-142
2-142
2-142
2-143
2-143
2-144

Description

This chapter describes the document conventions, a general systems overview, instruction
formats, and memory addressing.

Document Conventions

The following conventions are used throughout the RISC System/6000 document:

Quadwords are 128 bits, doublewords are 64 bits, words are 32 bits, halfwords are 16
bits, bytes are 8 bits

All numbers are decimal unless specified in some special way
b'nnn’ means a number expressed in binary format

x‘nnn’ means a number expressed in hexadecimal format

n x b'0’ means n zeros

n x b'1' means n ones

(RA|0) means the contents of register RA if the RA field has the value 1-31, or the value
0 if the RA field is 0

(Rx) means the contents of register Rx

(FRx) means the contents of register FRx

X(p) means bit p of register or field X

Xp means bit p of register or field X

X(p—q) means bits p through q of register or field X

X(p..q) means bits p through q of register or field X

Xp-g means bits p through q of register or field X

—(RA) means the one’'s complement of the contents of register RA
4,11, 11, ... means a field that is ignored by the hardware

The symbol || is used to describe two fields that are appended or concatenated to each
other. For example, 010|]111 is the same as 010111.

All bits in registers that are reserved are 0 on read and can be either 0 or 1 on write
2" means 2 raised to the nt" power

Field i refers to bits 4 x i to (4 x i) + 3 of a register

Positive means greater than 0

Negative means less than 0

Instructions are assumed to be non—privileged unless stated otherwise in the instruction
description.

Processor Description ~ 2-5

Systems Overview

The processor or processor unit contains the sequencing and processing controls for
instruction fetch, instruction execution, and interrupt action. The following classes of
instructions can be executed by the processing unit.

» Branch processor instructions, described on page 2-20
o Fixed—point processor instructions, described on page 2-31
o Floating—point processor instructions, described on page 2-114.

See Figure 7 for a representation of the logical partitioning provided by the IBM RISC
System/6000 architecture. The processing unit is a word—oriented fixed—point processor and
in a doubleword—oriented floating—point processor. The RISC System/6000 architecture
uses 32-bit word-aligned instructions and provides for byte, halfword, word, and
doubleword operand fetches and stores between system memory and a set of 32 general
purpose registers (GPRs), and between system memory and a set of 32 floating—point

registers (FPRs).
Programmed le l
Fixed-Point
Processor
—>
Branch ‘
Processor — GPRs
XER MQ Dat
CR SRRO C:cahe
LR SRR1
CTR MSR
— Floating—Point L_’l
Instruction Processor
Cache
FPRs
FPSCR
Main Memory

|

Direct Memory Access

Figure 7. System Architecture View

2-6 General Information Manual

Instruction Formats

D Form

B Form

| Form

SC Form

All instructions are 4 bytes long and are located on word boundaries. Thus, whenever
instruction addresses are presented to the processing unit (as in branch instructions) the two
low—order bits are ignored. Similarly, whenever the processing unit develops an instruction
address, its two low—order bits are 0.

Bits 0 through 5 always specify the opcode. For XO—form instructions, an extended opcode .
is specified in bits 22 through 30. For all other X—form instructions, an extended opcode is
specified in bits 21 through 30. For A—form instructions, an extended opcode is specified in
bits 26 through 30.

The remaining bits contain one or more alternative fields for the different instruction formats.

0 6 11 16
OPCD RT RA D
RS Sl
FRT ul
TO
BF
FRS
0 6 11 16 30 31
OPCD BO Bl BD AA| LK
0 6 30 31
OPCD Ll AA| LK
0 6 11 16 20 27 30 31
OPCD m m FL1 LEV FL2 SA| LK
SV

Processor Description ~ 2=7

X Form

0 6 1" 16 21 31
OPCD RT RA RB EO Rc
FRT FRA FRB
BF BFA SH
RS SPR NB
FRS 1
TO
BT
XL Form
0 6 1" 16 21 31
OPCD BT BA BB EO LK
BO BI
XFX Form
0 6 11 21 31
OPCD RT FXM EO Rc
XFL Form
0 6 16 21 31
OPCD FLM FRB EO Rc
XO Form
0 6 " 16 21 22 31
OPCD RT RA RB | OE| EO’ Re
A Form
0 6 1 16 21 26 31
OPCD FRT FRA FRB FRC X0 Rc
A-form instructions are used for four operand instructions. The operands, all floating—point
registers, are specified by the FRT, FRA, FRB, FRC fields. The short extended opcode, XO,
is in bits 26 through 30.
M Form
0 6 1" 16 21 26 31
OPCD RS RA RB MB ME Rc
SH

Instruction Fields
AA (30) Absolute Address bit

2-8 General Information Manual

BA (11-15)

BB (16-20)
BD (16-29)

BF (6-8)

BFA (11-13)

Bl (11-15)

Bit Description

0 The immediate field represents an address relative to the
current instruction address. For I-form branches, the
effective address of the branch is the sum of the Ll field
sign extended to 32 bits and the address of the branch
instruction. For B—form branches, the effective address of
the branch is the sum of the BD field sign extended to 32
bits and the address of the branch instruction.

1 The immediate field represents an absolute address. For
I-form branches, the effective address of the branch is the
LI field sign extended to 32 bits. For B~form branches, the
effective address of the branch is the BD field sign
extended to 32 bits.

Field used to specify a bit in the Condition register (CR) to be used as a
source.

Field used to specify a bit in the CR to be used as a source.

Immediate field specifying a 14-bit signed two’s complement branch
displacement, which is concatenated on the right with b'00’ and sign
extended to 32 bits.

Field used to specify one of the CR compare result fields or one of the
FPSCR fields as a target. If i = BF(6-8), then field i refers to bits i x 4 to (i x
4) + 3 of the register.

Field used to specify one of the CR compare result fields, one of the
FPSCR fields, or one of the XER fields as a source. If j = BFA(11-13), then
field j refers to bits j x 4 to (j x 4) + 3 of the register.

Field used to specify the bit in the CR to be used as the condition of the
branch.

Processor Description ~ 2-9

BO (6-10) Field used to specify different options that can be used in conditional branch
instructions. Following is the encoding for the BO field:

BO Description

0000x Decrement the CTR, then branch if the decremented
CTR # 0 and condition is false.

0001x Decrement the CTR, then branch if the decremented
CTR = 0 and condition is false.

001xx Branch if condition is false.

0100x Decrement the CTR, then branch if the decremented
CTR # 0 and condition is true.

0101x Decrement the CTR, then branch if the decremented
CTR = 0 and condition is true.

011xx Branch if condition is true.

1x00x Decrement the CTR, then branch if the decremented
CTR #0.

1x01x Decrement the CTR, then branch if the decremented
CTR =0.

1x1xx Branch always.

BT (6-10) Field used to specify a bit in the CR as the target of the result of an
instruction.
D (16-31) Immediate field specifying a 16-bit signed two’s complement integer sign
extended to 32 bits.

EO (21-30) A 10-bit extended opcode used in X—form instructions.
EO’ (22-30) A 9-bit extended opcode used in XO—form instructions.
FL1(16-19) A 4-bit field in the Supervisor Call (SVC) instruction.
FL2 (27-29) A 3-bit field in the SVC instruction.

2-10 General Information Manual

FXM (12-19) Field mask, identifies which CR field is to be updated.

Bit Description

12 CR Field 0 (bits 00-03)

13 CR Field 1 (bits 04-07)

14 CR Field 2 (bits 08-11)

15 CR Field 3 (bits 12-15)

16 CR Field 4 (bits 16-19)

17 CR Field 5 (bits 20-23)

18 CR Field 6 (bits 24-27)

19 CR Field 7 (bits 28-31).
FLM (7-14) Field mask, identifies which FPSCR field is to be updated.

Bit Description

7 FPSCR Field 0 (bits 00-03)

FPSCR Field 1 (bits 04—-07)
FPSCR Field 2 (bits 08—11)

10 FPSCR Field 3 (bits 12-15)
1 FPSCR Field 4 (bits 16-19)
12 FPSCR Field 5 (bits 20-23)
13 FPSCR Field 6 (bits 24-27)
14 FPSCR Field 7 (bits 28-31).

FRA (11-15) Field used to specify an FPR as a source of an operation.

FRB (16-20) Field used to specify an FPR as a source of an operation.

FRC (21-25) Field used to specify an FPR as a source of an operation.

FRS (6-10) Field used to specify an FPR as a source of an operation.

FRT (6-10) Field used to specify an FPR as the target of an operation.

1(16-19) Immediate field used as the data to be placed into a field in the FPSCR.

LEV (20-26) Immediate field in the SVC instruction that addresses the SVC routine by
b*1’ || LEV || b'00000’ if SA = 0.

LI (6-29 Immediate field specifying a 24-bit signed two’s complement integer that is
concatenated on the right with b‘00’ and sign extended to 32 bits.

LK (31) Link bit.

Bit Description
0 Do not set the Link register.
1 Set the Link register. If the instruction is a branch, the

address of the instruction following the branch instruction is
placed into the Link register. If the instruction is an SVC, the
address of the instruction following the SVC instruction is
placed into the Link register.

Processor Description 2-11

MB (21-25 & ME (26-30)
Fields used to specify a 32-bit string, consisting of either a substring of
ones surrounded by zeros or a substring of zeros surrounded by ones. The
encoding is as follows:

MB (21-25) Index to start bit of substring of ones.
ME (26-30) Index to stop bit of substring of ones.
Let mstart = MB and mstop = ME.

If mstart < mstop + 1
then mask (mstart..mstop) = ones
mask (all other) = zeroes.

If mstart = mstop + 1 then
mask (0-31) = ones.

If mstart> mstop + 1 then

mask (mstop + 1..mstart-1) = zeros
mask (all other) = ones.

NB (16-20) Field used to specify the number of bytes to move in an load or store string

immediate.
OPCD (0-5) The basic opcode field of the instruction.
OE (21) Used for extended arithmetic to inhibit setting of OV and SO in XER.

RA (11-15) Field used to specify a GPR to be used as a source or as a target.
RB (16-20) Field used to specify a GPR to be used as a source.

Rc (31) Record bit.
Setting Description
0 Do not set the Condition register.
1 Set the Condition register to reflect the result of the

operation.

For fixed—point instructions, CR bits (0-3) are set to reflect the result as a
signed quantity. The result as an unsigned quantity or a bit string can be
deduced from the EQ bit.

For floating—point instructions, CR bits (4—7) are set to reflect Floating—Point
Exception, Floating—Point Enabled Exception, Floating—Point Invalid
Operation Exception, and Floating—Point Overflow Exception.

RS (6-10) Field used to specify a GPR to be used as a source.
RT (6-10) Field used to specify a GPR to be used as a target.

SA (30) SVC Absolute.
Setting Description
0 SVC routine at address ‘1’ || LEV || b‘00000°.
1 SVC routine at address X'1FEOQ'.

SH (16-20) Field used to specify a shift amount.
Sl (16-31) Immediate field used to specify a 16-bit signed integer.

2-12 General Information Manual

SPR (11-15)

TO (6-10)

Ul (16-31)
XO (26-30)

Special Purpose register.

SPR Special Purpose Register
00000 (00) MQ

00001 (01) XER

00100 (04) from RTCU

00101 (05) from RTCL

00110 (06) from DEC

01000 (08) LR

01001 (09) CTR

10100 (20) to RTCU

10101 (21) to RTCL

10110 (22) to DEC

11010 (26) SRR O

11011 (27) SRR

TO bit ANDed with condition.

TO bit ANDed with Condition

6 Compares less than

7 Compares greater than

8 Compares equal

9 Compares logically less than
10 Compares logically greater than.

Immediate field used to specify a 16-bit unsigned integer.

A 5-bit extended opcode used by A-form instructions.

Processor Description 2=13

Memory Addressing

Within the context of a program executing on the processing unit (PU), system memory is
organized into doublewords, words, halfwords, and bytes, which are constrained to lie on
boundaries that are multiples of their sizes. See Figure 8 for an example of the memory
organization.

Bytes in system memory are consecutively numbered starting with 0. Each number is the
address of the corresponding byte. The 32-bit addresses computed for system memory
access are termed effective addresses and specify a byte in memory. System memory
address arithmetic wraps around from the maximum byte address, 232-1, to address 0.

System memory can be accessed by doubleword, word, halfword, or byte. The required
number of bytes are fetched from a properly aligned area of memory. The rules when the
operands are not properly aligned are controlled by a mode bit, MSR(AL). See Machine
State register on page 2-18.

The mapping to real memory addresses is controlled by relocate (address translation)
facilities. When the relocate facility is active, effective addresses generated by program
execution are first transformed to 52-bit virtual address, which in turn are mapped to real
memory.

In general, the terms memory and address are used within the context of the effective
addresses generated by the PU.

All processor computations are performed in registers in the processing unit (PU). There are
no instructions, for instance, to add two numbers, one of which is in memory.

Doubleword 000

Word 000 100

Halfword 000 010 100 110
Byte 000 | 001 010 011 100 101 110 111

0 8 16 24 32 40 48 56 63

Figure 8. Memory Organization

Effective Address Calculation
Effective addresses (EAs) are generated by instructions that reference data in system
memory and by taken branch instructions. Address calculations use 32-bit two’s
complement binary arithmetic. A carry from bit 0 is ignored.

A value of 0 in the RA field indicates the absence of the corresponding address component.
For the absent component, a 0 value is used in forming the address. This is shown in the
instruction descriptions as (RA|0).

X-form instructions are used for data references. Address computation adds the GPR
contents designated by the RA field or the value 0 if RA equals a value of 0 with the GPR
contents designated by the RB field. The computation is shown as (RA|0) + (RB).

With D—-form instructions, the 16-bit D field is sign extended to form a 32-bit address
component. In computing the effective address of a data element, this address component is
added to the GPR contents designated by the RA field or the value 0 if RA equals a value of
0.

2-14 General Information Manual

With I-form branch instructions, the 24-bit LI field is concatenated on the right with b‘00’ and
sign extended to form a 32-bit address. When AA equals a value of 0, this address is added
to the address of the branch instruction to form the effective address. If AA equals a value of
1, this 32-bit value is the effective address.

With B—form branch instructions, the 14-bit BD field is concatenated on the right with b‘00’
and sign extended to form a 32-bit value. If AA equals a value of 0, this 32-bit value is
added to the address of the branch instruction to form the effective address. If AA equals a
value of 1, this 32-bit value is the effective address.

With XL—form branch instructions, bits 0—29 of the Link register or the Count register are
concatenated on the right with b'00’ to form the effective address.

Processor Description 2-15

Branch Processor

This section describes the registers and instructions that make up the branch processor

facilities.

Branch Processor Registers
This section describes the branch processor registers and their bit definitions.

Condition Register

The Condition register (CR) is a 32-bit register that reflects the result of certain operations
and provides a mechanism for testing (and branching).

0

31

CR

Bits

00-03
04-07
08-11
12-15
16-19
20-23
24-27
28-31

Name

CR Field 0
CR Field 1
CR Field 2
CR Field 3
CR Field 4
CR Field 5
CR Field 6
CR Field 7.

The Condition register bits are grouped into eight 4-bit fields, named CR Field 0 through CR
Field 7, which are set in one of the following ways:

A load or copy operation into a specific CR field.
CR Field 0 can be set as the implicit result of a fixed—point operation.
CR Field 1 can be set as the implicit result of a floating—point operation.

As the result of either a fixed or floating—point compare operation into a specified CR field.

Instructions are provided to test these bits singly and in combination.

When record bit (Rc) equals a value of 1 in most fixed—point instructions, the CR Field 0
(condition register bits 0-3) is set by a compare of the result to a value of 0. Add Immediate,
Add Immediate Lower, and Add Immediate Upper instructions set these four bits implicitly.
These bits are interpreted as shown in the following list.

Bit
0

Description

Compares Less Than, Negative (LT). For arithmetic operations, the result is
negative or less than a value of 0. For compare operations, (RA) < Si, Ul, or
(RB).

Compares Greater Than, Positive (RB). For arithmetic operations, the result
is negative or less than a value of 0. For compare operations, (RA) > Sl, Ul,
or (RB).

2-16 General Information Manual

2 Compares Equal, Zero (EQ). For arithmetic operations, the result is a value
of 0 or equal to a value of 0. For compare operations, (RA) = SI, U, or (RB).

3 Summary Overflow (SO). This is a copy of the final state of XER(SO) at the
completion of the instruction.

When the Rc bit equals a value of 1 in all floating—point instructions except the floating—point
compares, CR Field 1 (condition register bits 4-7) is set to the floating—point exceptions
status. These bits are interpreted as shown in the following list:

Bit Description

4 Floating—point Exception (FX). This is a copy of the final state of
FPSCR(FX) at the completion of the instruction .

5 Floating—point Enable Exception (FEX). This is a copy of the final state of
FPSCR(FX) at the completion of the instruction .

6 Floating—point Invalid Operation Exception (VX). This is a copy of the final

state of FPSCR(VX) at the completion of the instruction .

7 Floating—point Overflow Exception (OX). This is a copy of the final state of
FPSCR(OX) at the completion of the instruction .

Condition register bits 4—7 are copies of bits 0-3 in the Floating—Point Status and Control
register.

Link Register
The Link register (LR) is a 32-bit register. The Link register provides the branch target
address for the Branch Conditional Register instruction and holds the return address (link
address) for branch and link type instructions and SVC instructions.

0 31
LR

Count Register
The Count register (CTR) is a 32-bit register. The Count register contains a loop count and
is automatically decremented during execution of the branch and count instructions,
wrapping from X'00000000’ around through X'FFFFFFFF’. The Count register also provides
the branch target address for the Branch to Count Register instruction. The Count register
contains a copy of bits 16-31 of MSR and bits 1631 of the SVC instruction after execution
of that SVC instruction. Both registers can be copied to and from any GPR.

0 31
CTR

Processor Description 2-17

Machine State Register
The Machine State register (MSR) is a 32-bit register that defines the modal state of the
processor. When the RFI instruction is executed, bits 16-31 of SRR 1 are placed into bits
16-31 of the MSR. The MSR can also be modified by the Move to Machine State Register

instruction.
0 31
MSR
Bit Name Description
00-15 Reserved
16 EE External Interrupt Enable
17 PR Program State
18 FP FP Available
19 ME Machine Check Enable
20 FE FP Exception Enable
21-23 Reserved
24 AL Alignment Check
25 IP Interrupt Prefix
26 IR Instruction Relocate
27 DR Data Relocate
28-31 Reserved.
The following are the Machine State register bit definitions:
Bit(s) Description
0-15 Reserved.
16 External Interrupt Enable (EE).
Setting Description
0 The processor is disabled against external interrupts.
1 The processor is enabled to take external interrupts.
17 Problem State (PR).
Setting Description
0 The processor is privileged to execute any instruction.
1 The processor can only execute the non—privileged
instructions.
18 Floating—Point (FP) Available.
Setting Description
0 The processor cannot execute any floating—point
instructions, including floating—point loads, stores and
moves.
1 The processor can execute floating—point instructions.
19 Machine Check Enable (ME).
Setting Description
0 Machine check interrupts are disabled.
1 Machine check interrupts are enabled.

2-18 General Information Manual

20 Floating—Point Exception Interrupt Enable (FE).

Setting Description
0 Program interrupts on floating—point enabled exception are
disabled.
1 Program interrupts on floating—point enabled exception are
enabled.
21-23 Reserved.
24 Alignment Check (AL).
Setting Description
0 Alignment checking is off and the low—order bits of the
address are ignored.
1 Alignment checking is on; alignment checking proceeds as
follows:

If bits 29, 30, or 31 of an address generated by a doubleword data memory reference
instruction are nonzero, an alignment interrupt is generated if the hardware cannot perform
the unaligned access.

If bits 30 or 31 of an address generated by a word data memory reference instruction are
nonzero, an alignment interrupt is generated if the hardware cannot perform the unaligned
access.

If bit 31 of an.address generated by a halfword data memory reference instruction is
nonzero, an alignment interrupt is generated if the hardware cannot perform the unaligned
access.

This checking does not apply to the load and store string—type instructions since these
instructions always perform the unaligned access. Load and store multiple-type instructions
always generate an alignment interrupt if bits 30-31 of the effective address are nonzero.

When the memory reference is to an I/O segment, the address is sent to I/O unmodified,
regardless of the setting of MSR(AL).

25 Interrupt Prefix (IP).
Setting Description
0 Interrupts vectored to the effective address X'000xxxxx’

where xxx is the interrupt offset.

1 Interrupts vectored to the effective address X'FFF xxxxx’
where xxxxx is the interrupt offset. This is intended to direct
the interrupt to Read Only Memory (ROM).

26 Instruction Relocate (IR).

Setting Description

0 Instruction address translation is off.

1 Instruction address translation is on.
27 Data Relocate (DR).

Setting Description

0 Data address translation is off.

1 Data address translation is on.

Processor Description 2=19

28-31 Reserved.

Branch Instructions
The instruction execution sequence can be changed by the branch instructions. All
instructions are on word boundaries. Thus, bits 30 and 31 of the generated branch target
address are ignored by the processor unit in performing the branch.

Branch instructions compute their target addresses in one of four ways:

¢ Adding a constant to the address of the branch instruction.

Specifying an absolute address (the BD or LI field is sign extended to 32 bits).

Using the address contained in the Link register.

Using the address contained in the Count register.

For the first two methods, the target addresses can be computed sufficiently ahead of the
branch instruction so as to prefetch instructions along the target path. For the third and
fourth methods, prefetching instructions along the branch path is also possible provided the
Link register or the Count register is loaded sufficiently ahead of the branch instruction.

In the case of conditional branch instructions, instruction prefetching is done on each path of
the branch.

In the various target forms, branches generally either branch only, branch and provide a
return address, or branch conditionally. If the LK bit equals1, the link register can be used to
store the return address from an invoked subroutine. The return address is the instruction
immediately following the branch instruction.

In the branch conditional instructions, the BO field combines different types of branches into
one instruction. The BO field specifies how the branch is affected by or affects the Condition
register and the Count register. The encoding for the BO field is described as follows:

BO Description

0000x Decrement CTR,; then branch if the decremented CTR=0 and condition is
false.

0001x Decrement CTR; then branch if the decremented CTR=0 and condition is
false.

001xx Branch if condition is false.

0100x Decrement CTR; then branch if the decremented CTR=0 and condition is
true.

0101x Decrement CTR; then branch if the decremented CTR=0 and condition is
true.

011xx Branch if condition is true.

1x00x Decrement CTR; then branch if the decremented CTR=0.

1x01x Decrement CTR; then branch if the decremented CTR=0.

1x1xx Branch always.

2-20 General Information Manual

Branch (I-Form)

0 6 27 31
18 L AA| LK
b target address (AA=0,LK=0)
ba target address (AA=1,LK=1)
bl target address (AA=0,LK=0)
bla target address (AA=1,LK=1)

It AA equals 0, the branch target address is the sum of LI || b'00’ sign extended and the
address of this instruction.

It AA equals 1, the branch target address is the value, LI || b'00’ sign extended.

If LK equals 1, the effective address of the instruction following the branch instruction is
placed into the Link register.

Condition register (CR Field 0)

Set: None

Fixed-Point Exception register

Set: None

Branch Conditional (B—-Form)

0 6 11 16 27 31
16 BO BI BD AA| LK
bc BO, B, target address (AA=0,LK=0)
bca BO, BI, target address (AA=1,LK=1)
bel BO, BI, target address (AA=0,LK=0)
bcla BO, B, target address (AA=1,LK=1)

The Bl field specifies the Condition register bit used as the condition of the branch. The BO
field is used as described in "Branch Instructions” on page 2-20 .

If AA equals 0, the branch target address is the sum of BD || b'00’ sign extended and the
address of this instruction.

If AA equals 1, the branch target address is the value, BD || b‘00’ sign extended.

If LK equals 1, the effective address of the instruction following the branch instruction is
placed into the Link register.

Condition register (CR Field 0)

Set: None

Fixed—Point Exception register

Set: None

Processor Description 2-21

Branch Conditional Register (XL-Form)

0 6 11 16 21 31
19 BO BI " 16 LK
ber BO, Bl (LK = 0)

berl BO, BI (LK=1)

The Bl field specifies the Condition register bit used as the condition of the branch. The BO
field is used as described in "Branch Instructions” on page 2-20 and the branch target
address is LR (0-29) || b‘00’.

If LK = 1, the effective address of the instruction following the branch instruction is placed
into the Link register.

Condition Register (CR Field 0)
Set: None

Fixed—Point Exception Register
Set: None

Branch Conditional To Count Register (XL-Form)

0 6 1" 16 21 31
19 BO Bl nm 528 LK

bce BO, Bl (LK =0)

becl BO, BI (LK=1)

The Bl field specifies the Condition register bit used as the condition of the branch. The BO
field is used as described in "Branch Instructions” on page 2-20 and the branch target
address is CTR (0-29) || b‘00’.

The decrement CTR option is not defined for this instruction and can produce an undefined
branch target address.

If LK equals 1, the effective address of the instruction following the branch instruction is
placed into the Link register.

Condition register (CR Field 0)
Set: None

Fixed—Point Exception register
Set: None

2-22 General Information Manual

Supervisor Linkage Instruction

The Supervisor Linkage instruction follows:

Supervisor Call (SC-Form)

0 6 1" 16 20 26 27 31
17 i mn FL1 LEV FL2| SA| LK
17 " m sV SA| LK

sve LEV, FL1, FL2 (SA =0, LK=0)

svcl LEV, FL1, FL2 (SA =0, LK =0)
svca Sv (SA=0,LK=0)
svcla Sv (SA =0, LK =0)

An SVC—type interrupt is generated. Bits 16-31 of the SVC instruction are placed into bits
0-15 of the Count register. Bits 16-31 of the MSR are placed into bits 16-31 of the Count
register. MSR bits (EE, PR, and FE) are set to 0. MSR bits (FP, ME, AL, IP, IR, and DR) are
not altered. The SRRs are not affected.

If SA equals 0, instruction fetch and execution continues at one of the 128 offsets, b'1’ || LEV
|| b'00000’, to the base effective address indicated by the setting of MSR(IP). FL1 and FL2
fields could be used for passing data to the SVC routine but are ignored by the hardware.

If SA equals 1, instruction fetch and execution continues at the offset, X'1FEQ’, to the base
effective address indicated by the setting of MSR bit (IP).

If LK equals 1, the effective address of the instruction following the SVC instruction is placed
into the Link register.

Condition register (CR Field 0)
Set: None
Fixed-Point Exception register
Set: None

Notes:

1. If SA equals 0, the FL1 and FL2 fields of the SVC instruction could have possible
software uses for passing parameters to the SVC routine.

2. If SA equals 1, the SV field of the SVC instruction could have possible software
uses for passing parameters to the SVC routine.

3. To insure correct operation, an SVC instruction must be preceded by an
unconditional branch or a condition register op without an intervening conditional
branch. If a useful instruction cannot be scheduled as specified, a no—op version
of the Condition Register OR instruction can be inserted.

Instruction No-op Version

cror BT, BA, BB BT=BA=BB

Processor Description 2-23

Trap Instructions

The trap instructions test for a specified set of conditions. If any of the conditions tested by a
trap instruction are met, a trap—type program interrupt occurs. If the tested conditions are not
met, instruction execution continues normally.

The contents of register RA is compared with either the sign—extended S| field or with the
contents of register RB, depending on the trap instruction. This comparison results in five
conditions that are ANDed with the TO field. If the result is not 0, a trap~type program
interrupt occurs. These conditions are:

TO bit ANDed with Condition

6 Compares less than

7 Compares greater than

8 Compares equal

9 Compares logically less than

10 Compares logically greater than.

Trap Immediate (D—Form)
0 6 11 16 31
03 TO RA sl

ti TO, RA, SI

The contents of register RA is compared with the sign—extended Sl field. If any
corresponding bit in the TO field and its respective condition generated as a result of the
compare are both on, a trap—type program interrupt is generated.

Condition register (CR Field 0)

Set: None
Fixed—Point Exception register
Set: None
Trap (X-Form)
0 6 11 16 21 31
3 TO RA RB 4 Rc
t TO, RA, RB

The contents of register RA is compared with the contents of register RB. If any
corresponding bit in the TO field and its respective condition generated as a result of the
compare are both on, a trap—type program interrupt is generated.

Condition Register (CR Field 0)
Set: None (if Rc = 0)
Set: Undefined (ifRc=1)

Fixed—Point Exception Register
Set: None

2-24 General Information Manual

Condition Register Field Instruction

The Condition Register Field instruction follows:

Move Condition Register Field (XL—Form)

0

6

9 11

14 16

21

31

19

BF

I\ BFA

iy

Re

mcrf

BF, BFA

The contents of the Condition register field j, where j = BFA, are copied into the CR Field i,
where i = BF. All other fields remain unchanged.

If LK equals 1, the contents of the Link register is undefined.
Condition register (CR Field 0)

Set: CR Field i, where i = BF

Fixed—-Point Exception register

Set: None

Condition Register Logical Instructions

The Condition Register Logical instructions follow:

Condition Register Equivalent (XL-Form)

6

1

16

21

31

19

BT

BA

289

LK

creqv

BT, BA, BB

The Condition register bit specified by the BA field is XORed with the Condition register bit
specified by the BB field and the complemented result is placed into the Condition register
bit specified by the BT field.

If LK equals 1, the contents of the Link register is undefined.
Condition Register (CR bit i, i = BT)

Set: CR (BT)

Fixed—Point Exception Register

Set: None

Processor Description

2-25

Condition Register XOR (XL-Form)
0 6 11 16 21 31
19 BT BA BB 193 LK

crxor BT, BA, BB

The Condition register bit specified by the BA field is XORed with the Condition register bit

specified by the BB field and the result is placed into the Condition register bit specified by
the BT field.

If LK equals 1, the contents of the Link register is undefined.
Condition register (CR bit i, i = BT)

Set: CR (BT)
Fixed—Point Exception register
Set: None
Condition Register AND (XL-Form)
0 6 1" 16 21 31
19 BT BA BB 257 LK

crand BT, BA, BB

The Condition register bit specified by the BA field is ANDed with the Condition register bit

specified by the BB field and the result is placed into the Condition register bit specified by
the BT field.

If LK equals 1, the contents of the Link register is undefined.
Condition register (CR bit i, i = BT)

Set: CR (BT)
Fixed—Point Exception register
Set: None
Condition Register OR (XL-Form)
0 6 1 16 21 31
19 BT BA BB 449 LK
cror BT, BA, BB

The Condition register bit specified by the BA field is ORed with the Condition register bit

specified by the BB field and the result is placed into the Condition register bit specified by
the BT field.

If LK equals 1, the contents of the Link register is undefined.

Condition register (CR bit i, i = BT)
Set: CR (BT)

Fixed—Point Exception register
Set: None

2-26 General Information Manual

Condition Register AND With Complement (XL-Form)
0 6 1 16 21 31
19 BT BA BB 129 LK

crandc BT, BA, BB

The Condition register bit specified by the BA field is ANDed with the complement of the
Condition register bit specified by the BB field and the result is placed into the Condition
register bit specified by the BT field.

If LK equals 1, the contents of the Link register is undefined.
Condition register (CR bit i, i = BT)

Set: CR (BT)
Fixed—Point Exception register
Set: None
Condition Register OR With Complement (XL-Form)
0 6 1 16 21 3
19 BT BA BB 417 LK

crorc BT, BA, BB

The Condition register bit specified by the BA field is ORed with the complement of the
Condition register bit specified by the BB field and the result is placed into the Condition
register bit specified by the BT field.

If LK equals 1, the contents of the Link register is undefined.

Condition register (CR bit i, i = BT)
Set: CR (BT)

Fixed—-Point Exception Register
Set: None

Processor Description 2=27

Condition Register NAND (XL-Form)

0 6 11 16 21 31
19 BT BA BB 225 LK

crnand BT, BA, BB

The Condition register bit specified by the BA field is ANDed with the Condition register bit

specified by the BB field and the complemented result is placed into the Condition register
bit specified by the BT field.

If LK equals 1, the contents of the Link register is undefined.
Condition register (CR bit i, i = BT)

Set: CR (BT)
Fixed—Point Exception register
Set: None
Condition Register NOR (XL-Form)
0 6 1" 16 21 31
19 BT BA BB 33 LK

crnand BT, BA, BB

The Condition register bit specified by the BA field is ORed with the Condition register bit
specified by the BB field and the complemented result is placed into the Condition register
bit specified by the BT field.

If LK equals 1, the contents of the Link register is undefined.

Condition register (CR bit i, i = BT)
Set: CR (BT)

Fixed—Point Exception register
Set: None

2-28 General Information Manual

Fixed—Point Processor Registers

This section describes the registers in the fixed—point processor facility.

General Purpose Registers
All manipulation of information is done in registers internal to the processing unit (PU).The
principal storage within the fixed—point processor is a set of 32 general purpose registers
(GPRs). Each GPR consists of 32 bits. See Figure 9 for an example of the general purpose

registers.
0 31
GPR 00
GPR 01
GPR 30
GPR 31

Figure 9. General Purpose Registers

Fixed-Point Exception Register
The Fixed-Point Exception register (XER) is in the fixed—point unit and is 32 bits wide.

0 31
XER

Bit Description

0 Summary Overflow (SO)
The Summary Overflow bit is set to 1 whenever an instruction sets the
Overflow bit to indicate overflow and remains set until software resets it.
The SO bit is not altered by the compare instructions.

1 Overflow (OV)

The Overflow bit is set to indicate that an overflow has occurred during an
instruction operation. In the case of add and subtract instructions, it is set to
1 if the carry out of bit 0 is not equal to the carry out of bit 1. Otherwise the
OV bit is set to 0. The OV bit is not altered by the compare instructions.

Processor Description 2-29

3-15
16-23

24
25-31

Carry (CA)

The Carry bit is set to indicate a carry from bit 0 of the computed result. In
the case of add and subtract instructions, it is set to 1 if the operation
generates a carry out of bit 0. Otherwise, the CA bit is set to 0. The CA bit is
not altered by the compare instructions.

Reserved

Used by the Load String and Compare Byte Indexed instruction as the byte
being compared against.

Reserved

Used by Load String Indexed, Load String and Compare Byte Indexed, and
Store String Indexed instructions to indicate the number of bytes loaded or
stored.

Multiply Quotient Register
The Multiply Quotient (MQ) register is a 32—bit register that provides a register extension to
accommodate the product for the multiply instructions and the dividend for the divide
instructions. The MQ register is also used as an operand of long rotate and shift instructions
and as a temporary storage facility for store string instructions.

0

31

MQ

2-30 General Information Manual

Fixed—Point Processor Instructions

This section describes the fixed—point processor instructions used in the RISC System/6000
system. The load instructions generate the effective address (EA) as described in “Effective
Address Calculation” on page 2-14. The byte, halfword, or word in memory addressed by the
EA is loaded into register RT if the memory access does not cause an Alignment Interrupt or
a Data Storage Interrupt.

Load Byte And Zero (D—Form)
0 6 1 16 31
34 RT RA D

Ibz RT,D(RA)

Let the effective address (EA) be the sum (RA|0) + D.

The byte in memory addressed by the EA is loaded into bits 24-31 of register RT. Bits 0-23
of register RT are setto 0.

Condition register (CR Field 0)

Set: None
Fixed—Point Exception register
Set: None
Load Byte And Zero Indexed (X—-Form)
0 6 1" 16 21 31
31 RT RA RB 87 Rc

Ibzx RT, RA, RB
Let the effective address (EA) be the sum (RA|0) + (RB).

The byte in memory addressed by the EA is loaded into bits 24—31 of register RT. Bits 0-23
of register RT are set to 0.

Condition register (CR Field 0)
Set: None (if Rc =0)
Set: Undefined (if Rc=1)

Fixed—Point Exception register
Set: None

Processor Description 2=-31

Load Half And Zero (D-Form)
0 6 1 16 31
40 RT RA D

Ihz RT, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated.

The halfword in memory addressed by the EA is loaded into bits 16—31 of register RT. Bits
0-15 of register RT are set to 0.

Condition register (CR Field 0)

Set: None
Fixed—Point Exception register
Set: None
Load Half And Zero Indexed (X-Form)
0 6 1" 16 21 31
31 RT RA RB 279 Re
Ihzx RT, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated.

The halfword in memory addressed by the EA is loaded into bits 16—31 of register RT. Bits
0-15 of register RT are setto 0.

Condition register (CR Field 0)
Set: None (if Re=0)
Set: Undefined (if Re = 1)

Fixed—Point Exception register
Set: None

2-32 General Information Manual

Load Half Algebraic (D-Form)
0 6 1" 16 31
42 RT RA D

lha RT, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated.

The halfword in memory addressed by the EA is loaded into bits 16—31 of register RT. Bits
0-15 of register RT are filled with a copy of bit 0 of the loaded halfword.

Condition register (CR Field 0)

Set: None
Fixed-Point Exception register
Set: None
Load Half Algebraic Indexed (X—Form)
0 6 11 16 21 31
31 RT RA RB 343 Rc

Ihax RT, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated.

The halfword in memory addressed by the EA is loaded into bits 16—-31 of register RT. Bits
0-15 of register RT are filled with a copy of bit 0 of the loaded halfword.

Condition register (CR Field 0)
Set: None (if Rc = 0)
Set: Undefined (if Re = 1)

Fixed-Point Exception register
Set: None

Processor Description 2-33

Load (D-Form)
0 6 1 16 31
32 RT RA D

| RT, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the two—low order bits of the EA are ignored. If alignment checking is
enabled, MSR(AL) equals 1, and the two low—order bits of the EA are not 00, the hardware
attempts to perform the unaligned memory access. If the hardware cannot perform the
unaligned memory access, an Alignment Interrupt is generated.

The word in memory addressed by the EA is loaded into register RT.
Condition register (CR Field 0)

Set: None
Fixed—Point Exception register
Set: None
Load Indexed (X-Form)
0 6 1 16 21 31
31 RT RA RB 23 Rc
Ix RT, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits of the EA are ignored. If alignment checking is
enabled, MSR(AL) equals 1, and the two low—order bits of the EA are not 00, the hardware
attempts to perform the unaligned memory access. If the hardware cannot perform the
unaligned memory access, an Alignment Interrupt is generated.

The word in memory addressed by the EA is loaded into register RT.

Condition register (CR Field 0)
Set: None (if Re = 0)
Set: Undefined (if Rc = 1)

Fixed—Point Exception register
Set: None

2-34 General Information Manual

Load Half Byte Reverse Indexed (X—Form)
0 6 11 16 21 31
31 RT RA RB 790 Rc

Ihbrx RT, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated. If EA addresses an I/0O segment and
the hardware cannot perform the access, an Alignment Interrupt is generated.

Bits 0-7 of the halfword in memory addressed by the EA are loaded into bits 24-31 of
register RT. Bits 8—15 of the halfword addressed by the EA are placed into bits 16-23 of
register RT. Bits 0—15 of register RT are set to 0.

Condition register (CR Field 0)

Set: None (if Re = 0)
Set: Undefined (f Re=1)
Fixed—Point Exception register
Set: None
Load Byte Reverse Indexed (X—Form)
0 6 1 16 21 31
31 RT RA RB 534 Rc
Ibrx RT, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits of the EA are ignored. If alignment checking is
enabled, MSR(AL) equals 1, and the two low—order bits of the EA are not 00, the hardware
attempts to perform the unaligned memory access. If the hardware cannot perform the
unaligned memory access, an Alignment Interrupt is generated. If the EA addresses an I/O
segment and the hardware cannot perform the access, an Alignment Interrupt is generated.

Bits 0-7 of the word in memory addressed by the EA are placed into bits 24-31 of register
RT. Bits 8-15 of the word addressed by the EA are placed into bits 16—23 of register RT. Bits
16-23 of the word addressed by the EA are placed into bits 8—15 of register RT. Bits 24-31
of the word addressed by the EA are placed into bits 00—07 of register RT.

Condition register (CR Field 0)
Set: None (if Re = 0)
Set: Undefined (if Re = 1)

Fixed—Point Exception register
Set: None

Processor Description 2-35

Load Multiple (D—Form)
0 6 11 16 31
46 RT RA D

Im RT, D(RA)
Let N equal (32 - RT field).

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits of the EA are ignored. If alignment checking is
enabled, MSR(AL) equals 1, and the two low—order bits of the EA are not 00, then an
Alignment Interrupt is generated.

Starting at that effective address, N consecutive words are placed into the GPRs starting at
register RT and filling all the GPRs through GPR 31.

If register RA is within the range to be loaded and RA # 0, data is not written into the
register. The data for register RA is discarded and the operation continues normally.

Condition register (CR Field 0)
Set: None

Fixed—-Point Exception register
Set: None

Note: A Data Storage Interrupt can interrupt this instruction. If an interrupt occurs, start the
instruction from the beginning.

2-36 General Information Manual

Fixed-Point Store Instructions

The store instructions generate the effective address (EA) as described in "Effective Address
Calculation” on page 2-14. The contents of register RS are placed into the byte, halfword, or
word in memory addressed by the EA if the memory access does not cause an Alignment
Interrupt or a Data Storage Interrupt.

Store Byte (D-Form)
0 6 1 16 31
38 RS RA D
stb RS, D(RA)

Let the effective address (EA) be the sum (RA|0) + D.

Bits 24-31 of register RS are placed into memory in the byte addressed by the EA. Register
RS is unchanged.

Condition register (CR Field 0)

Set: None
Fixed-Point Exception register
Set: None
Store Byte Indexed (X—Form)
0 6 1" 16 21 31
31 RS RA RB 215 Rec

stbx RS, RA, RB
Let the effective address (EA) be the sum (RA|0) + (RB).

Bits 24-31 of register RS are placed into memory in the byte addressed by the EA. Register
RS is unchanged.

Condition register (CR Field 0)
Set: None (fRc=0)
Set: Undefined (fRc=1)

Fixed—Point Exception register
Set: None

Processor Description 2-37

Store Half (D-Form)
0 6 1 16 31
a4 RS RA D

sth RS, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated.

Bits 16-31 of register RS are placed into memory in the halfword addressed by the EA.
Register RS is unchanged.

Condition register (CR Field 0)

Set: None
Fixed—Point Exception register
Set: None
Store Half Indexed (X—Form)
0 6 11 16 21 31
31 RS RA RB 407 Rc

sthx RS, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated.

Bits 16-31 of register RS are placed into memory in the halfword addressed by the EA.
Register RS is unchanged.

Condition register (CR Field 0)
Set: None (if Re=0)
Set: Undefined (fRc=1)

Fixed—Point Exception register
Set: None

2-38 General Information Manual

Store (D-Form)
0 6 11 16 31
36 RS RA D

st RS, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits of the EA are ignored. If alignment checking is
enabled, MSR(AL) equals 1, and the two low—order bits of the EA are not 00, the hardware
attempts to perform the unaligned memory access. If the hardware cannot perform the
unaligned memory access, an Alignment Interrupt is generated.

Bits 0-31 of register RS are placed into memory in the word in memory addressed by the
EA. Register RS is unchanged.

Condition register (CR Field 0)
Set: None

Fixed—Point Exception register

Set: None
Store Indexed (X-Form)
0 6 11 16 21 31
31 RS RA RB 151 Rc
stx RS, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits of the EA are ignored. If alignment checking is
enabled, MSR(AL) equals 1, and the two low—order bits of the EA are not 00, the hardware
attempts to perform the unaligned memory access. If the hardware cannot perform the
unaligned memory access, an Alignment Interrupt is generated.

Bits 0-31 of register RS are placed into memory in the word in memory addressed by the
EA. Register RS is unchanged.

Condition register (CR Field 0)
Set: None (fRc=0)
Set: Undefined (if Rc = 1)

Fixed—Point Exception register
Set: None

Processor Description 2-39

Store Half Byte Reverse Indexed (X-Form)
0 6 1 16 21 31
31 RS RA RB 918 Rc

sthbrx RS, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated.

Bits 24-31 of register RS are placed into memory in bits 0-7 of the halfword in memory
addressed by the EA. Bits 16—23 of register RS are placed into memory in bits 8—15 of the
halfword in memory addressed by the EA. Register RS is unchanged.

Condition register (CR Field 0)
Set: None (if Re = 0)
Set: Undefined (if Re=1)

Fixed—Point Exception register
Set: None
Store Byte Reverse Indexed (X-Form)
0 6 " 16 21 31
31 RS RA RB 662 Rec

stbrx RS, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits of the EA are ignored. If alignment checking is
enabled, MSR(AL) equals 1, and the two low—order bits of the EA are not 00, the hardware
attempts to perform the unaligned memory access. If the hardware cannot perform the
unaligned memory access, an Alignment Interrupt is generated.

Bits 24-31 of register RS are placed into memory in bits 0-7 of the memory word addressed
by the EA. Bits 1623 of register RS are placed into memory in bits 08—15 of the memory
word addressed by the EA. Bits 8-15 of register RS are placed into memory in bits 16-23 of
the memory word addressed by the EA. Bits 0-7 of register RS are placed into memory in
bits 24-31 of the memory word addressed by the EA. Register RS is unchanged.

Condition register (CR Field 0)
Set: None (if Re=0)
Set: Undefined (f Re=1)

Fixed—Point Exception register
Set: None

2-40 General Information Manual

Store Multiple (D-Form)
0 6 1 16 31
47 RS RA D

stm RS, D(RA)
Let N equal (32 — RS field).

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits of the EA are ignored. If alignment checking is
enabled, MSR(AL) equals 1, and the two low—order bits of the EA are not 00, an Alignment
Interrupt is generated.

Starting at the EA, N consecutive words are stored from register RS through register 31.

Condition register (CR Field 0)
Set: None

Fixed—Point Exception register
Set: None

Note: A Data Storage Interrupt can interrupt this instruction. If an interrupt occurs, start the
instruction from the beginning.

Processor Description 2-41

Fixed—Point Load with Update Instructions

The load with update instructions generate the effective address (EA) as described in
“Effective Address Calculation” on page 2-14.

If RA # 0, RA # RT, and the memory access does not cause an Alignment Interrupt or a Data
Storage Interrupt, the effective address is placed into register RA. After the update, if the
memory access does not cause an Alignment Interrupt or a Data Storage Interrupt, the byte,
halfword, or word in memory addressed by the EA is placed into register RT.

When RA equals RT, the register contains the data loaded from memory, not the effective
address. If RA equals 0 or RA equals RT, the effective address is not saved.
Load Byte And Zero With Update (D—Form)
0 6 11 16 31
35 RT RA D

Ibzu RT, D(RA)
Let the effective address (EA) be the sum (RA|0) + D.

The byte in memory addressed by the EA is placed into bits 24-31 of register RT. Bits 0—23
of register RT are set to 0.

If RA = RT, RA # 0, and the memory access does not cause an Alignment Interrupt or a Data
Storage Interrupt, the EA is placed into register RA.

Condition register (CR Field 0)

Set: None
Fixed—Point Exception register
Set: None
Load Byte And Zero With Update Indexed (X-Form)
0 6 1 16 21 31
31 RT RA RB 119 Rc

Ibzux RT, RA, RB
Let the effective address (EA) be the sum (RA|0) + (RB).

The byte in memory addressed by the EA is placed into bits 24—31 of register RT. Bits 0—23
of register RT are set to 0.

If RA # RT, RA # 0, and the memory access does not cause an Alignment Interrupt or a Data
Storage Interrupt, the EA is placed into register RA.

Condition register (CR Field 0)
Set: None (ifRc=0)
Set: Undefined (fRc=1)

Fixed—Point Exception register
Set: None

2-42 General Information Manual

Load Half And Zero With Update (D-Form)
0 6 1 16 31
| RT RA D

Ihzu RT, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated.

The halfword in memory addressed by the EA is placed into bits 16-31 of register RT. Bits
0-15 of register RT are set to 0.

If RA # RT, RA # 0, and the memory access does not cause an Alignment Interrupt or a Data
Storage Interrupt, the EA is placed into register RA.

Condition register (CR Field 0)

Set: None
Fixed—Point Exception register
Set: None
Load Half And Zero With Update Indexed (X—Form)
0 6 11 16 21 31
31 RT RA RB 311 Re

Ihzux RT, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated.

The halfword in rrtemory addressed by the EA is placed into bits 1631 of register RT. Bits
0-15 of register RT are set to 0.

If RA = RT, RA # 0, and the memory access does not cause an Alignment Interrupt or a Data
Storage Interrupt, the EA is placed into register RA.

Condition register (CR Field 0)
Set: None (if Rc = 0)
Set: Undefined (if Re = 1)

Fixed—Point Exception register
Set: None

Processor Description 2-43

Load Half Algebraic With Update (D—Form)
0 6 1 16 31
43 RT RA D

lhau RT, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated.

The halfword in memory addressed by the EA is placed into bits 16—31 of register RT. Bits
0-15 of register RT are filled with a copy of bit 0 of the placed halfword.

If RA = RT, RA # 0, and the memory access does not cause an Alignment Interrupt or a Data
Storage Interrupt, the EA is placed into register RA.

Condition register (CR Field 0)

Set: None
Fixed-Point Exception register
Set: None
Load Half Algebraic With Update Indexed (X—Form)
0 6 11 16 21 31
31 RT RA RB 375 Rc

lhaux RT, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated.

The halfword in memory addressed by the EA is placed into bits 16—-31 of register RT. Bits
0-15 of register RT are filled with a copy bit 0 of the placed halfword.

If RA = RT, RA = 0, and the memory access does not cause an Alignment Interrupt or a Data
Storage Interrupt, the EA is placed into register RA.

Condition register (CR Field 0)
Set: None (if Rc = 0)
Set: Undefined (ifRc=1)

Fixed—Point Exception register
Set: None

2-44 General Information Manual

Load With Update (D-Form)
0 6 11 16 31
33 RT RA D

lu RT, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits of the EA are ignored. If alignment checking is
enabled, MSR(AL) equals 1, and the two low—order bits of the EA are not 00, the hardware
attempts to perform the unaligned memory access. If the hardware cannot perform the
unaligned memory access, an Alignment Interrupt is generated.

The word in memory addressed by the EA is placed into register RT.

If RA 2 RT, RA = 0, and the memory access does not cause an Alignment Interrupt or a
Data Storage Interrupt, the EA is placed into register RA.

Condition register (CR Field 0)

Set: None
Fixed—Point Exception register
Set: None
Load With Update Indexed (X-Form)
0 6 1" 16 21 31
31 RT RA RB 55 Rc
lux RT, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits of the EA are ignored. If alignment checking is
enabled, MSR(AL) equals 1, and the two low—order bits of the EA are not 00, the hardware
attempts to perform the unaligned memory access. If the hardware cannot perform the
unaligned memory access, an Alignment Interrupt is generated.

The word in memory addressed by the EA is placed into register RT.

If RA # RT, RA # 0, and the memory access does not cause an Alignment Interrupt or a Data
Storage Interrupt, the EA is placed into register RA.

Condition register (CR Field 0)
Set: None (if Re = 0)
Set: Undefined (if Rc=1)

Fixed—-Point Exception register
Set: None

Processor Description 2-45

Fixed—Point Store with Update Instructions

The store with update instructions generate the effective address (EA) as described in
“Effective Address Calculation” on page 2-14.

The contents of register RS are are placed into memory in the byte, halfword, or word in

memory addressed by the EA if the memory access does not cause an Alignment Interrupt
or a Data Storage Interrupt.

If RA # 0 and the memory access does not cause an Alignment Interrupt or a Data Storage
Interrupt, the effective address is placed into register RA.

In the store with update instructions, if RS equals RA, the contents of register RS are placed
into memory in the byte, halfword, or word in memory addressed by the EA and the effective
address is placed into register RA.
Store Byte With Update (D-Form)
0 6 1 16 31
39 RS RA D

stbu RS, D(RA)
Let the effective address (EA) be the sum (RA|0) + D.
Bits 24-31 of register RS are placed into memory in the memory byte addressed by the EA.

If RA # 0 and the memory access does not cause an Alignment Interrupt or a Data Storage
Interrupt, the effective address is placed into register RA.

Condition register (CR Field 0)
Set: None

Fixed—Point Exception register

Set: None
Store Byte With Update Indexed (X—-Form)
0 6 11 16 21 31
31 RS RA RB 247 Rc

stbux RS, RA, RB
Let the effective address (EA) be the sum (RA|0) + (RB).
Bits 24-31 of register RS are placed into memory in the memory byte addressed by the EA.

If RA # 0 and the memory access does not cause an Alignment Interrupt or a Data Storage
Interrupt, the effective address is placed into register RA.

Condition register (CR Field 0)
Set: None (ifRc=0)
Set: Undefined (if Re = 1)

Fixed—Point Exception register
Set: None

2-46 General Information Manual

Store Half With Update (D-Form)
0 6 1 16 31
45 RS RA D

sthu RS, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment interrupt is generated.

Bits 16-31 of register RS are stored in the halfword in memory addressed by the EA.

If RA # 0 and the memory access does not cause an Alignment Interrupt or a Data Storage
Interrupt, the effective address is placed into register RA.

Condition register (CR Field 0)
Set: None

Fixed—Point Exception register
Set: None

Store Half With Update Indexed (X—Form)
0 6 11 16 21 31
31 RS RA RB 439 Rc

sthux RS, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the low—order bit of the EA is ignored. If alignment checking is enabled,
MSR(AL) equals 1, and the low—order bit of the EA is not 0, the hardware attempts to
perform the unaligned memory access. If the hardware cannot perform the unaligned
memory access, an Alignment Interrupt is generated.

Bits 16—31 of register RS are stored in the halfword in memory addressed by the EA.

If RA = 0 and the memory access does not cause an Alignment Interrupt or a Data Storage
Interrupt, the effective address is placed into register RA.

Condition register (CR Field 0)
Set: None (f Re=0)
Set: Undefined (ifRc=1)

Fixed—Point Exception register
Set: None

Processor Description 2-47

Store With Update (D—Form)
0 6 1 16 31
37 RS RA D

stu RS, D(RA)

Let the effective address (EA) be the sum (RA|0) + D. If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits of the EA are ignored. If alignment checking is
enabled, MSR(AL) equals 1, and the two low—order bits of the EA are not 00, the hardware
attempts to perform the unaligned memory access. If the hardware cannot perform the
unaligned memory access, an Alignment Interrupt is generated.

Bits 031 of register RS are stored in the word in memory addressed by the EA.

If RA = 0 and the memory access does not cause an Alignment Interrupt or a Data Storage
Interrupt, the effective address is placed into register RA.

Condition register (CR Field 0)
Set: None

Fixed—Point Exception register
Set: None

Store With Update Indexed (X-Form)
0 6 1 16 21 31
31 RS RA RB 183 Re

stux RS, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). If alignment checking is disabled,
MSR(AL) equals 0, the two low—order bits of the EA are ignored. If alignment checking is
enabled, MSR(AL) equals 1, and the two low—order bits of the EA are not 00, the hardware
attempts to perform the unaligned memory access. If the hardware cannot perform the
unaligned memory access, an Alignment Interrupt is generated.

Bits 0-31 of register RS are stored in the word in memory addressed by the EA.

If RA # 0 and the memory access does not cause an Alignment Interrupt or a Data Storage
Interrupt, the effective address is placed into register RA.

Condition register (CR Field 0)
Set: None (ifRc=0)
Set: Undefined (fRc=1)

Fixed—Point Exception register
Set: None

2-48 General Information Manual

Fixed-Point Move Assist Instructions

The string instructions allow movement of data from memory to registers or from registers to
memory without concern for alignment. These instructions can be used for a short move
between arbitrary memory locations or to initiate a long move between unaligned memory
fields.

Load String Indexed and Store String Indexed instructions of zero length have no effect on
memory, PFT entries, nor I/O if T equals1, and do not cause data storage interrupts. Load
String Indexed instructions of zero length do not alter the contents of register RT.

Load String Indexed (X-Form)
0 6 1 16 21 31
31 RT RA RB 533 Re

Isx RT, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). Let XER(25-31) contain the byte
count. Let register RT be the starting register.

Let N equal XER(25-31), which is the number of bytes to be placed. Let NR equal ceil(N/4),
which is the number of registers to receive data. Starting with the leftmost byte in register
RT, N consecutive bytes in memory addressed by the EA are placed into register RT through
RT + NR - 1, wrapping around back through the GPR 0 if required. Bytes are always placed
left to right in the register. In the case when register RT + NR— 1 is only partially filled on the
left, the rightmost bytes of that register are set to 0. When XER(25-31) equals 0, register RT
is not altered.

Registers RA (if RA # 0) and RB, if in the range to be placed, are not written into. The data
that would have been written into them is discarded, and the operation continues normally.
The MQ register is not affected by this operation.

Condition register (CR Field 0)
Set: None (f Rc=0)
Set: Undefined (fRc=1)

Fixed-Point Exception register
Set: None

Note: A Data Storage Interrupt can interrupt this instruction. If an interrupt occurs, the
instruction is restarted from the beginning.

Processor Description 2-49

Load String Immediate (X—Form)
0 6 11 16 21 31
31 RT RA NB 597 Rc

Isl RT, RA, NB

Let the effective address (EA) be (RA|0). Let NB be the byte count. Let register RT be the
starting register.

Let N equal NB which is the number of bytes to load. If NB equals 0, N equals 32. Let NR
equal ceil(N/4) which is the number of registers to receive data. Starting with the leftmost
byte in register RT, N consecutive bytes in memory addressed by the EA are placed into
register RT through RT + NR - 1, wrapping around back through the GPR 0 if required.
Bytes are always placed left to right in the register. In the case when register RT + NR—1 is
only partially filled on the left, the rightmost bytes of that register are set to 0.

Register RA (if RA # 0), if in the range to be placed, is not written into. The data that would
have been written into it is discarded, and the operation continues normally. The MQ register
is not affected by this operation.

Condition register (CR Field 0)
Set: None (if Rc = 0)
Set: Undefined (if Re = 1)

Fixed—Point Exception register
‘Set: None

Note: A Data Storage Interrupt can interrupt this instruction. If an interrupt occurs, the
instruction is restarted from the beginning.

Load String And Compare Byte Indexed (X—Form)

0 6 1 16 21 31
31 RT RA RB 277 Re

Iscbx RT, RA, RB (Rc = 0)

Iscbx. RT, RA, RB (Rc = 1)

Let the effective address (EA) be the sum (RA|0) + (RB). Let XER(25-31) contain the byte
count. Let register RT be the starting register.

Let N equal XER(25-31), which is the number of bytes to be placed. Let NR equal ceil(N/4),
which is the number of registers to receive data.

Starting with the leftmost byte in register RT, consecutive bytes in memory addressed by the
EA are placed into register RT through RT + NR - 1, wrapping around back through the
GPR 0 if required, until either a byte match is found with XER16—23 or N bytes have been
placed. If a byte match is found, that byte is also placed.

Bytes are always placed left to right in the register. In the case when a match was found
before N bytes were placed, the contents of the rightmost bytes not placed of that register
and the contents of all succeeding registers up to and including register RT + NR— 1 are
undefined. Also, no reference is made to memory after the matched byte is found, thus
ensuring no spurious data storage interrupts are generated. In the case when a match was
not found, the contents of the rightmost bytes not placed of register RT + NR—1 is
undefined.

When XER(25-31) equals 0, register RT is not altered.

2-50 General Information Manual

The count of the number of bytes placed up to and including the matched byte, if a match
was found, is placed in XER(25-31).

Registers RA (if RA = 0) and RB, if in the range to be placed, are not written into. The data
that would have been written into them is discarded, and the operation continues normally. If
the byte in XER16-23 compares with any of the four bytes that would have been placed in
register RA or register RB but are being discarded for restartability, the EQ bit and the count
returned in XER(25-31) are undefined.

The MQ register is not affected by this operation.

Condition register (CR Field 0)
Set: None (if Rc = 0)
Set: LT GT EQ SO (ifRc=1)

Fixed—Point Exception register
Set: XER(25-31) equals number of bytes loaded
Notes:
1. If Rc equals 1 and XER(25-31) equals 0, CR Field 0 is undefined. If Rc equals 1
and XER(25-31) does not equals 0, CR Field 0 is set as follows:
LT GT EQ SO equals b*‘00’||match||XER(SO)

2. A data storage interrupt can interrupt this instruction. If an interrupt occurs, the
instruction is restarted from the beginning.

3. When the the EA specifies an /O segment, the hardware may not be able to meet
the requirement that locations beyond the location containing the matching byte
are not accessed. The hardware may fetch the number of bytes specified by
XER(25-31) and then search for the matching byte. Accessing locations beyond
the matching byte could cause spurious access violation exceptions.

Processor Description 2-51

Store String Indexed (X-Form)
(] 6 11 16 21 31
31 RS RA RB 661 Rc

stsx RS, RA, RB

Let the effective address (EA) be the sum (RA|0) + (RB). Let XER(25-31) contain the byte
count. Let register RS be the starting register.

Let N equal XER(25-31), which is the number of bytes to store. Let NR equal ceil(V/4) which
is the number of registers to store data from. Starting with the leftmost byte in register RS, N
consecutive bytes are stored starting at the EA from register RS, through register RS + NR -
1.

The contents of the MQ register is undefined.

Condition register (CR Field 0)
Set: None (if Re = 0)
Set: Undefined (fRc=1)

Fixed—Point Exception register
Set: None

Note: A Data Storage Interrupt can interrupt this instruction. If an interrupt occurs, the
instruction is restarted from the beginning.
Store String Immediate (X—Form)
0 6 11 16 21 31
31 RS RA NB 725 Rc

stsi RS, RA, NB

Let the effective address (EA) be (RA|0). Let NB be the byte count. Let register RS be the
starting register.

Let N equal NB, which is the number of bytes to store. If NB equals 0, N equals 32. Let NR
equal ceil(N/4) which is the number of registers to store data from. Starting with the leftmost
byte in register RS, N consecutive bytes are stored starting at the address in RA from
register RS, through register RS + NR— 1.

The contents of the MQ register is undefined.

Condition register (CR Field 0)
Set: None (fRc=0)
Set: Undefined (fRc=1)

Fixed—Point Exception register
Set: None

Note: A Data Storage Interrupt can interrupt this instruction. If an interrupt occurs, the
instruction is restarted from the beginning.

2-52 General Information Manual

Fixed—Point Address Computation Instructions
Compute Address Lower (D-Form)

Compute Address (XO-Form)

The sum (RA) + (RB) is placed into register RT.
Condition register (CR Field 0)

Set: None (if Rc =0)

Set: LT GT EQ SO (fRc=1)
Fixed—Point Exception register

Set: None (if OE = 0)

Set: SO OV (if OE =1)

0 6 1" 16 31
14 RT RA D
cal RT, D(RA)
The sum (RA|0) + D is placed into register RT.
Condition register (CR Field 0)
Set: None
Fixed—Point Exception register
Set: None
Compute Address Upper (D-Form)
0 6 1 16 31
15 RT RA ul
cau RT, RA, Ul
The sum (RAJ0) + UIl||X‘0000’ is placed into register RT.
Condition register (CR Field 0)
Set: None
Fixed-Point Exception register
Set: None
0 6 11 16 21 22 31
31 RT RA RB OE | 266 Rc
cax RT, RA, RB (Re =0, OE = 0)
cax. RT, RA, RB (Rc=1,0E=0)
caxo RT, RA, RB (Re=0,0E=1)
caxo. RT, RA, RB (Re=1,0E=1)

Processor Description

2-53

Fixed-Point Arithmetic Instructions
The arithmetic instructions treat registers as 32-bit signed integers.

The (X—Form) arithmetic instructions with Rc equals 1 and the (D—Form) arithmetic
instruction, Add Immediate, set CR Field 0 by a compare of the result to zero. ai, ai., ame,
aze, sfi, sfme, sfze, ae, and sfe instructions always set the CA bit to reflect the carry out of
bit 0. However, the (XO-Form)s only set the CR Field 0 when Rc equals 1, and the SO and
OV in the XER when OE equals 1.

The following is the interpretation of the CR Field 0:

Bit Name Description
0 LT Compares less than, negative
1 GT Compares greater than, positive
2 EQ Compares equal to, zero
3 SO Summary overflow from the XER.
The following is the interpretation of the XER:
Bit Name Description
0 SO Summary overflow
1 ov Overflow
2 CA Carry.
Add Immediate (D—Form)
0 6 11 16 31
12 RT RA Sl
ai RT, RA, Sl

The sum (RA) + Sl is placed into register RT.
Condition register (CR Field 0)

Set: None
Fixed—Point Exception register
Set: CA
Add Immediate And Record (D-Form)
0 6 " 16 31
13 RT RA sl
ai. RT, RA, SI

The sum (RA) + Sl is placed into register RT.

Condition register (CR Field 0)
Set: LT GT EQ SO

Fixed—Point Exception register
Set: CA

2-54 General Information Manual

Subtract From Immediate (D—Form)
0 6 1 16 3
08 RT RA sl

sfi RT, RA, SI
The sum — (RA) + Sl + 1 is placed into register RT.

Condition register (CR Field 0)
Set: None

Fixed-Point Exception register
Set: CA

Note: Subtract From Immediate instruction —1 can be used to obtain the one’s complement.

Add (XO-Form)
0 6 1 16 21 22 31
31 RT RA RB OE| 10 Rc
RT, RA, RB (OE =0, Rc = 0)
a. RT, RA, RB (OE =0, Rc = 1)
ao RT, RA, RB (OE=1,Rc =0)
ao. RT, RA, RB (OE=1,Rc=1)

The sum (RA) + (RB) is placed into register RT.
Condition register (CR Field 0)

Set: None (if Re =0)

Set: LT GT EQ SO (ifRc=1)
Fixed—Point Exception register

Set: CA (if OE = 0)

Set: SO OV CA (if OE = 1)

Processor Description 2-55

Subtract From (XO-Form)

0 6 11 16 21 22 31
31 RT RA RB OE| 8 Re
sf RT, RA, RB (OE =0, Rc = 0)
sf. RT, RA, RB (OE=0,Rc=1)
sfo RT, RA, RB (OE=1,Rc=0)
sfo. RT, RA, RB (OE=1,Rc=1)
The sum - (RA) + (RB) + 1 is placed into register RT.
Condition register (CR Field 0)
Set: None (if Rc=0)
Set: LT GT EQ SO (f Re=1)
Fixed—Point Exception register
Set: CA (if OE = 0)
Set: SO OV CA (if OE = 1)
Add Extended (XO-Form)
0 6 11 16 21 22 31
31 RT RA RB OE| 138 Re
ae RT, RA, RB (OE=0,Rc=0)
ae. RT, RA, RB (OE=0,Rc=1)
aeo RT, RA, RB (OE=1,Rc=0)
aeo. RT, RA, RB (OE=1,Rc=1)

The sum (RA) + (RB) + CA is placed into register RT.
Condition register (CR Field 0)

Set: None
Set: LT GT EQ SO

Fixed-Point Exception register

Set: CA
Set: SOOV CA

2-56 General Information Manual

(if Rc = 0)
(if Re = 1)

(if OE = 0)
(it OE = 1)

Subtract From Extended (XO—-Form)

0 6 11 16 21 22 31
31 RT RA RB OE| 136 Rc
sfe RT, RA, RB (OE=0,Rc=0)
sfe. RT, RA, RB (OE=0,Rc=1)
sfeo RT, RA, RB (OE=1,Rc=0)
sfeo. RT, RA, RB (OE=1,Rc=1)
The sum — (RA) + (RB) + CA is placed into register RT.
Condition register (CR Field 0)
Set: None (if Re = 0)
Set: LT GT EQ SO (if Rc=1)
Fixed—Point Exception register
Set: CA (if OE = 0)
Set: SOOV CA (ifOE =1)
Add To Minus One Extended (XO-Form)
0 6 11 16 21 22 31
31 RT RA m OE | 234 Re
ame RT, RA (OE=0,Rc=0)
ame. RT, RA (OE=0,Rc=1)
ameo RT, RA (OE=1,Rc=0)
ameo. RT, RA (OE=1,Rc=1)

The sum — (RA) + CA + X'FFFFFFFF’ is placed into register RT.
Condition register (CR Field 0)

Set: None

Set: LT GT EQ SO

Fixed-Point Exception register

Set: CA
Set: SO OV CA

(if Re = 0)
(if Rc = 1)

(if OE = 0)
(if OF = 1)

Processor Description

2-57

Subtract From Minus One Extended (XO-Form)

The sum (RA) + CA + X‘00000000’ is placed into register RT.
Condition register (CR Field 0)

Set: None

Set: LT GT EQ SO

(if Rc = 0)
(it Re = 1)

Fixed—Point Exception register

Set: CA
Set: SO OV CA

2-58 General Information Manual

(if OE = 0)
(if OE = 1)

0 6 1 16 21 22 31
31 RT RA nm OE| 232 Re
sfme RT, RA (OE =0, Rc=0)
sfme. RT, RA (OE=0,Rc=1)
sfmeo RT, RA (OE=1,Rc=0)
sfmeo. RT, RA (OE=1,Rc=1)
The sum — (RA) + CA + X'FFFFFFFF’ is placed into register RT.
Condition register (CR Field 0)
Set: None (if Re=0)
Set: LT GT EQ SO (ifRc=1)
Fixed—Point Exception register
Set: CA (if OE = 0)
Set: SO OV CA (if OE = 1)
Add To Zero Extended (XO-Form)
0 6 11 16 21 22 31
31 RT RA n OE| 202 Rc
aze RT, RA (OE=0,Rc=0)
aze. RT, RA (OE=0,Rc=1)
azeo RT, RA (OE=1,Rc=0)
azeo. RT, RA (OE=1,Rc=1)

Subtract From Zero Extended (XO-Form)

0 6 1 16 21 22 31
31 RT RA mn OE | 200 Rc

sfze RT, RA (OE=0,Rc=0)

sfze. RT, RA (OE=0,Rc=1)

sfzeo RT, RA (OE=1,Rc=0)

sfzeo. RT, RA (OE=1,Rc=1)

The sum — (RA) + CA + X'00000000' is placed into register RT.
Condition register (CR Field 0)

Set: None (if Rc = 0)
Set: LT GT EQ SO (if Rc = 1)

Fixed—Point Exception register
Set: CA (if OE = 0)
Set: SO OV CA (if OE = 1)

Difference Or Zero Immediate (D—-Form)
0 6 1 16 31
09 RT RA Sl
dozi RT, RA, SI

The sum — (RA) + Sl + 1 is placed into register RT. If the value in register RA is algebraically
greater than the value of the Sl field, register RT is set to 0.

Condition register (CR Field 0)
Set: None

Fixed—Point Exception register
Set: None

Note: This instruction is useful in computing the minimum and maximum of signed integers.

Processor Description 2-59

Difference Or Zero (XO—-Form)

0 6 1 16 21 22 31
31 RT RA RB OE| 264 Rc

doz RT, RA, RB (OE =0, Rc = 0)

doz. RT, RA, RB (OE = 0, Re = 1)

dozo RT,RA,RB (OE =1, Rc = 0)

dozo. RT,RA,RB (OE=1,Rc=1)

The sum —(RA) + (RB) + 1 is placed into register RT. If the value in register RA is
algebraically greater than the value in register RB, register RT is set to 0. If Rc equals 1, the
CR Field 0 is set to reflect the result placed in register RT (if register RT is set to 0, EQ is set
to 1). If OE equals 1, the OV can only be set on positive overflows.

Condition register (CR Field 0)

Set: None (fRc=0)
Set: LT GT EQ SO (ifRc=1)
Fixed—Point Exception register
Set: CA (if OE = 0)
Set: SO OV (if OE = 1)
Note: This instruction is useful in computing the minimum and maximum of signed integers.
Absolute (XO-Form)
0 6 1 16 21 22 31
31 RT RA " OE | 360 Rc
abs RT, RA (OE=0,Rc=0)
abs. RT, RA (OE=0,Rc=1)
abso RT, RA (OE=1,Rc=0)
abso. RT, RA (OE=1,Rc=1)

The absolute value [(RA)| is placed into register RT. If register RA contains the most
negative number (X'80000000’), the result of the instruction is the most negative number
and signals the OV bit if enabled.

Condition register (CR Field 0)

Set: None (fRc=0)

Set: LT GT EQ SO (ifRc=1)
Fixed—-Point Exception register

Set: CA (if OE = 0)

Set: SO OV (if OE = 1)

2-60 General Information Manual

Negate (XO-Form)

0 6 11 16 21 22 31
31 RT RA m OE| 104 Rc

neg RT, RA (OE=0,Rc=0)

neg. RT, RA (OE=0,Rc=1)

nego RT, RA (OE=1,Rc=0)

nego. RT, RA (OE=1,Rc=1)

The sum — (RA) + 1 is placed into register RT. If register RA contains the most negative
number (X'80000000’'), the result of the instruction is the most negative number and signals
the OV bit if enabled.

Condition register (CR Field 0)

Set: None (if Re=0)
Set: LT GT EQ SO (fRc=1)
Fixed—Point Exception register
Set: None (if OE = 0)
Set: SO OV (if OE = 1)
Negative Absolute (XO-Form)
0 6 11 16 21 22 31
31 RT RA m OE | 488 Rc
nabs RT, RA (OE=0,Rc=0)
nabs. RT, RA (OE=0,Rc=1)
nabso RT, RA (OE=1,Rc=0)
nabso. RT, RA (OE=1,Rc=1)

The negative absolute value —|(RA)] is placed into register RT.

Condition register (CR Field 0)
Set: None

Set: LT GT EQ SO

(if Rc = 0)
(if Re = 1)

Fixed—-Point Exception register
Set: None

Set: SO OV

(if OE = 0)
(if OE = 1)

The Negative Absolute instruction never overflows. If OE equals 1, the XER(OV) is setto 0

and XER(SO) is not changed.

Processor Description 2-61

Multiply (XO-Form)

0 6 1 16 21 22 31
31 RT RA RB OE | 107 Rc

mul RT, RA, RB (OE = 0, Rc = 0)

mul. RT, RA, RB (OE =0, Rc = 1)

mulo RT,RA, RB (OE =1, Re = 0)

mulo. RT, RA, RB (OE=1,Rc=1)

Bits 0-31 of the product (RA) x (RB) are placed into register RT. Bits 32—63 of the product
(RA) x (RB) are placed into the MQ register.

If Rc equals 1, the LT, GT, and EQ bits reflect the result in the MQ register (the low—order 32
bits). If OE equals1, the SO and OV bits are set to 1 if the product cannot be represented in

32 bits.

Condition register (CR Field 0)
Set: None (if Re=0)
Set: LT GT EQ SO (ifRc=1)

Fixed—Point Exception register
Set: None (if OE = 0)
Set: SO OV (if OE = 1)

Multiply Immediate (D-Form)
0 6 11 16 31
07 RT RA Sl
muli RT, RA, SI

Bits 32-63 of the product (RA) x Si are placed into register RT. The contents of the MQ
register is undefined.

Condition register (CR Field 0)
Set: None
Fixed—-Point Exception register
Set: None

2-62 General Information Manual

Multiply Short (XO—Form)

0 6 11 16 21 22 31
31 RT RA RB OE| 235 Re

muls RT,RA, RB (OE = 0, Rc = 0)

muls. RT,RA, RB (OE =0, Rc = 1)

mulso RT, RA, RB (OE =1, Rc=0)

mulso. RT, RA, RB (OE =1,Rc=1)

Bits 32—63 of the product (RA) x (RB) are placed into register RT. The contents of the MQ
register is undefined.

If Rc equals 1, the LT, GT, and EQ bits reflect the result in register RT (the low—order 32
bits). If OE equals 1, the SO and OV bits are set to 1 if the product cannot be represented in

32 bits.
Condition register (CR Field 0)
Set: None (if Rc=0)
Set: LT GT EQ SO (fRc=1)
Fixed—Point Exception register
Set: None (if OE = 0)
Set: SO OV (if OE = 1)
Divide (XO—Form)
0 6 11 16 21 22 31
31 RT RA RB OE | 331 Re
div RT, RA, RB (OE=0,Rc=0)
div. RT, RA, RB (OE=0,Rc=1)
divo RT, RA, RB (OE=1,Rc=0)
divo. RT, RA, RB (OE=1,Rc=1)

The quotient [(RA) || (MQ)] / (RB) is placed into register RT. The remainder is placed into the
MQ register. The remainder has the same sign as the dividend, except that a zero quotient
or a zero remainder is always positive. The results obey the following equation:

dividend = (divisor x quotient) + remainder

where dividend is the original (RA) || (MQ), divisor is the original (RB), quotient is the final
(RT), and remainder is the final (MQ).

If Rc equals 1, the CR bits LT, GT, and EQ reflect the remainder. If OE equals 1, the SO and
OV bits are set to 1 if the quotient cannot be represented in 32 bits. For the case of —231
*-1, the MQ register is set to 0 and —231 i s placed in register RT. For all other overflows,
(MQ), (RT), and CR Field 0 (if Rc = 1) are undefined.

Condition register (CR Field 0)
Set: None (f Rc=0)
Set: LT GT EQ SO (f Rc = 1)

Fixed—Point Exception register

Processor Description 2-63

Set: None (if OE = 0)

Set: SO OV (it OE = 1)
Divide Short (XO-Form)
0 6 11 16 21 22 31
31 RT RA RB OE| 363 Re
divs RT, RA, RB (OE =0, Rc = 0)
divs. RT, RA, RB (OE =0,Rc =1)
divso RT, RA, RB (OE=1,Rc=0)
divso. RT, RA, RB (OE=1,Rc=1)

The quotient (RA) / (RB) is placed into register RT. The remainder is placed into the MQ
register. The remainder has the same sign as the dividend, except that a zero quotient or a
zero remainder is always positive. The results obey the following equation:

dividend = (divisor x quotient) + remainder

where dividend is the original (RA), divisor is the original (RB), quotientis the final (RT), and
remainder is the final (MQ).

If Rc equals 1, the the CR bits LT, EQ and GT reflect the remainder. If OE equals 1, the SO
and OV bits are set to 1 if the quotient cannot be represented in 32 bits (as is the case when
the divisor is 0, or the dividend is —23! and the divisor is —1). For the case of —231 ¥ —1, the
MQ Register is set to 0 and —231 is placed into register RT. For all other overflows, the (MQ),
(RT), and CR Field 0 (if Rc = 1) are undefined.

Condition register (CR Field 0)

Set: None (if Rc = 0)

Set: LT GT EQ SO (ifRc=1)
Fixed—Point Exception register

Set: None (if OE = 0)

Set: SO OV (if OE = 1)

2-64 General Information Manual

Fixed—Point Compare Instructions

In compare instructions, the BF field specifies one of the CR fields that receives the result of
the compare. Compare operations either logically or algebraically compare the contents of
register RA with the sign extended S field, the Ul field, or the contents of register RB.

A logical compare operation is the comparison of two 32-bit unsigned integers. An algebraic
compare operation is the comparison of two 32-bit signed integers. The compare operation
sets one bit in the leftmost three bits of the CR field i to 1, the other two are setto 0. The
XER(SO) is copied into bit 3 of CR Field i. CR Field i bits are interpreted as follows:

Bit Name Description
0 LT (RA) < S, UL, or (RB)
1 GT (RA) > SI, Ul, or (RB)
2 EQ (RA) = SI, U, or (RB)
3 SO Summary Overflow from the XER
Compare Immediate (D-Form)
(] 6 9 11 16 31
1 BF | /| RA sl

cmpi BF, RA, SI
The contents of register RA are compared with S| as signed integers.

Condition register
Set: CR Field i, where i = BF

Fixed—Point Exception register
Set: None
Compare (X-Form)
0 6 9 N 16 21 31
31 BF /' 1| RA RB 0 Rc

cmp BF, RA, RB

The contents of register RA are compared with the contents of register RB as signed
integers. CR Field 0 is undefined if BF # 0 and Rc equals 1.

Condition register
Set: CR Field i, where i = BF

Fixed-Point Exception register
Set: None

Processor Description 2-65

Compare Logical Inmediate (D—Form)

0 6 9 M 16 31
10 BF /' | RA ul
cmpli BF, RA, Ul
The contents of register RA are compared with X'0000’ || Ul as unsigned integers.
Condition register
Set: CR Field i, where i = BF
Fixed—Point Exception register
Set: None
Compare Logical (X—-Form)
0 6 9 M 16 21 31
31 BF /' | RA RB 32 Rc

cmpl BF, RA, RB

The contents of register RA are compared with the contents of register RB as unsigned
integers. CR Field 0 is undefined if BF # 0 and Rc equals 1.

Condition register

Set: CR Field i, where i = BF

Fixed—Point Exception register

Set: None

2-66 General Information Manual

Fixed—Point Logical Instructions
The logical instructions perform the indicated operations by bit.

The (X-Form) logical instructions with the Rc bit set to 1 and the (D-Form) logical
instructions, Add Immediate Lower and Add Immediate Upper, set bits 0-3 of the Condition
register (CR Field 0) by a compare of the result to 0. The (X—Form) logical instructions with
the Rc bit set to 0 and the remaining (D—Form) logical instructions do not alter the Condition
register. The logical operations do not change the CA, OV and SO bits in the XER.

AND Immediate Lower (D-Form)

0 6 11 16 31
28 RS RA ul
andil. RA, RS, Ul
The contents of register RS are ANDed with X‘0000’ || Ul and the result is placed into
register RA.

Condition register (CR Field 0)
Set: LT GT EQ SO

Fixed—Point Exception register

Set: None
AND Immediate Upper (D-Form)
0 6 11 16 31
29 RS RA ul

andiu. RA, RS, Ul

The contents of register RS are ANDed with Ul || X'0000’ and the result is placed into
register RA.

Condition register (CR Field 0)
Set: LT GT EQ SO

Fixed—Point Exception register

Set: None
AND (X-Form)
0 6 1" 16 21 31
31 RS RA RB 28 Rc
and RA, RS, RB (Rc=0)
and. RA, RS, RB (Rc=1)

The contents of register RS are ANDed with the contents of register RB and the result is
placed into register RA.

Condition register (CR Field 0)
Set: None (if Rc=0)
Set: LT GT EQ SO (fRc=1)

Processor Description 2-67

Fixed—Point Exception register

Set: None
OR Immediate Lower (D-Form)
0 6 1 16 31
24 RS RA ul
oril RA,RS, Ul
The contents of register RS are ORed with X‘0000’ || Ul and the result is placed into register
RA.
Condition register (CR Field 0)
Set: None
Fixed—-Point Exception register
Set: None
OR Immediate Upper (D-Form)
0 6 11 16 31
25 RS RA ul
oriu RA, RS, Ul
The contents of register RS are ORed with Ul || X'0000’ and the result is placed into register
RA.
Condition register (CR Field 0)
Set: None
Fixed—Point Exception register
Set: None
OR (X-Form)
0 6 1" 16 21 31
31 RS RA RB 444 Rc
or RA, RS, RB (Rc=0)
or. RA, RS, RB (Rc=1)

The contents of register RS are ORed with the contents of register RB and the result is
placed into register RA.

Condition register (CR Field 0)
Set: None (if Rc = 0)
Set: LT GT EQ SO (ifRc=1)

Fixed—Point Exception register
Set: None

2-68 General Information Manual

XOR Immediate Lower (D-Form)

0 6 1 16 31
26 RS RA ul
xoril RA, RS, Ul
The contents of register RS are XORed with X'0000’ || Ul and the result is placed into
register RA.
Condition register (CR Field 0)
Set: None
Fixed—Point Exception register
Set: None
XOR Immediate Upper (D-Form)
0 6 1 16 31
27 RS RA ul

xoriu RA, RS, Ul
The contents of register RS are XORed with Ul || X‘0000’ and the result is placed into

register RA.
Condition register (CR Field 0)
Set: None
Fixed—Point Exception register
Set: None
XOR (X-Form)
0 6 11 16 21 31
31 RS RA RB 316 Rc
xor RA, RS, RB (Rc=0)
xor. RA, RS, RB (Rc=1)

The contents of register RS are XORed with the contents of register RB and the result is
placed into register RA.

Condition register (CR Field 0)
Set: None (fRc=0)
Set: LT GT EQ SO (ifRc=1)

Fixed—Point Exception register
Set: None

Processor Description 2-69

Equivalent (X-Form)

0 6 1" 16 21 31
31 RS RA RB 284 Re

eqv RA, RS, RB (Rc=0)

eqv. RA, RS, RB (Rc=1)

The contents of register RS are XORed with the contents of register RB and the
complemented result is placed into register RA.

Condition register (CR Field 0)

Set: None (if Rc = 0)
Set: LT GT EQ SO (ifRc=1)
Fixed—-Point Exception register
Set: None
AND With Complement (X-Form)
0 6 1 16 21 31
31 RS RA RB 60 Rc
andc RA, RS, RB (Re=0)
andc. RA, RS, RB (Rc=1)

The contents of register RS are ANDed with the complement of the contents of register RB
and the result is placed into register RA.

Condition register (CR Field 0)

Set: None (if Rc=0)
Set: LT GT EQ SO (ifRc=1)
Fixed—Point Exception register
Set: None
OR With Complement (X—-Form)
0 6 1 16 21 31
31 RS RA RB 412 Rc
orc RA, RS, RB (Rc=0)
orc. RA, RS, RB (Re=1)

The contents of register RS are ORed with the complement of the contents of register RB
and the result is placed into register RA.

Condition register (CR Field 0)
Set: None (if Rc = 0)
Set: LT GT EQ SO (fRc=1)

Fixed—Point Exception register
Set: None

2-70 General Information Manual

NOR (X-Form)

0 6 1" 16 21 31
31 RS RA RB 124 Rc

nor RA, RS, RB (Rc=0)

nor. RA, RS, RB (Rc=1)

The contents of register RS are ORed with the contents of register RB and the
complemented result is placed into register RA.

Condition register (CR Field 0)

Set: None (if Re = 0)
Set: LT GT EQ SO (ifRc=1)
Fixed—Point Exception register
Set: None
NAND (X-Form)
0 6 11 16 21 31
31 RS RA RB 476 Rec
nand RA, RS, RB (Rc=0)
nand. RA, RS, RB (Rc=1)

The contents of register RS are ANDed with the contents of register RB and the
complemented result is placed into register RA.

Condition register (CR Field 0)

Set: None (if Rc = 0)
Set: LT GT EQ SO (if Rc = 1)
Fixed—Point Exception register
Set: None
Extend Sign (X-Form)
0 6 11 16 21 31
31 RS RA m 922 Rc
exts RA, RS (Rc=0)
exts. RA, RS (Re=1)

Bits 16—31 of register RS are placed into bits 16—31 of register RA. Bit 16 of register RS is
placed into bits 0—15 of register RA.

Condition register (CR Field 0)
Set: None (if Rc = 0)
Set: LT GT EQ SO (ifRc=1)

Fixed—-Point Exception register
Set: None

Processor Description 2-71

Count Leading Zeroes (X-Form)

0 6 11 16 21 31
31 RS RA n 26 Re

cntlz RA, RS (Rc=0)

cntlz. RA, RS (Re=1)

The number of leading 0—bits (the number of consecutive 0-bits starting at bit 0) of the
contents of register RS are placed in register RA. This number always lies between 0 and
32, inclusive.

If Rc equals 1, the LT, EQ, and GT bits are set to reflect the result. (In particular, if Rc equals
1, LT is always reset.)

Condition register (CR Field 0)
Set: None (if Re = 0)
Set: LT GT EQ SO (ifRc=1)

Fixed—Point Exception register
Set: None

2-72 General Information Manual

Fixed-Point Rotate and Shift Instructions

The fixed—point processor performs rotate operations on data from a general purpose
register and returns the result, or a portion of the result, to a general purpose register. The
rotate operations move a specified number of bits left. The bits that exit from bit position 0
enter at bit position 31.

The shift instructions logically perform left and right shifts. The result of each instruction is
placed into register RA under control of a generated mask.

Fixed—Point Rotate with Mask Instructions
If Rc equals 1, the rotate instructions set bits in the CR according to the value of register RA
at the completion of the instruction. The CR is set as if a compare between register RA and
the value 0 had been performed. Rotate and shift operations do not change the OV and SO
bits. Rotate and shift operations, except algebraic right shifts, do not change the CA bit. If Rc
equals 0, the CR is left unchanged.

The result of the rotate instruction is either inserted into the register under control of the
mask provided, or is ANDed with the mask before being placed into the register.

When the rotate with insert is used, the result of the rotate operation is placed into register
RA under control of the provided mask. If a mask bit is 1, the associated bit of the rotated
data (0 or 1) is placed into register RA; if the mask bit is 0, the associated data bit (0 or 1)
from the register remains unchanged.

The rotate left instructions allow rotate right instructions to be performed (in concept) by a
rotate left of 32—N, where N is the number of positions to rotate right.

Rotate Left Inmediate Then Mask Insert (M—Form)

0 6 1 16 21 26 31
20 RS RA SH MB ME Rc

Himi RA, RS, SH, MB, ME (Rc=0)

dimi. RA, RS, SH, MB, ME (Re = 1)

The contents of register RS are rotated left the number of positions specified by bits 16-20
of the instruction. The rotated data is inserted into register RA under control of the generated

mask.

Condition register (CR Field 0)
Set: None (if Re = 0)
Set: LT GT EQ SO (ifRc=1)

Fixed—Point Exception register
Set: None

Processor Description 2-73

Rotate Left Then Mask Insert (M-Form)

0 6 11 16 21 26 31
22 RS RA RB MB ME Re

rimi RA, RS, RB, MB, ME (Rc = 0)

rimi. RA, RS, RB, MB, ME (Rc = 1)

The contents of register RS are rotated left the number of positions specified by bits 27-31
of register RB. The rotated data is inserted into register RA under control of the generated

mask.

Condition register (CR Field 0)
Set: None (if Rc = 0)
Set: LT GT EQ SO (fRc=1)

Fixed—Point Exception register
Set: None

Rotate Left Inmediate Then AND With Mask (M-Form)

0 6 11 16 21 26 31
21 RS RA SH MB ME Re

rlimi RA, RS, SH, MB, ME (Rc=0)

rlimi. RA, RS, SH, MB, ME (Rc=1)

The contents of register RS are rotated left the number of positions specified by bits 16—-20
of the instruction. The rotated data is ANDed with the generated mask and the result is
placed into register RA.

Condition register (CR Field 0)

Set: None (if Re=0)
Set: LT GT EQ SO (fRc=1)
Fixed-Point Exception register
Set: None
Rotate Left Then AND With Mask (M-Form)
0 6 11 16 21 26 31
23 RS RA RB MB ME Re
rinm RA, RS, RB, MB, ME (Rc =0)
rinm. RA, RS, RB, MB, ME (Rc=1)

The contents of register RS are rotated left the number of positions specified by bits 27-31
of register RB. The rotated data is ANDed with the generated mask and the result is placed

into register RA.

Condition register (CR Field 0)
Set: None (if Re = 0)
Set: LT GT EQ SO (f Re=1)

Fixed—Point Exception register
Set: None

2-74 General Information Manual

Fixed-Point Rotate Bit Instructions
Rotate Right And Insert Bit (X—Form)

0 6 1 16 21 31
31 RS RA RB 537 Rc

rrib RA, RS, RB (Rc=0)

rrib. RA, RS, RB (Rc=1)

Bit 0 of register RS is rotated right the amount specified by bits 27-31 of register RB. The bit
is then inserted into register RA.

Condition register (CR Field 0)
Set: None (if Rc =0)
Set: LT GT EQ SO (ifRc=1)

Fixed—Point Exception register
Set: None

Fixed-Point Bit Mask Instructions
Mask Generate (X—Form)

0 6 11 16 21 31
31 RS RA RB 29 Rc

maskg RA, RS, RB (Rc=0)

maskg. RA, RS, RB (Rc=1)

Let mstart equal RS(27-31), specifying the starting point of a mask of ones. Let mstop equal
RB(27-31), specifying the end point of the mask of ones.

If mstart < mstop + 1 then
MASK(mstart...mstop) equals 1s
MASK(all other bits) equals 0s

It mstart equals mstop + 1 then
MASK(0-31) equals 1s

It mstart > mstop + 1 then
MASK(mstop + 1...mstart— 1) equals 0s
MASK(all other bits) equals 1s

The MASK is then placed in register RA.

Condition register (CR Field 0)
Set: None (fRc=0)
Set: LT GT EQ SO (if Rc=1)

Fixed-Point Exception register
Set: None

Processor Description 2-75

Mask Insert From Register (X-Form)

0 6 1 16 21 31
31 RS RA RB 541 Re

maskir RA, RS, RB (Rc =0)

maskir. RA, RS, RB (Re=1)

Register RS is inserted into register RA under control of the mask in register RB.

Condition register (CR Field 0)
Set: None (f Rc = 0)
Set: LT GT EQ SO (ifRc=1)

Fixed—Point Exception register
Set: None

Fixed-Point Shift Instructions
The instructions in this section logically perform left and right shifts.

The following process is performed when the result of a shift instruction is placed into
register RA under the control of a generated mask.

When the mask bit is 1, the respective bit from either the rotated word or a word of zeros is
placed into register RA. When the mask bit is 0, the respective bit from either the MQ
register or a word of 32 sign bits from register RS is placed into register RA.

If the Record bit (Rc) equals 1, the shift instructions set bits in the CR according to the value
of the contents of register RA at the completion of the instruction. The CR is set as if a
compare between the contents of register RA and the value 0 had been performed.

If Rc equals 0, the CR is left unchanged.
Shift Left (X-Form)

0 6 11 16 21 31
31 RS RA RB 24 Re

sl RA, RS, RB (Rc=0)

sl. RA, RS, RB (Rc=1)

Register RS is rotated left N bits where N is the shift amount specified in bits 27-31 of

register RB.

When bit 26 of register RB is 0, a mask of 32—N ones followed by N zeros is generated.
When bit 26 of register RB is 1, a mask of all zeros is generated.
The logical AND of the rotated word and the generated mask is placed into register RA.

Condition register (CR Field 0)
Set: None (if Re = 0)
Set: LT GT EQ SO (if Rc = 1)

Fixed—Point Exception register
Set: None

2-76 General Information Manual

Shift Right (X-Form)

0 6 1 16 21 31
31 RS RA RB 536 Rc
sr RA, RS, RB (Rc =0)
Sr. RA, RS, RB (Rc=1)
Register RS is rotated left 32—N bits where N is the shift amount specified in bits 27-31 of
register RB.

When bit 26 of register RB is 0, a mask of N zeros followed by 32—-N ones is generated.
When bit 26 of register RB is 1, a mask of all zeros is generated.

The logical AND of the rotated word and the generated mask is placed into register RA.
Condition register (CR Field 0)

Set: None (fRc=0)
Set: LT GT EQ SO (ifRc=1)
Fixed~Point Exception register
Set: None
Shift Left With MQ (X-Form)
0 6 11 16 21 31
31 RS RA RB 152 Rc
slq RA, RS, RB (Rc=0)
slq. RA, RS, RB (Rc=1)

Register RS is rotated left N bits where N is the shift amount specified in bits 27-31 of
register RB. The rotated word is placed into the MQ register.

When bit 26 of register RB is 0, a mask of 32—N ones followed by N zeros is generated.
When bit 26 of register RB is 1, a mask of all zeros is generated.
The logical AND of the rotated word and the generated mask is placed into register RA.

Condition register (CR Field 0)
Set: None (f Rc=0)
Set: LT GT EQ SO (if Re = 1)

Fixed—Point Exception register
Set: None

Processor Description 2=77

Shift Right With MQ (X-Form)

0 6 1 16 21 31
31 RS RA RB 664 Rc

srq RA, RS, RB (Rc=0)

srq. RA, RS, RB (Re=1)

Register RS is rotated left 32—N bits where N is the shift amount specified in bits 27-31 of
register RB. The rotated word is placed into the MQ Register.

When bit 26 of register RB is 0, a mask of N zeros followed by 32-N ones is generated.
When bit 26 of register RB is 1, a mask of all zeros is generated.

The logical AND of the rotated word and the generated mask is placed into register RA.
Condition register (CR Field 0)

Set: None (if Re=0)
Set: LT GT EQ SO (ifRc=1)
Fixed—Point Exception register
Set: None
Shift Left Inmediate With MQ (X-Form)
0 6 1 16 21 31
31 RS RA SH 184 Rc
sliq RA, RS, SH (Rc=0)
sliq. RA, RS, SH (Rc=1)

Register RS is rotated left N bits where N is the shift amount specified in bits 16-20 of the
instruction. The rotated word is placed into the MQ register. A mask of 32—N ones followed
by N zeros is generated. The logical AND of the rotated word and the generated mask is
placed into register RA.

Condition register (CR Field 0)
Set: None (if Re =0)
Set: LT GT EQ SO (fRc=1)

Fixed—Point Exception register
Set: None

2-78 General Information Manual

Shift Right Inmediate With MQ (X-Form)

0 6 11 16 21 31
31 RS RA SH 696 Rc

srig RA, RS, SH (Rc = 0)

srig. RA, RS, SH (Re = 1)

Register RS is rotated left 32—N bits where N is the shift amount specified in bits 16-20 of
the instruction. The rotated word is placed into the MQ register. A mask of N zeros followed
by 32—-N ones is generated. The logical AND of the rotated word and the generated mask is
placed into register RA.

Condition register (CR Field 0)

Set: None (if Rc = 0)
Set: LT GT EQ SO (ifRc=1)
Fixed—Point Exception register
Set: None
Shift Left Long Immediate With MQ (X-Form)
0 6 1" 16 21 31
31 RS RA SH 248 Re
slliq RA, RS, SH (Rc=0)
slliq. RA, RS, SH (Rc=1)

Register RS is rotated left N bits where N is the shift amount specified in bits 16—20 of the
instruction. A mask of 32—N ones followed by N zeros is generated. The rotated word is
merged with the contents of the MQ register, under control of the generated mask. See
"Fixed—-Point Shift Instructions” on page 2-76 for information about the mask. The merged
word is placed into register RA. The rotated word is placed into the MQ register.

Condition register (CR Field 0)
Set: None (if Rc = 0)
Set: LT GT EQ SO (if Rc=1)

Fixed—Point Exception register
Set: None

Processor Description 2-79

Shift Right Long Immediate With MQ (X-Form)

0 6 11 16 21 31
31 RS RA SH 760 Re

srli RA, RS, SH (Rc =0)

srig. RA, RS, SH (Rc = 1)

Register RS is rotated left 32—N bits where N is the shift amount specified in bits 16—20 of
the instruction. A mask of N zeros followed by 32—N ones is generated. The rotated word is
then merged with the contents of the MQ register, under control of the generated mask. See
"Fixed—Point Shift Instructions” on page 2-76 for information about the mask. The merged
word is placed into register RA. The rotated word is placed into the MQ register.

Condition register (CR Field 0)

Set: None (if Rc = 0)
Set: LT GT EQ SO (if Re=1)
Fixed—Point Exception register
Set: None
Shift Left Long With MQ (X-Form)
0 6 1 16 21 31
31 RS RA RB 216 Rc
sliq RA, RS, RB (Rc=0)
slig. RA, RS, RB (Rc=1)
Register RS is rotated left N bits where N is the shift amount specified in bits 27-31 of
register RB.

When bit 26 of register RB is 0, a mask of 32—N ones followed by N zeros is generated. The
rotated word is then merged with the contents of the MQ register, under control of the
generated mask. See "Fixed—Point Shift Instructions” on page 2-76 for information about the
mask.

When bit 26 of register RB is 1, a mask of 32—N zeros followed by N ones is generated. A
word of zeros is then merged with the contents of the MQ register, under control of the
generated mask.

The merged word is placed into register RA. The MQ register is not altered.

Condition register (CR Field 0)
Set: None (if Rc =0)
Set: LT GT EQ SO (if Rc =1)

Fixed-Point Exception register
Set: None

2-80 General Information Manual

Shift Right Long With MQ (X-Form)

0 6 1" 16 21 31

31 RS RA RB 728 Rc
sriq RA, RS, RB (Re=0)
srig. RA, RS, RB (Rc=1)
Register RS is rotated left 32—N bits where N is the shift amount specified in bits 27-31 of
register RB.

When bit 26 of register RB is 0, a mask of N zeros followed by 32—-N ones is generated. The
rotated word is then merged with the contents of the MQ register, under control of the
generated mask. See "Fixed—Point Shift Instructions” on page 2-76 for information about the
mask.

When bit 26 of register RB is 1, a mask of N ones followed by 32—N zeros is generated. A
word of zeros is then merged with the contents of the MQ register, under control of the -
generated mask.

The merged word is placed into register RA. The MQ register is not altered.
Condition register (CR Field 0)

Set: None (ifRc=0)
Set: LT GT EQ SO (ifRc=1)
Fixed—Point Exception register
Set: None
Shift Left Extended (X-Form)
0 6 1" 16 21 31
31 RS RA RB 153 Rc
sle RA, RS, RB (Rc=0)
sle. RA, RS, RB (Rc=1)

Register RS is rotated left N bits where N is the shift amount specified in bits 27-31 of
register RB. The rotated word is placed into the MQ register. A mask of 32—-N ones followed
by N zeros is generated. The logical AND of the rotated word and the generated mask is
placed into register RA.

Condition register (CR Field 0)
Set: None (f Rc=0)
Set: LT GT EQ SO (ifRc=1)

Fixed—Point Exception register
Set: None

Processor Description 2-81

Shift Right Extended (X—Form)

0 6 1" 16 21 31
31 RS RA RB 665 Re

sre RA, RS, RB (Rc=0)

sre. RA, RS, RB (Re=1)

Register RS is rotated left 32—N bits where N is the shift amount specified in bits 27-31 of
register RB. The rotated word is placed into the MQ register. A mask of N zeros followed by
32-N ones is generated. The logical AND of the rotated word and the generated mask is
placed into register RA.

Condition register (CR Field 0)

Set: None (fRc=0)
Set: LT GT EQ SO (fRc=1)
Fixed—Point Exception register
Set: None
Shift Left Extended With MQ (X-Form)
0 6 1 16 21 31
31 RS RA RB 217 Rc
sleq RA, RS, RB (Rc=0)
sleq. RA, RS, RB (Rc=1)

Register RS is rotated left N bits where N is the shift amount specified in bits 27-31 of
register RB. A mask of 32—N ones followed by N zeros is generated. The rotated word is
then merged with the contents of the MQ register, under control of the generated mask. See
"Fixed—Point Shift Instructions” on page 2-76 for information about the mask. The merged
word is placed into register RA. The rotated word is placed into the MQ register.

Condition register (CR Field 0)
Set: None (if Re = 0)
Set: LT GT EQ SO (if Rc=1)

Fixed—Point Exception register
Set: None

2-82 General Information Manual

Shift Right Extended With MQ (X-Form)

0 6 11 16 21 31
31 RS RA RB 729 Rc

sreq RA, RS, RB (Rc=0)

sreq. RA, RS, RB (Rc=1)

Register RS is rotated left 32—N bits where N is the shift amount specified in bits 27-31 of
register RB. A mask of N zeros followed by 32—N ones is generated. The rotated word is
then merged with the contents of the MQ register, under control of the generated mask. See
"Fixed—Point Shift Instructions” on page 2-76 for information about the mask. The merged
word is placed into register RA. The rotated word is placed into the MQ register.

Condition register (CR Field 0)

Set: None (if Rc = 0)
Set: LT GT EQ SO (ifRc=1)
Fixed—Point Exception register
Set: None
Shift Right Algebraic Immediate (X—Form)
0 6 1" 16 21 31
31 RS RA SH 824 Rc
srai RA, RS, SH (Rc=0)
srai. RA, RS, SH (Re=1)

Register RS is rotated left 32—N bits where N is the shift amount specified in bits 16—20 of
the instruction. A mask of N zeros followed by 32—N ones is generated. The rotated word is
then merged with a word of 32 sign bits from the RS register, under control of the generated
mask. See "Fixed—Point Shift Instructions” on page 2-76 for information about the mask.

The merged word is placed into register RA.

The rotated word is ANDed with the complement of the generated mask. This 32 bit result is
ORed together and then ANDed with bit 0 of register RS to produce the CA bit.

Condition register (CR Field 0)

Set: None (if Rc =0)
Set: LT GT EQ SO (if Rc = 1)
Fixed—Point Exception register
Set: None
Note: All Shift Right Algebraic instructions can be used for a fast divide by 2N if followed
with aze.

Processor Description 2-83

Shift Right Algebraic (X-Form)

0 6 1 16 21 31
31 RS RA RB 792 Rc

sra RA, RS, RB (Rc=0)

sra. RA, RS, RB (Re=1)

Register RS is rotated left 32—N bits where N is the shift amount specified in bits 27-31 of
register RB. When bit 26 of register RB is 0, a mask of N zeros followed by 32-N ones is
generated. When bit 26 of register RB is 1, a mask of all zeros is generated. The rotated
word is then merged with a word of 32 sign bits from the RS register, under control of the
generated mask. See "Fixed—Point Shift Instructions” on page 2-76 for information about the
mask.

The merged word is placed into register RA.

The rotated word is ANDed with the complement of the generated mask. This 32-bit result is
ORed together and then ANDed with bit 0 of register RS to produce the CA bit.

Condition register (CR Field 0)
Set: None (fRc=0)
Set: LT GT EQ SO (ifRc=1)

Fixed—Point Exception register
Set: CA

Note: All Shift Right Algebraic instructions can be used for a fast divide by 2N if followed
with a Add to Zero Extended instruction.

Shift Right Algebraic Immediate With MQ (X—Form)

0 6 11 16 21 31
31 RS RA SH 952 Rc

sraiq RA, RS, SH (Rc=0)

sraig. RA, RS, SH (Re=1)

Register RS is rotated left 32—N bits where N is the shift amount specified in bits 16-20 of
the instruction. A mask of N zeros followed by 32—-N ones is generated. The rotated word is
placed into the MQ register. The rotated word is then merged with a word of 32 sign bits
from the RS register, under control of the generated mask. See "Fixed—Point Shift
Instructions” on page 2-76 for information about the mask.

The merged word is placed into register RA.

The rotated word is ANDed with the complement of the generated mask. This 32-bit result is
ORed together and then ANDed with bit 0 of register RS to produce the CA bit.

Condition register (CR Field 0)
Set: None (if Re = 0)
Set: LT GT EQ SO (if Re = 1)

Fixed—Point Exception register
~Set: CA

Note: All Shift Right Algebraic instructions can be used for a fast divide by 2N if followed
with a Add to Zero Extended instruction.

2-84 General Information Manual

Shift Right Algebraic With MQ (X-Form)

0 6 1 16 21 31
31 RS RA RB 920 Rec

sraq RA, RS, RB (Rc=0)

sraq. RA, RS, RB (Rc=1)

Register RS is rotated left 32—N bits where N is the shift amount specified in bits 27-31 of
register RB. When bit 26 of register RB is 0, a mask of N zeros followed by 32—-N ones is
generated. When bit 26 of register RB is 1, a mask of all zeros is generated. The rotated
word is placed into the MQ register. The rotated word is then merged with a word of 32 sign
bits from the RS register, under control of the generated mask. See "Fixed—Point Shift
Instructions” on page 2-76 for information about the mask.

The merged word is placed into register RA.

The rotated word is ANDed with the complement of the generated mask. This 32-bit result is
ORed together and then ANDed with bit 0 of register RS to produce the CA bit.

Condition register (CR Field 0)
Set: None (if Re =0)
Set: LT GT EQ SO (ifRc=1)

Fixed—Point Exception register
Set: CA

Note: All Shift Right Algebraic instructions can be used for a fast divide by 2N if followed
with a Add to Zero Extended instruction.

Shift Right Extended Algebraic (X—Form)

0 6 1 16 21 31
31 RS RA RB 921 Rc

srea RA, RS, RB (Rc=0)

srea. RA, RS, RB (Rc=1)

Register RS is rotated left 32—N bits where N is the shift amount specified in bits 27-31 of
register RB. A mask of N zeros followed by 32—N ones is generated. The rotated word is
placed into the MQ register. The rotated word is then merged with a word of 32 sign bits
from the RS register, under control of the generated mask. See "Fixed—Point Shift
Instructions” on page 2-76 for information about the mask.

The merged word is placed into register RA.

The rotated word is ANDed with the complement of the generated mask. This 32-bit result is
ORed together and then ANDed with bit 0 of register RS to produce the CA bit.

Condition register (CR Field 0)
Set: None (if Re =0)
Set: LT GT EQ SO (ifRc=1)

Fixed—Point Exception register
Set: CA

Processor Description 2-85

Double-Precision Shifts
Note: Some of the shift instructions use the MQ register. Double—length shifting of an

arbitrary pair of general purpose registers can be accomplished with a few such
instructions. The shift amount is specified either as an immediate value in the
instruction (0 < shift amount < 31) or as bits 26-31 of register RB (0 < shift amount <
63). The following examples treat registers R1 and R2 as containing a 64-bit integer,
with the R1 register containing the high order part. The shift amount is given as n for
the immediate shifts, and is in bits 26—31 of the R3 register for the variable shifts.

Shift Left Double Immediate

sliq r2,r2,n

sllig ri,ri,n
Shift Left Double

slq r2, r2, r3

sliq r1,r1,r3
Shift Right Double Immediate

sriq ri,r,n

srliq r2,r2,n
Shift Right Double

srq ri,r1,r3

srlq r2, r2, r3
Shift Right Algebraic Double Immediate

sraiq r1,ri,n

srliq r2,r2,n
Shift Right Algebraic Double

cmpli fi, r3, 32

srea r1,r1,r3

sreq re, r2, r3

bt fi, done

or re, r1, ri

srai ri, r1, 31

done:

2-86 General Information Manual

Move To and Move From System Registers Instructions
This section defines instructions for moving data between the GPRs and the special purpose

registers CTR, LR, and MQ.
Move To Special Purpose Register (X—Form)
0 6 11 16 21 31
31 RS SPR " 467 Rc

mispr SPR, RS
The contents of register RS are placed into the special purpose register indicated by the

SPR field.
SPR Register
00000 (00) MQ

00001 (01) XER
01000 (08) LR
01001 (09) CTR

All other combinations are reserved and do not alter any architected registers.

Condition register (CR Field 0)
Set: None (if Re =0)
Set: Undefined (if Rc=1)

Fixed—Point Exception register
Set: None

Note: Execution of this instruction, specifying SPR11 set to 1 and MSR(PR) set to 1, results
in a privileged instruction—type Program Interrupt.

Processor Description 2-87

Move From Special Purpose Register (X—-Form)
0 6 1 16 21 31
31 RT SPR n 339 Rc

mfspr RT,SPR (Rc=0)

The contents of the special purpose register indicated by the SPR field are placed into
register RT.

SPR Register
00000 (00) MQ
00001 (01) XER
00100 (04) RTCU
00101 (05) RTCL
00110 (06) DEC
01000 (08) LR
01001 (09) CTR

All other combinations are reserved and do not alter any architected registers.

Condition register (CR Field 0)
Set: None (if Rc = 0)
Set: Undefined | (if Re=1)

Fixed—Point Exception register
Set: None

Note: Execution of this instruction, specifying SPR1¢ set to 1 and MSR(PR) set to 1, results
in a privileged instruction—type Program Interrupt.

2-88 General Information Manual

Move To and Move From Condition Register Instruction
This section defines instructions for moving data between the general purpose registers and
the Condition register.

Move To Condition Register Fields (XFX—Form)
0 6 11 12 20 21 31

K} RS /| FXM /1 144 Re

mtcrf FXM, RS

The contents of register RS are placed into Condition register under control of the FXM field
mask. FXM field mask is defined as follows:

Bit Description

12 Bits 00-03 of CR updated
13 Bits 04-07 of CR updated
14 Bits 08—11 of CR updated
15 Bits 12-15 of CR updated
16 Bits 16—19 of CR updated
17 Bits 20-23 of CR updated
18 Bits 24—-27 of CR updated
19 Bits 28—-31 of CR updated.

Register RS is not changed.

Condition register (CR Field 0)
Set: See description above (if Re = 0)
Set: Undefined (if Re = 1)

Fixed—Point Exception register
Set: None

Move To Condition Register From XER (X-Form)
0 6 9 11 16 21 31
31 BF |/ | m 7 512 Rc

mcerxr BF

The contents of XER(0-3) are copied into Condition register Field i, where i equals BF. All
other fields of the Condition register remain unchanged. The XER(0-3) is reset to 0.

Condition register (CR Field 0)
Set: None (if Rc = 0)
Set: Undefined (if Rc equals 1 and BF = 0)

Fixed—Point Exception register
Set: XER(0-3)

Processor Description 2-89

Move From Condition Register (X—-Form)

0 6

"

16

21

31

31

RT

n

m

19

Rc

mfcr RT

The contents of the Condition register are placed into register RT.

Condition register (CR Field 0)
Set: None

Set: Undefined

Fixed—Point Exception register
Set: None

Move From Machine State Register Instruction
This section defines the instruction for moving data from Machine State registers.

Move From Machine State Register (X—-Form)

0 6

11

16

(if Re = 0)
(if Re = 1)

21

31

31

RT

n

mn

83

Rec

mfmsr RT

The contents of the MSR are placed into register RT.

Condition register (CR Field 0)
Set: None

Set: Undefined

Fixed—Point Exception register
Set: None

2-90 General Information Manual

(if Rc = 0)
(if Re = 1)

Floating—Point Processor Overview

The floating—point processor (FPP) provides high—performance execution of floating—point
operations. Instructions are provided to perform arithmetic operations in floating—point
registers and move floating—point data between memory and these registers.

This architecture provides for hardware to implement a floating—point system as defined in
ANSVIEEE Standard 754—-1985, IEEE Standard for Binary Floating Point Arithmetic, but has
a dependency on supporting software to be in conformance with that standard.

A floating—point number consists of a signed exponent and a signed significand. The
quantity expressed by this number is the product of the significand and the number 2exponent.
Encodings are provided in the data format to represent finite numeric values, + Infinity and
Not-a~-Number (NaN) values. Operations involving infinities produce results obeying
traditional mathematical conventions. NaN values have no mathematical interpretation. Their
encoding permits a variable diagnostic—information field. They can indicate such things as
uninitialized variables and can be produced by certain invalid operations.

There are two classes of exceptional events that occur during instruction execution that are
unique to the FPP:

e FPP unavailable
¢ Floating—point exception.

The FPP unavailable event is signaled with a Floating—Point Not Available Interrupt.
Floating—point exceptions are signaled with bits set in the Floating—Point Status and Control
register and can generate a precise interrupt with the proper bits enabled.

The Floating—Point Available bit is defined to enhance context switching performance for
programs that do not require the use of FPP. The Floating—Point Available bit is defined in
the "Machine State Register”, MSR(FP), on page 2-18.

If the MSR(FP) bit equals 1, the FPP is available for use and floating—point instructions can
be successfully executed. If the MSR(FP) bit equals 0, the FPP is unavailable for use,
execution of any floating—point instruction is suppressed, and a Floating—Point Unavailable
Interrupt is generated to signal the attempted use of the FPP in the unavailable state.

The following floating—point exceptions are detected by the hardware:
¢ Invalid operation exception

~ SNaN
Infinity — Infinity

Infinity x Zero

Infinity + Infinity
Zero + Zero
Ordered Compare With a NaN

e Zero Divide Exception

¢ Overflow Exception
¢ Underflow Exception
¢ Inexact Exception

Processor Description 2-91

Each floating—point exception and exception sub—class (in the case of Invalid Operation
Exception) has an Exception bit defined in the Floating—Point Status and Control Register.
Each floating—point exception has an Enable bit defined in the Floating—Point Status and
Control Register. See "Floating—Point Status and Control Register " on page 2-93 for
definitions of these bits. A bit is defined in the MSR, Floating—Point Exception Interrupt
Enable, or MSR(FE), which allows a precise program interrupt to be generated when an
enabled floating—point exception occurs.

Floating—Point Registers
Implementations of this architecture provide 32 floating—point registers (FPR). The
floating—point instruction formats provide a 5-bit field for specifying the FPRs used in the
instruction execution. The FPRs are numbered 0-31. See Figure 10 for a representation of
the floating—point registers. A Floating—Point Status and Control register controls the
handling of floating—point exceptions and records status resulting from the floating—point
operations.

Each FPR contains 64 bits, which support the double—precision floating—point format. All
operations that interpret the contents of an FPR as a floating—point value use the
double—precision floating—point format for this interpretation.

All floating—point operations other than load and store operations are performed on
operands located in FPRs and place the result value in an FPR. Status information is placed
in the Floating—Point Status and Control register and in some cases in the Condition register.

Load and store double instructions are provided that transfer 64 bits of data between
memory and the FPRs in the FPP with no conversion. Load single instructions are provided
to transfer and convert floating—point values in single floating format from memory to the
same value in double floating format in the FPRs. Store single instructions are provided to
transfer and convert floating—point values in double floating format from the FPRs to the
same value in single—floating format in memory.

FPR 00
FPR 01

FPR 30
FPR 31

Figure 10. Floating—Point Registers

2-92 General Information Manual

Floating—Point Status and Control Register
The Floating—Point Status and Control register (FPSCR) contains the status and control
flags for floating—point operations. Bits 0—-19 are Status bits. Bits 20~31 are Control bits.

0 31
FPSCR

Bit Name Description

00 FX Floating—Point Exception Summary

01 FEX Floating—Point Enabled Exception
Summary

02 VX Floating—Point Invalid Operation Exception
Summary

03 OX Floating—Point Overflow Exception

04 UXx Floating—Point Underflow Exception

05 ZX Floating—Point Zero Divide Exception

06 XX Floating—Point Inexact Exception

07 VXSNAN Floating—Point Invalid Operation Exception
(SNaN)

08 VXISI Floating—Point Invalid Operation Exception
(INF — INF)

09 VXIDI Floating—Point Invalid Operation Exception
(INF + INF)

10 VXZDZ Floating—Point Invalid Operation Exception
(0+0)

11 VXiMZ Floating—Point Invalid Operation Exception
(INF x 0)

12 VXVC Floating—Point Invalid Operation Exception
(Invalid Compare)

13 FR Floating—Point Fraction Rounded

14 Fl Floating—Point Fraction Inexact

15 C Floating—Point Result Class Descripter

16 FL Floating—Point Less Than

17 FG Floating—Point Greater Than

18 FE Floating—Point Equal

19 FU Floating—Point Unordered

20 Reserved

21 Reserved

22 Reserved

23 Reserved

24 VE Floating—Point Invalid Operation Exception
Enable

25 OE Floating—Point Overflow Exception Enable

26 UE Floating—Point Underflow Exception Enable

27 ZE Floating—Point Zero Divide Exception
Enable

28 XE Floating—Point Inexact Exception Enable

29 Reserved

30 RN Floating—Point Rounding Control

31 RN Floating—Point Rounding Control.

Processor Description

2-93

The format of the FPSCR follows:

Bit
0

10
11

12

13

14

15-19

Description

Floating—Point Exception Summary (FX). Every floating—point arithmetic
instruction, floating—point compare instruction, and the Floating Round to
Single instruction shall implicitly set FPSCR(FX) if that instruction causes
any of the Floating—Point Exception bits in the FPSCR to transition from 0 to
1. Also, use of the mtfsb1 instruction, which causes any of the
Floating—Point Exception bits in the FPSCR to transition from 0 to 1 shall
implicitly set FPSCR(FX). The merfs instruction shall be able to implicitly
reset the FPSCR(FX). And finally, the mtfsf, mtfsfi, mtfsb1, and mtfsb0
instructions are able to set or clear FPSCR(FX) explicitly.

Floating—Point Enabled Exception Summary (FEX). This bit signals the
occurrence of any of the enabled exception conditions. It is the 'OR’ of all
the floating—point exceptions masked with their respective enable.

Floating—Point Invalid Operation Exception Summary (VX). This bit signals
the occurrence of any invalid operation exceptions. It is the ‘OR’ of all the
invalid operation exceptions.

Floating—Point Overflow Exception (OX). See “Overflow E<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>