System/3 Model 6

5406 Processing Unit and Attachments

Preface

Abbreviations

This manual is a combined theory-diagram and maintenance manual for the 5406 Processing Unit. It is divided into eleven sections, and with the following exceptions it is a self-contained manual

1. Sections 2 through 6 are the diagrams for the processing unit, and must be used in conjunction with the Field Engineering Theory of Operations Manual, $I B M$
2. Section 8 is the disk file attachment manual which is a separate heory-diagram manual. The Field Engineering Theory-Diagram Manual (IBM System/3 5444 Disk Storage Drive Attachment, Order No. SY34-0021) can be inserted, in sequence, in this manual.
3. The binary synchronous communications adapter (BSCA) and serial input output channel (SIOC) feature attachment manuals are separate theory-diagrams manuals which are also required if these features are present on the system.

The eleven sections of the manual are as follows:

Second Edition (February 1971)

This is a revision of and obsoletes SY34-0022-0. Changes and corrections were made to all chapters and sections. The basic content and format remain the same.

Within this manual, System/3 machines made for use in the United States are referred to as domestic machines, machines made for uss
States are referred to as World Trade machines.
hanges to the information in this manual will be reported in subsequent revisions of upplements.
opies of this and other IBM pubications can be obtained through IBM Brach Offica

A form for readers comments is provided at the back or this pubication. It me form , Divio

Copyright International Business Machines Corporation 1970, 1971

Section Title

System Maintenance

Erzor Conditions
Data Flow
Functional Units
Operations
CPU Sections
Power and Cooling
Keyboard and Console
Disk File Attachment (separate manual)
Printer and Ledger Card Device Attachments CRT Attachment
Other manuals necessary to understand and service the IBM System/3

Model 6 are:

1. Field Engineering Parts Catalog, IBM 5406 Processing Unit, Order No. S134-0001
2. Field Engineering Maintenance Diagrams, IBM System/3 Serial I/O Channel Attachment, Order No. SY31-0275
3. Field Engineering Maintenance Diagrams, IBM System/3 Binary Synchronous Communications Adapter, Order No. SY31-0258
4. Field Engineering Theory-Maintenance Diagrams, IBM 5496 Data Recorder Online Feature, Order No. SY31-0279
Field Engineering Theory-Maintenance Manual, Elastic Diaphragm Encoded Keyboards, Order No. SY27-0073
5. Maintenance Library Theory-Maintenance Manual, IBM 2222 Printer Models 1 and 2, Order No. SY24-3585

A field Address Register Automated Logic Diagran
Arithmetic Logic Unit
Address Recall Register
B field Address Register
Binary Synchronous Communications Adapter
Basic Storage Module
Central Processing Unit
ondition Register
CRT Address Regegister
Device Address
Data Bus In
Data Bus Out
Disk File Control Registe
Disk File Data Register
Dual Program Feature (not used on the 5406)
Data Recorder Address Register
Data Recall Register
Extended Binary Coded Decimal Interchange Code
nstruction Address Register
Input-Output
Thousand
Ledger Card Device
Length Count Register
Length Count Recall Register
Locate Line Address Register
Local Storage Registe
Maintenance Analysis Procedur
Monolithic System Technology
arity Check
rint Command Address Register
Print Data Address Register
Parity Generate
Program Status Register
Storage Address Register
Storage Data Register
Serial Input Output Channe
Index Register

Contents

Section 1. System Maintenance
Chapter 1. Reference Data 1-101
Chapter 2. Console and Maintenance Facilities 1-201
Chapter 3. Preventive Maintenance
Chapter 4. Checks, Removals, and Adjustment 1-401
Chapter 5. Power and Cooling 1-501
Chapter 6. Locations 1-601
Section 2. Processing Unit
Error Conditions 2-010
Section 3. Processing Unit
Data Flow 3-010
Section 4. Processing Unit
Functional Units.
4.010

Section 5. Processing Uni
Operations
Section 6. Processing Uni
Power and Cooling
Section 7. Keyboard and Console
Chapter 1. Introduction 7-101
Chapter 2. Functional Units 7-201
Chapter 3. Operations 7-301
Section 8. Disk Storage Drive Attachment (separate manual)
Chapter 1. Introduction 8-1
Chapter 2. Functional Units 8-201
Chapter 3. Operations 8-301
Section 9. Printer and Ledger Card Device Attachments
Chapter 1. Printer Attachment Introduction 9-101
Chapter 2. Printer Attachment Functional Units $9-201$
Chapter 3. Printer Attachment Operations
Chapter 4. Ledger Card Device Attachment Introduction . 9-401 Chapter 5. Ledger Card Device Attachment Functional Units

9-501

Section 10. Data Recorder Attachment

Chapter 1. Introduction 10-10
Chapter 2. Functional Units 10-20
Section 11. CRT Attachment
Chapter 1. Introduction $11-101$
Chapter 2. Functional Units . . .
Chapter 2. 3. Operations 11-2011-301

Legend

REGISTER (REG)

- A register is a functional logic block consisting of a group of associated triggers (TR) with common lines such as reset (R), control (C), etc. Common gates may also be included.
- Common Section

Contains lines common to one or more logic element.

- Data Section

The inputs and/or outputs shall be grouped and shall be interconnected with line and connecting symbol.

- Name

The common section shall have the name "REG"

Examples

DECODER (DCD)

- A functional logic block in which inputs and outputs are assigned numeric values. An output line is active when and only when its value (number) is equal to the As of the values of all active input lines.
- Note: At any given time there is only one sum. If all input line are inactive, the sum is zero.
- Common Section

When gating is used, the gating line and gated line shall be cross-related by labeling with a letter, rather than a numeral. These common lines shall be drawn to the

Data Section
The inputs to a decode block shall be number $1,2,4,8,16$ etc. The outputs shall be numbered to reflect the sum of the active inputs required for each decode output.

- Name

The common section (when used) shall have the name "DCD"; when the commo section is not used, the data section shall have the name "DCD "

Example 1: Decoder without gating.

Section 1. System Maintenance

Contents

This section of the combined theory-maintenance manual (FETMM) contains
the maintenance procedures for the 5406. It is divided into six chapters as follows:
Chapter 1. Reference Data
Chapter 2. Console and Maintenance Facilities Chapter 3. Preventive Maintenance
Chapter 4. Checks, Adjustments, and Removals Chapter 5. Power and Cooling
Chapter 6. Locations

Chapter 1. Reference Data
 1-101

Instructions 1-101
Instruction Codes and Addressing Schemes 1-102 Instruction and Machine Cycles 1-103 Test I/O and Branch Instruction 1-104
Start I/O Operation 1-106
Sense Instruction (3 Parts) $\quad 1-107$ through 1-10
I/O Control Fields $1-110$
CPU Sense and Condition Code Response 1-11 Condition Register Settings and Hexadecimal and Decimal
$\begin{array}{lll}\text { Condition Register } \\ \text { Conversion Chart } & 1-112\end{array}$
$\begin{array}{ll}\text { Hexadecimal Addition and CPU Timing } & 1-1 \\ \text { Local Store Registers and Data Flow } & 1-114\end{array}$
Cycle Pattern, Data Storage and Sign Control 1-115 Code Conversion Chart (2 Parts) 1-116, 1-117 CRT Code Conversion Chart 1-118 Tie-Down List 1-119

Chapter 2. Console and Maintenance Facilities 1-20
Integrated Maintenance Package 1-201 System Console (2 Parts) 1-202, 1-203
Field Engineer Console (4 Parts) 1-204 through 1-207 Special Tools (2 Parts) 1-208, 1-209 Alternate Program Load Device (2 Parts) 1-210, 1-211

Chapter 3. Preventive Maintenance 1-301

Preventive Maintenance Chart 1-301
Chapter 4. Checks, Adjustments, and Removals 1-40
Storage Module (11 Parts) 1-401 through 1-408C
Keyboard 1-409
5444 Disk 1-411
5444 Disk 1-411
5496 Data Recorder 1-412
Chapter 5. Power and Cooling 1-501
Power Input, Output, Sequencing, and MST Regulators 1-501 -4 Volt and +6 Volt Power Supplies 1-502
Power Supply Test Points 1-503
Chapter 6. Locations 1-601
Covers and Panels 1-601
Logic Gates 1-602
$\begin{array}{ll}\text { Power Supplies } & 1-603 \\ \text { Power Controls } & 1-604\end{array}$
Power Controls 1-604
Power and Cable Channel 1-605
Appendix A. Special Circuits 1-A1
Appendix B. World Trade 1-B1

Safety

PERSONAL SAFETY

Ensure your own safety by making it an everyday practice to use caution at all times and by being aware of potentially dangerous areas of the machine. Be sure to read and follow the safety suggestions in Form No. 229-1264, a pocket-sized card issued to all IBM Customer Engineers.
Remember:

- Loose clothing can become entangled in moving parts of the machine.
- Drive belts, because of their internal cable construction, can cause serious injury. Do not crank a machine by pulling on the drive belts.
- Heat sinks are at an electrical potential. Do not short heat sinks to each other or to the machine side frame.
- Always unplug machine power and wait one full minute before attempt ing repairs or adjustments in the power supply area
- Voltages developed in the resonant circuit of regulating power supplies are apt to be much greater than the line voltages.
- Follow the specific safety precautions that accompany many of the adjustment procedures in this manual.

EQUIPMENT SAFETY

Electrical

Always replace blown fuses with fuses of the same type and rating. Using fuses of a different type or higher rating could result in component damage. Remove power from the machine before replacing MST cards, magnets, or solenoids. Failure to do this could result in damage to a card being replace or to other cards in the net

Mechanical

Do not operate the machine under power with units disassembled, removed, or maladjusted. Keep tools clear of the mechanism when the machine is operating under power.
CAUTION
Do not use IBM cleaning fluid on plastic parts.

Chapter 1. Reference Data

This section contains charts, listings, and diagrams giving general information for diagnosing system failures.
The following sections of this manual (sections 2 through 11) contain the flowcharts, timing charts, and diagrams for the central processing unit and attachments. The reference material found in this chapter is a collection of the most frequently used data found in these chapters. For more detailed information on any of the data found in this chapter, refer to the chapter that fully explains the area that you are working on.
For diagnostic techniques, refer to the maintenance analysis procedures without the use of an oscilloscope.

Legend

$\begin{array}{\|c\|} \hline \text { Op Code } \\ \hline \mathrm{Y} 1 \\ \hline \end{array}$	O Code			Address	Op Code Y 1	a Code		D1
	DA	M	N	Operand 1		DA ${ }^{\text {M }}$ / N		Displacement
$\begin{array}{\|lll} \hline 0 & & 7 \\ & 31 \\ 71 \\ & \\ 81 \end{array}$	$8 \quad 11$	12	1315	$\begin{aligned} & 2 \text { Bytes } \\ & 1 \text { Byte } \\ & 1 \text { Byte } \end{aligned}$	Direct Addressing (H1L1) Indexed by XR1 Indexed by XR2			
	E				Device Address Serial Printer			
$\begin{array}{l\|l\|} 52131 \\ 2222 \\ \text { Printer } \end{array}$		${ }_{1}^{0}$	$\begin{aligned} & \text { 00x } \\ & \text { 011 } \\ & 10 x \\ & 11 \end{aligned}$		Selects Printer Selects LCD LLAR Control LIO PDAR PCAR			
5496 Data Recorder	F				Device Address Data Recorder			
		0	000		M bit is not used, it should be zero. DRAR			
$\begin{aligned} & 2265 \\ & C_{R} \end{aligned}$	9				Device Address CRT			
		0	xxx		M bit is not used, it shculd be zero. CRTAR			
$\begin{aligned} & 5406 \\ & \text { Keyboard } \end{aligned}$	1				Device Address Keyboard			
		x	$\begin{array}{\|l\|l} \times 00 \\ \times 01 \\ \times 01 \\ x_{1} \end{array}$		M bit is not used, a zero is preferred Turn Off Command Lights Turn On Command Lights Turn On/Off Field/Operation Lights			
$\begin{array}{\|l\|l} 5444 \\ \text { Disk } \end{array}$	A				Device Address Drive 1 (Spindle 0)			
	B				Device Address Drive 2 (Spindle 1)			
		0	1000 001 010 011 100 101 1110 111		M bit is not used. Invalid Invalio Invalid Diagnostic CE DFDR Invalid DFCR Invalid			
SIOC	3				Device Address SIOC			
		0	$\begin{array}{\|c\|} \hline 001 \\ 001 \\ 100 \\ 100 \\ 101 \end{array}$		M bit is not used. I/O Function Register SIOC Length Count Register SIAR Data Transfer Register			
BSCA	8				Device Address BSCA			
		0	001 010 1000 110		M bit is not used. Stop Address Register Transition Address Register BSCAR BSCAR (Diagnostic)			

$\begin{array}{\|c\|} \hline \text { Op Code } \\ \hline \text { F3 } \\ \hline \end{array}$	O Code			Command		
	DA	M	N	$\begin{aligned} & \text { Control } \\ & \text { Codel } \end{aligned}$		
07	11	12	1315	$\begin{array}{\|l\|} \hline 16 \\ 8421 \end{array}$	$\begin{array}{r} 23 \\ 8421 \end{array}$	
$\begin{aligned} & 5213 / \\ & 2222 \\ & \text { Printer } \end{aligned}$	E					Device Address Serial Printer
		1	$\left.\right\|_{x x x} ^{x x x}$		$\left.\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned} \right\rvert\,$	Selects Printer N field is not used, zeros are preferred erial Print Operation Bi-directional Print Operation Selects LCD Start I/O (reads first command byte) Read all line finder marks (Diagnostic)
5496 Data Recorder	F					Device Address Data Recorder
		0	$\begin{aligned} & \text { x01 } \\ & \times 10 \\ & \times 11 \\ & \times 00 \end{aligned}$	xxxx	xxxx	```M bit is not used, it should be zero. Read a Card Punch a Card Diagnostic Data Diagnostic Cycle Steal Data used in diagnostic data```
${ }_{\text {CRT }}^{2265}$	9					Device Address CRT
		0	$\begin{aligned} & \text { x1x } \\ & \text { xox } \end{aligned}$	xxxx	xxxx	M bit is not used, it should be zero. Display Hal Data used in halt
5406 Keyboard	1					Device Address Keyboard
		x	xxx	$\left\lvert\, \begin{aligned} & \times 10 \\ & \times \times 10 \\ & \times \times 00 \end{aligned}\right.$	$\begin{aligned} & 0000 \\ & 0000 \\ & 1000 \\ & 0100 \\ & 0000 \\ & 0000 \\ & 0000 \\ & 0001 \end{aligned}$	M bit is not used, it should be zero. N field is not used, it should be zero. Reset Parity Check Drop Bail (Lock Keyboard) Pick Up Bail (Unlock Keyboard) Enable Interrupt Turn Off Current Interrupt Request
$\begin{aligned} & 5444 \\ & \text { File } \end{aligned}$	A					Device Address Drive 1 (Spindle 0)
	B					Device Address Drive 2 (Spindle 1)
		$\stackrel{0}{1}$	000 001 010 011		$\times \times 00$ $\times \times 01$ $\times \times 10$ $\times \times 11$ $\times \times 10$ $\times \times 00$ $\times \times 01$ $\times \times 00$ $\times \times 01$ $\times \times 10$	Removable Disk Fixed Disk Control Seek Read Read Data Read Identifier Read Diagnostic Read Verify Write Write Data Write Identifier Scan Scan Equal Scan Low or Equal Scan High or Equal

Note. An X means bit can be a " 1 " or " 0 ",

Note. An X means bit can be a " 1 " or " 0 ".

Keyboard Sense Instruction

Note. An X means bit can be a " 1 " or " 0 ".
BR0617A

Printer Sense Instruction

Data Recorder and CRT Sense Instruction

Disk File Sense Instruction

BSCA Sense Instruction

SIOC Sense Instruction

Format of Disk Control Field

Byte

$\mathrm{N}=16$ will process 17 sectors. Number of cylinders to be movel
on seek.
Head bit $16(0-1)$
Sector bits $17-21$ ($0-23$). Bit $22-23$ both zeros for read, write,
or scan. Bit 23 for seek
$==$ reverse, $1=$ forward.
yylinder (0-202)
Flag byte
Bits 0 thru 5 are not used
Good track bit $6=0$, bit $7=0$
Alternate track bit $6=0$, bit $7=1$
Defective track bit $6=1$, bit $7=0$ Defective alternate track bit 6 , bit $7=$
he seek operation uses the H / S and N bytes of the disk control field.

Dec Hex	DecHex	Dec Hex	Dec Hex	Dec Hex	Dec Hex
$00=00$	08 = 20	$16=40$	$24=80$	$32=A 0$	$40=$ C0
$01=04$	09 $=24$	$17=44$	$25=84$	$33=A 4$	$41=C 4$
$02=08$	$10=28$	$18=48$	$26=88$	34 = A8	$42=\mathrm{C} 8$
$03=0 C$	$11=2 \mathrm{C}$	$19=4 \mathrm{C}$	$27=8 \mathrm{C}$	$35=A C$	$43=C C$
$04=10$	$12=30$	$20=50$	$28=90$	$36=80$	$44=$ D0
$05=14$	$13=34$	$21=54$	$29=94$	$37=84$	$45=$ D 4
$06=18$	$14=38$	$22=58$	$30=98$	$38=88$	$46=08$
$07=1 \mathrm{C}$	$15=3 \mathrm{C}$	$23=5 \mathrm{C}$	$31=9 \mathrm{C}$	$39=B C$	$47=D C$
Upper Head			Lower Head		

Note. An X means bit can be a " 1 " or " 0 ".
BR0625A

To find the decimal number, locate the Hex number and its decimal equivalent for each position. Add these to obtain the decimal number. To find the Hex number, locate the next lower decimal number and its Hex equivalent. Each difference is used to obtain enext Hex number until the entire number is developed.

byte				BYte				byte			
0123		4567		0123		4567		0123		4567	
HEX	DEC	HEX	DEC	HEX	DEC	нех	DEC	HEX	DEC	HEX	DEC
0	0	0	0	0	0	0	0	0	0	00	0
1	1,048,576	1	65,536	1	4,096	1	256	1	16	1	1
2	2,097,152	2	131,072	2	8,192	2	512	2	32	2	2
3	3,145,728	3	196,608	3	12,288	3	768	3	48	3	3
4	4,194,304	4	262,144	4	16,384	4	1,024	4	64	4	4
5	5,242,880	5	327,680	5	20,480	5	1,280	5	80	5	5
6	6,291,456	6	393,216	6	24,576	6	1,536	6	96	6	6
7	7,340,032	7	458,752	7	28,672	7	1,792	7	112	7	7
8	8,388,608	8	524,288	8	32,768	8	2,048	8	128	8	8
9	9,437,184	9	589,824	9	36,864	9	2,304	9	144	9	9
A	10,485,760	A	655,360	A	40,960	A	2,560	A	160	A	10
в	11,534,336	в	720,896	в	45,056	в	2,816	в	176	в	11
c	12,582,912	c	786,432	c	49,152	c	3,072	c	192	c	12
D	13,631,488	D	851,968	D	53,248	D	3,328	D	208	D	13
E	14,680,064	E	917,504	E	57,344	E	3,584	E	224	E	14
F	15,728,640	F	983,040	F	61,440	F	3,840	F	240	F	15
	6		5		4						

1/O Device Priorities

Priority	Attmt Clock	$\begin{array}{\|l\|l\|} \hline \text { CPU } \\ \text { Clock } \\ \hline \end{array}$	Request Bit Line	Priority Assignment $\text { P } 01234567$	Model 5406
20 Lo	0	1	7	100100001	File Seek
19	0	1	6	100100010	Unassigned
18	0	1	5	100100100	Unassigned
17	0	1	4	100101000	Unassigned
16	0	1	3	100110000	Unasigned
15	2	3	7	101000001	Unassigned
14	2	3	6	101000010	Unassigned
13	2	3	5	101000100	CRT
12	2	3	4	101001000	Data Recorder
11	2	3	3	101010000	Unassigned
10	4	5	7	110000001	Unassigned
9	4	5	6	110000010	Unassigned
8	4	5	5	110000100	Unassigned
7	4	5	4	110001000	Unasigned
6	4	5	3	110010000	BSCA
5	6	7	7	000000001	Unassigned
4	6	7	6	0000000010	SIOC
3	6	7	5	000000100	Printer
	6	7	4	000001000	Unassigned
1 Hi	6	7		000010000	File Read/Write

System/3 Data Flow

*Sign Configurations:		
Binary	Hexadecimal	Function
1010	A	Alternate Plus
1011	B	AsCII-8 Minus
1100	C	Alternate Plus
1101	D	Standard Minus
1110	E	Alternate Plus
1111	F	Standard Plus

$\begin{array}{\|c\|} \hline \text { Dec } \\ \text { Val } \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \mathrm{Hex} \\ \mathrm{Val} \end{array}$	$\begin{array}{\|l\|} \hline \text { Card Code } \\ \text { DCBA8421 } \\ \hline \end{array}$	Mnem	EBCDIC	Symbol
$\begin{array}{\|l\|l\|} \hline 000 \\ 001 \\ 002 \\ 003 \end{array}$	00 01 02 03	$\left\|\begin{array}{ll} \begin{array}{l} \text { DC } \\ \text { DCBA } \end{array} & 1 \\ \text { DCBA } & 2 \\ \text { DCBA } & 21 \end{array}\right\|$		00000000 00000001 00000010 00000011	
$\begin{array}{\|l\|l} \hline 004 \\ 005 \\ 006 \\ 006 \end{array}$	$\begin{array}{\|l\|} \hline 04 \\ 05 \\ 06 \\ 06 \\ 07 \end{array}$	$\left\|\begin{array}{lll} \text { DCBA } & 4 \\ \text { DCBA } & 4 & 1 \\ \text { DCCA } & 42 \\ \text { DCBA } & 421 \end{array}\right\|$	$\begin{aligned} & \hline \mathrm{ZAZ} \\ & \mathrm{AZ} \\ & \mathrm{sZ} \end{aligned}$	$\left\|\begin{array}{l} 00000100 \\ 000000101 \\ 00000110 \\ 000001111 \end{array}\right\|$	
$\begin{array}{\|l\|l\|} \hline 008 \\ 009 \\ 010 \\ 011 \end{array}$	$\begin{array}{\|l\|l\|} \hline 08 \\ 09 \\ 0 A \\ 0 B \end{array}$	$\left\|\begin{array}{cc} \text { DCBA8 } & \\ \text { DCBA8 } & 1 \\ \text { CBA8 } & 2 \\ \text { CBA8 } & 21 \end{array}\right\|$	$\begin{array}{\|l\|l\|} \hline \text { Mvx } \\ \text { ED } \\ \text { ITC } \end{array}$	$\left\|\begin{array}{l} 00001000 \\ 00001001 \\ 00001010 \\ 00001011 \end{array}\right\|$	
$\begin{aligned} & 012 \\ & 013 \\ & 014 \\ & 014 \\ & 015 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{OC} \\ \mathrm{OD} \\ \mathrm{OE} \\ \mathrm{OF} \end{array}$	CBA84 CBA84 1 CBA842 CBA8421	$\begin{array}{\|l\|l\|} \hline \text { MVC } \\ \text { CLC } \\ \text { ALC } \\ \text { SLC } \end{array}$	$\begin{array}{\|l\|} \hline 00001100 \\ 00001101 \\ 00001110 \\ 00001111 \\ \hline \end{array}$	
$\left\lvert\, \begin{aligned} & 016 \\ & 017 \\ & 018 \\ & 019 \\ & 019 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \end{aligned}\right.$	$\left\lvert\, \begin{array}{lll} \text { C } A 8 & 2 \\ \text { DCB } & 1 \\ \text { DCB } & 2 \\ \text { DCB } & 21 \end{array}\right.$		000010000 00010001 00010010 00010011	
$\begin{array}{\|l\|l\|} \hline 020 \\ 021 \\ 022 \\ 023 \end{array}$	$\begin{array}{\|l\|} \hline 14 \\ 15 \\ 16 \\ 17 \end{array}$	$\left\|\begin{array}{ll} \hline D C B & 4 \\ D C B & 4 \\ D C B & 12 \\ D C B & 421 \end{array}\right\|$	$\begin{array}{\|l\|l\|} \hline \mathrm{ZAZ} \\ \mathrm{AZ} \\ \mathrm{SZ} \\ \hline \end{array}$	00010100 000100101 00010110 00010111	
$\begin{array}{\|l\|} \hline 024 \\ 025 \\ 026 \\ 027 \end{array}$	$\begin{array}{\|l\|l} \hline 18 \\ 19 \\ 1 A \\ 18 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline \text { MVX } \\ \hline \text { ED } \\ \text { ITC } \\ \hline \end{array}$		
$\begin{aligned} & 028 \\ & 029 \\ & 020 \\ & 030 \\ & 031 \end{aligned}$	$\begin{array}{\|l\|} \hline 10 \\ 10 \\ 1 E \\ 1 F \\ 1 F \end{array}$	CB 84 CB 841 CB 842 CB 8421	$\begin{array}{\|l\|l} \hline \text { MVC } \\ \text { CLC } \\ \text { ALC } \\ \text { SLC } \end{array}$	$\left\|\begin{array}{l} 00011100 \\ 00011101 \\ 00011110 \\ 00011111 \end{array}\right\|$	
$\begin{array}{\|l} \hline 032 \\ 033 \\ 034 \\ 034 \\ 035 \end{array}$	$\begin{array}{\|l\|} \hline 20 \\ 21 \\ 22 \\ 23 \end{array}$			00100000 ooloocon 00100010 00100011$\|$	
$\begin{aligned} & 036 \\ & 037 \\ & 038 \\ & 038 \\ & 039 \end{aligned}$	$\begin{array}{\|l\|} \hline 24 \\ 25 \\ 26 \\ 27 \end{array}$	$\left\|\begin{array}{llll} D C & A & 4 \\ D C & A & 4 \\ D C & A & 1 \\ D C & A & 421 \end{array}\right\|$	$\begin{aligned} & \mathrm{ZAZ} \\ & \mathrm{AZ} \\ & \mathrm{sZ} \end{aligned}$	00100100 000100101 00100110 00100111 0	
$\begin{array}{\|l\|l\|} \hline 040 \\ 041 \\ 042 \\ 043 \end{array}$	$\begin{array}{\|l} 28 \\ 29 \\ 2 A \\ 2 B \end{array}$	$\left.\begin{array}{lll} \hline \mathrm{DC} & \mathrm{~A} 8 & \\ \mathrm{DC} & \mathrm{A8} & 1 \\ \mathrm{DCBA} & \\ \mathrm{C} & \text { A8 } & 21 \end{array} \right\rvert\,$	$\begin{array}{\|l\|l\|} \hline \text { Mvx } \\ \text { ED } \\ \text { ITC } \end{array}$	00101000 000101001 00101010 00101011	
$\begin{aligned} & 044 \\ & 045 \\ & 046 \\ & 047 \\ & \hline 047 \end{aligned}$	$\left\lvert\, \begin{aligned} & 2 \mathrm{C} \\ & 2 \mathrm{D} \\ & 2 \mathrm{E} \\ & 2 \mathrm{~F} \end{aligned}\right.$	$\begin{array}{ll} \text { C } & \text { A84 } \\ \text { C } & \text { A84 } 1 \\ \text { C } & \text { A842 } \\ \text { C } & \text { A8421 } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { MVC } \\ \text { CLC } \\ \text { ALC } \\ \text { SLC } \end{array}$	$\left\|\begin{array}{l} 001011100 \\ 0010101 \\ 00101110 \\ 00101111 \\ \hline \end{array}\right\|$	

$\begin{array}{\|l\|l\|} \hline \text { D } \\ \text { val } \end{array}$	$\begin{array}{\|c\|} \hline \text { Hex } \\ \text { Val } \end{array}$	$\begin{array}{\|l\|} \hline \text { Card Code } \\ \text { DCBA8421 } \\ \hline \end{array}$	Mnem	EBCDIC	Symbol
$\begin{aligned} & \hline 048 \\ & 049 \\ & 050 \\ & 050 \\ & 051 \end{aligned}$	$\left.\begin{array}{\|l\|} 30 \\ 31 \\ 32 \\ 33 \end{array} \right\rvert\,$	$\begin{array}{\|ll\|} \hline \mathrm{DC} & \mathrm{~A} \\ \mathrm{DC} & 1 \\ \mathrm{DC} & 2 \\ \mathrm{DC} & 21 \end{array}$	$\begin{aligned} & \text { SNS } \\ & \text { LIO } \end{aligned}$	$\left.\begin{array}{\|l\|} \hline 00110000 \\ 00110001 \\ 00110010 \\ 00110011 \end{array} \right\rvert\,$	
$\begin{aligned} & 052 \\ & 053 \\ & 053 \\ & 054 \\ & 055 \\ & 054 \end{aligned}$	$\begin{array}{\|l\|l} 34 \\ 35 \\ 36 \\ 37 \end{array}$	$\begin{array}{ll} \mathrm{DC} & 4 \\ \mathrm{DC} & 4 \\ \mathrm{DC} & 42 \\ \mathrm{DC} & 42 \end{array}$	$\begin{aligned} & S T \\ & L \\ & A \\ & A \end{aligned}$	$\left\|\begin{array}{l} 00110100 \\ 00110101 \\ 00110110 \\ 00110111 \end{array}\right\|$	
$\left\|\begin{array}{l} 056 \\ 057 \\ 058 \\ 059 \end{array}\right\|$	$\left\|\begin{array}{l} 38 \\ 39 \\ 3 A \\ 3 B \end{array}\right\|$	$\left\lvert\, \begin{array}{rll} \mathrm{DC} & 8 & \\ \mathrm{DC} & 8 & 1 \\ \mathrm{C} & 8 & 2 \\ \mathrm{C} & 8 & 21 \end{array}\right.$	$\begin{aligned} & \text { TBN } \\ & \text { TN } \\ & \text { TBN } \\ & \text { SBF } \end{aligned}$	$\left\|\begin{array}{l} 00111000 \\ 001111001 \\ 00111010 \\ 00111011 \end{array}\right\|$	
$\begin{aligned} & 060 \\ & 061 \\ & 062 \\ & 062 \\ & 063 \end{aligned}$	$\left.\begin{aligned} & 3 C \\ & 3 D \\ & 3 E \\ & 3 F \end{aligned} \right\rvert\,$	$\begin{array}{ll} \mathrm{C} & 84 \\ \mathrm{C} & 841 \\ \mathrm{C} & 842 \\ \mathrm{C} & 8421 \end{array}$	mvi CLI	$\left\|\begin{array}{l} 001111100 \\ 00111101 \\ 00111110 \\ 001111111 \end{array}\right\|$	
$\begin{aligned} & 064 \\ & 065 \\ & 066 \\ & 067 \end{aligned}$	$\left(\begin{array}{l} 40 \\ 41 \\ 42 \\ 43 \end{array}\right.$			01000000 01000001 01000010 01000011	Space
$\begin{array}{\|l\|l\|} \hline 068 \\ 069 \\ 070 \\ 071 \end{array}$	$\left(\begin{array}{l} 44 \\ 45 \\ 46 \\ 47 \end{array}\right.$	$\begin{array}{llll} D & B A & 4 \\ D & B A & 4 \\ D & B A & 1 \\ D & B A & 42 \\ D & B A & 421 \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{ZAZ} \\ \mathrm{AZ} \\ \mathrm{sz} \\ \hline \end{array}$	01000100 001000101 01000110 01000111$\|$	
$\begin{array}{\|l\|l\|} \hline 072 \\ 073 \\ 074 \\ 074 \end{array}$	$\begin{aligned} & 48 \\ & 49 \\ & 4 \mathrm{~A} \\ & 4 \mathrm{~B} \end{aligned}$	$\left\|\begin{array}{ccc} \mathrm{D} & \text { BA8 } \\ \mathrm{D} & \text { BA8 } & \\ & 1 \\ & \text { BA8 } & 2 \\ & \text { BA8 } & 21 \end{array}\right\|$	$\begin{array}{\|l\|l} \hline \text { MVX } \\ \text { ED } \\ \text { ITC } \end{array}$	$\left\|\begin{array}{l} 01001000 \\ 010001001 \\ 01001010 \\ 01001011 \end{array}\right\|$	¢
$\begin{array}{\|l\|l\|} \hline 076 \\ 077 \\ 078 \\ 079 \end{array}$	$\begin{aligned} & 4 \mathrm{C} \\ & 4 \mathrm{D} \\ & 4 \mathrm{E} \\ & 4 \mathrm{~F} \\ & \hline \end{aligned}$	BA84 BA84 1 BA842 BA8421	mvc CLC ALC SLC	01001100 01001101 01001111	<
$\begin{aligned} & 080 \\ & 081 \\ & 082 \\ & 083 \end{aligned}$	$\begin{gathered} 50 \\ 51 \\ 52 \\ 52 \\ 53 \end{gathered}$			01010000 0 01010001 01010010 01010011	*
$\begin{aligned} & 084 \\ & 085 \\ & 086 \\ & 087 \end{aligned}$	54 55 56 57		$\begin{aligned} & \mathrm{ZAZ} \\ & \mathrm{AZ} \\ & \mathrm{Sz} \end{aligned}$	01010100 0101010101 01010110 01010111$\|$	
$\begin{aligned} & 088 \\ & 089 \\ & 090 \\ & 091 \end{aligned}$	$\begin{aligned} & 58 \\ & 59 \\ & 5 A \\ & 5 B \end{aligned}$	$\left\|\begin{array}{\|ccc\|} \mathrm{D} & \mathrm{~B} & 8 \\ \mathrm{D} & \mathrm{~B} & 8 \\ \mathrm{~B} & 1 \\ \mathrm{~B} & 8 & 2 \\ \mathrm{~B} & 8 & 21 \end{array}\right\|$	$\begin{aligned} & \text { MVX } \\ & \text { ED } \\ & \text { ITC } \end{aligned}$	01011000 010111001 01011010 01011011$\|$!
$\begin{aligned} & 092 \\ & 093 \\ & 094 \\ & 095 \\ & 095 \end{aligned}$	$\begin{aligned} & 5 C \\ & 50 \\ & 50 \\ & 5 E \\ & 5 F \\ & \hline 5 F \\ & \hline \end{aligned}$	$\begin{array}{lll} B & 84 \\ B & 84 & 1 \\ B & 842 \\ B & 8421 \end{array}$	$\begin{array}{\|l\|l} \hline \text { MVC } \\ \text { CLC } \\ \text { ALC } \\ \text { SLC } \\ \hline \end{array}$	01011100 0101101 01011110 01011111$\|$;

$\left\lvert\, \begin{array}{\|c\|c\|c\|} \hline \text { Deal } \\ \text { Val } \end{array}\right.$	$\left\lvert\, \begin{array}{\|c\|} \hline \text { Hax } \\ \text { Vala } \end{array}\right.$	Card Code DCBA8421	Mnem	Ebcdic	Symbol
$\begin{array}{\|l\|} \hline 096 \\ 097 \\ 098 \\ 098 \\ 099 \end{array}$	$\begin{array}{\|l\|} \hline 60 \\ 61 \\ 62 \\ 63 \\ \hline \end{array}$			$\left\|\begin{array}{l\|} \hline 01100000 \\ 01100001 \\ 01100010 \\ 01100011 \end{array}\right\|$	-
$\left\|\begin{array}{l} 100 \\ 101 \\ 102 \\ 103 \end{array}\right\|$	$\begin{array}{\|l} 64 \\ 65 \\ 66 \\ 67 \\ \hline \end{array}$	$\left\lvert\, \begin{array}{lll} D & A & 4 \\ D & A & 4 \\ D & A \\ D & A & 42 \\ D & A & 421 \end{array}\right.$	$\begin{aligned} & \mathrm{ZAZ} \\ & \mathrm{AZ} \\ & \mathrm{sZ} \end{aligned}$	01100100 01100101 01100110 01100111	
$\left\|\begin{array}{l} 104 \\ 105 \\ 106 \\ 107 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 68 \\ & 69 \\ & 6 A \\ & 6 B \end{aligned}\right.$	$\left\lvert\, \begin{array}{ccc} D & \text { A8 } & \\ D & \text { A8 } & 1 \\ D & B A 8 & 2 \\ & \text { A8 } & 21 \end{array}\right.$	$\begin{array}{\|l\|l} \text { MVX } \\ \text { ED } \\ \text { ITC } \end{array}$	01101000 01101001 01101010 01101011	
$\left.\begin{array}{\|l\|l\|} 108 \\ 109 \\ 110 \\ 111 \end{array} \right\rvert\,$	$\left\lvert\, \begin{aligned} & 6 \mathrm{C} \\ & 6 \mathrm{x} \\ & 6 \mathrm{E} \\ & 6 \mathrm{~F} \end{aligned}\right.$	A84 A84 1 A842 A8421	$\begin{array}{\|l\|l} \hline \text { MVC } \\ \text { CLC } \\ \text { ALC } \\ \text { SLC } \end{array}$	$\left\|\begin{array}{l} 01101100 \\ 01101101 \\ 0110110 \\ 010110 \\ 01101111 \end{array}\right\|$	
$\begin{array}{\|l} 1112 \\ 113 \\ 114 \\ 115 \end{array}$	$\begin{aligned} & 70 \\ & 71 \\ & 72 \\ & 73 \end{aligned}$	$\begin{array}{lll} D & A & \\ D & 1 \\ D & 2 \\ D & 21 \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { SNS } \\ \text { Li } \end{array}$	$\left\|\begin{array}{l} 01110000 \\ 01110001 \\ 0.111010 \\ 01110011 \end{array}\right\|$	
$\left\|\begin{array}{l} 1116 \\ 117 \\ 118 \\ 19 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 74 \\ & 75 \\ & 76 \\ & 77 \end{aligned}\right.$	$\left\|\begin{array}{ll} D & 4 \\ D & 4 \\ D & 42 \\ D & 421 \end{array}\right\|$	$\begin{aligned} & \text { ST } \\ & L \\ & A_{A} \end{aligned}$	$\left\|\begin{array}{l} 01110100 \\ 01110101 \\ 011010 \\ 011010 \\ 01110111 \end{array}\right\|$	
$\begin{array}{\|l} 120 \\ 121 \\ 122 \\ 123 \end{array}$	$\left(\begin{array}{l} 78 \\ 79 \\ 7 \mathrm{~A} \\ 7 \mathrm{~B} \end{array}\right.$	$\left\|\begin{array}{llll} \mathrm{D} & 8 & \\ \mathrm{D} & 8 & 1 \\ & 8 & 2 \\ & 8 & 21 \end{array}\right\|$	$\begin{array}{\|l\|} \hline \text { TBN } \\ \text { TTB } \\ \text { SBN } \\ \text { SBF } \end{array}$	$\left\|\begin{array}{l} 01111000 \\ 01111001 \\ 0111010 \\ 01110 \\ 01111011 \end{array}\right\|$	$\stackrel{\text { : }}{\#}$
$\left\lvert\, \begin{aligned} & 124 \\ & 125 \\ & 126 \\ & 127 \end{aligned}\right.$	$\left\|\begin{array}{l} 7 C \\ 7 D \\ 7 E \\ 7 F \end{array}\right\|$	$\begin{aligned} & 84 \\ & 84 \\ & 842 \\ & 8421 \\ & 8421 \end{aligned}$	$\begin{array}{\|l\|l\|} M V I \\ C L I \end{array}$	$\left\|\begin{array}{l} 01111100 \\ 01111101 \\ 011110 \\ 011110 \\ 01111111 \end{array}\right\|$	
$\left.\begin{aligned} & 128 \\ & 129 \\ & 130 \\ & 131 \end{aligned} \right\rvert\,$	$\begin{array}{\|l\|} 80 \\ 81 \\ 82 \\ 83 \end{array}$	$\left\lvert\, \begin{array}{ll} \mathrm{DC} \\ \mathrm{CBA} & 1 \\ \text { CBA } & 2 \\ \text { CBA } & 21 \end{array}\right.$		10000000 10000001 10000010 10000011	
$\left[\left.\begin{array}{l} 132 \\ 133 \\ 134 \\ 135 \end{array} \right\rvert\,\right.$	$\begin{aligned} & 84 \\ & 85 \\ & 86 \\ & 87 \\ & 8 \end{aligned}$	CBA 4 CBA 41 CBA 42 CBA 421 \qquad	$\begin{aligned} & \mathrm{ZAZ} \\ & \mathrm{AZ} \\ & \text { SZ } \end{aligned}$	10000100 100000101 10000110 10000111	
$\left\|\begin{array}{l} 136 \\ 137 \\ 138 \\ 139 \end{array}\right\|$	$\begin{array}{\|l\|l} 88 \\ 89 \\ 8 \mathrm{~A} \\ 8 \mathrm{~B} \end{array}$		$\begin{array}{\|l\|l} \text { mvx } \\ \text { ED } \\ \text { ITC } \end{array}$	$\left\|\begin{array}{l} 10001000 \\ 10001000 \\ 10001010 \\ 10001011 \end{array}\right\|$	
$\left\lvert\, \begin{aligned} & 140 \\ & 141 \\ & 142 \\ & 143 \end{aligned}\right.$	$\begin{aligned} & 8 \mathrm{C} \\ & 8 \mathrm{D} \\ & 8 \mathrm{E} \\ & 8 \mathrm{~F} \end{aligned}$	$\left\|\begin{array}{l\|l} \text { DCBAB4 } \\ \text { DCBAB4 } & 1 \\ \text { DCBAB42 } \\ \text { DCBA84421 } \end{array}\right\|$	$\begin{array}{\|l\|l} \text { MVC } \\ \text { CLC } \\ \text { ALC } \\ \text { SLC } \end{array}$	$\left\lvert\, \begin{aligned} & 10001100 \\ & 10001101 \\ & 10001110 \\ & 10001111 \end{aligned}\right.$	

$\begin{array}{\|l\|} \hline \text { Dec } \\ \text { Val } \end{array}$	$\left\lvert\, \begin{gathered} \text { Hex } \\ \text { Val } \end{gathered}\right.$	$\begin{array}{\|l\|} \text { Card Code } \\ \text { DCBA8421 } \\ \hline \end{array}$	Mnem	EbCDIC	Symbol
$\begin{array}{\|l} 144 \\ 145 \\ 146 \\ 147 \end{array}$	$\begin{aligned} & 90 \\ & 91 \\ & 92 \\ & 93 \end{aligned}$	$\begin{array}{ll} \hline \mathrm{CBA} & \\ \mathrm{CB} & 1 \\ \mathrm{CB} & 2 \\ \mathrm{CB} & 21 \end{array}$		10010000 10010001 10010010 10010011	
$\begin{aligned} & 148 \\ & 149 \\ & 150 \\ & 151 \end{aligned}$	$\left(\begin{array}{l} 94 \\ 95 \\ 96 \\ 97 \end{array}\right.$	$\begin{array}{ll} C B & 4 \\ C B & 4 \\ C B & 1 \\ C B & 42 \\ C B & 421 \end{array}$	$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline Z A Z \\ \text { AZ } \\ \text { SZ } \end{array}$	10010100 100100101 10010110 10010111$\|$	
$\begin{aligned} & 152 \\ & 153 \\ & 154 \\ & 155 \end{aligned}$	$\begin{aligned} & 98 \\ & 99 \\ & 9 A \\ & 9 B \end{aligned}$		$\begin{array}{\|l\|l\|} \hline \text { Mvx } \\ \text { ED } \\ \text { ITC } \end{array}$	$\left.\begin{aligned} & 10011000 \\ & 10011001 \\ & 10011010 \\ & 10011011 \end{aligned} \right\rvert\,$	
$\begin{aligned} & 156 \\ & 157 \\ & 158 \\ & 158 \\ & 159 \end{aligned}$	$\begin{aligned} & 9 C \\ & 9 D \\ & 9 E \\ & 9 F \\ & \hline \end{aligned}$	DCB 84 DCB 84 DCB 842 DCB 8421	$\begin{array}{\|l\|l\|} \hline \text { MVC } \\ \text { CLC } \\ \text { ALC } \\ \text { SLC } \end{array}$	$\begin{aligned} & 10011100 \\ & 10011101 \\ & 10011110 \\ & 100111111 \end{aligned}$	
$\begin{aligned} & 160 \\ & 161 \\ & 162 \\ & 163 \\ & 162 \end{aligned}$	$\begin{aligned} & \text { A0 } \\ & \text { A1 } \\ & \text { A2 } \\ & \text { A3 } \end{aligned}$	DC A 1 $\begin{array}{lll}C & A & 2 \\ C & A & 21\end{array}$		$\left\lvert\, \begin{aligned} & 10100000 \\ & 10100001 \\ & 10100010 \\ & 10100011 \end{aligned}\right.$	
$\begin{aligned} & 164 \\ & 165 \\ & 166 \\ & 167 \\ & 167 \end{aligned}$	$\begin{aligned} & A 4 \\ & A 5 \\ & A 5 \\ & A 6 \\ & A 7 \end{aligned}$	$\begin{array}{llll} \text { C } & A & 4 \\ \text { C } & A & 4 & 1 \\ \text { C } & A & 42 \\ \text { C } & \text { A } & 421 \end{array}$	$\begin{aligned} & \mathrm{ZAZ} \\ & \mathrm{AZ} \\ & \mathrm{SZ} \end{aligned}$	$\left\|\begin{array}{l} 10100100 \\ 10100001 \\ 10100110 \\ 101001111 \end{array}\right\|$	
$\begin{aligned} & 168 \\ & 169 \\ & 170 \\ & 171 \end{aligned}$	$\begin{array}{\|l\|l} & A 8 \\ A 8 \\ A A \\ A A \\ A B \end{array}$		$\begin{aligned} & \text { mvx } \\ & \text { ED } \\ & \text { ITC } \end{aligned}$	$\left\|\begin{array}{l} 10101000 \\ 10101001 \\ 10101010 \\ 10101011 \end{array}\right\|$	
$\begin{aligned} & 172 \\ & 173 \\ & 174 \\ & 174 \\ & 175 \end{aligned}$	$\begin{array}{l\|l\|l\|} \hline & A C \\ 3 & A D \\ \vdots & A E \\ 5 A E \end{array}$	DC A84 DC A842 DC A8421	$\begin{aligned} & \hline \text { MVC } \\ & \text { CL.C } \\ & \text { ALC } \\ & \text { SLC } \end{aligned}$	10101100 10010101 10101110 10101111$\|$	
$\begin{aligned} & 176 \\ & 177 \\ & 178 \\ & 179 \end{aligned}$	$\begin{array}{l\|l\|l\|} 6 \\ \hline & 80 \\ 8 & 82 \\ \hline & 82 \\ 9 & 83 \end{array}$	$\begin{array}{lll} \text { C } & \text { A } & \\ \text { C } & 1 \\ C & 2 \\ C & 21 \end{array}$	$\begin{aligned} & \text { SNS } \\ & \text { LI } \end{aligned}$	$\left\lvert\, \begin{aligned} & 10110000 \\ & 10110001 \\ & 101010010 \\ & 10110011 \end{aligned}\right.$	
$\begin{aligned} & 180 \\ & 181 \\ & 182 \\ & 183 \\ & 183 \end{aligned}$	$\begin{array}{ll} 0 & 84 \\ 1 & 85 \\ 2 & 86 \\ 3 & 86 \\ 3 \end{array}$	$\begin{array}{ll}\text { C } & 4 \\ \text { C } & 4 \\ \text { C } & 1 \\ \text { C } & 42 \\ & 421\end{array}$	$\begin{aligned} & \text { ST } \\ & L \\ & L_{A} \end{aligned}$	$\left\lvert\, \begin{aligned} & 10110100 \\ & 101100101 \\ & 10110110 \\ & 101110111 \end{aligned}\right.$	
$\begin{aligned} & 184 \\ & 185 \\ & 186 \\ & 187 \end{aligned}$		$\left\lvert\, \begin{array}{cll} \mathrm{C} & 8 \\ \mathrm{C} & 8 & \\ \mathrm{DC} & 8 & 2 \\ \mathrm{DC} & 8 & 21 \end{array}\right.$	$\begin{aligned} & \text { TBN } \\ & \text { TBF } \\ & \text { TBBN } \\ & \text { SBE } \end{aligned}$	$\left\lvert\, \begin{aligned} & 10111000 \\ & 101111001 \\ & 10111010 \\ & 10111011 \end{aligned}\right.$	
$\begin{aligned} & 188 \\ & 189 \\ & 190 \\ & 191 \end{aligned}$	$\begin{array}{l\|l} 3 & B C \\ . & B D \\ 0 & B E \\ 1 & B E \end{array}$	$\begin{array}{ll} \mathrm{OC} & 84 \\ \mathrm{OC} & 84 \\ \mathrm{OC} & 842 \\ \mathrm{OC} & 8421 \end{array}$	$\begin{aligned} & \mathrm{MVI} \\ & \mathrm{CLI} \end{aligned}$	10111100 10111101 10111110 101111111	

$\begin{array}{\|c\|} \hline \text { Dec } \\ \mathrm{Val} \end{array}$	$\begin{array}{\|c\|c\|c\|c\|} \hline \text { exal } \\ \text { va } \end{array}$	$\begin{aligned} & \text { Card Code } \\ & \text { DCBA8421 } \\ & \hline \end{aligned}$	Mnem	EbCDIC	Symbol
$\begin{array}{\|l\|l\|} \hline 192 \\ 193 \\ 194 \\ 195 \end{array}$	$\left\|\begin{array}{ll} c 0 \\ c_{1} \\ c 2 \\ c 3 \end{array}\right\|$	$\begin{array}{ll} \text { BA } & 1 \\ \text { BA } & 2 \\ \text { BA } & 21 \end{array}$	$\begin{array}{\|l\|} \hline \text { BC } \\ \text { TIO } \\ \text { LA } \end{array}$	$\left\|\begin{array}{l} 11000000 \\ 11000001 \\ 11000010 \\ 11000011 \end{array}\right\|$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \end{aligned}$
$\left.\begin{array}{\|l\|l\|} \hline 196 \\ 197 \\ 198 \\ 199 \end{array} \right\rvert\,$	$\left\|\begin{array}{l} c 4 \\ c 5 \\ c 6 \\ c 7 \\ c \end{array}\right\|$	$\begin{array}{lll} \text { BA } 4 \\ \text { BA } & 4 \\ \text { BA } & 12 \\ \text { BA } & 421 \end{array}$		$\left\|\begin{array}{l} 11000100 \\ 110000101 \\ 11000110 \\ 110001111 \end{array}\right\|$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{E} \\ & \mathrm{~F} \\ & \mathrm{G} \end{aligned}$
$\begin{aligned} & 200 \\ & 201 \\ & 202 \\ & 203 \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{CB} \\ & \mathrm{Cg} \\ & \mathrm{CA} \\ & \mathrm{CB} \end{aligned}\right.$			$\left\|\begin{array}{l} 11001000 \\ 11001001 \\ 11001010 \\ 11001011 \end{array}\right\|$	$\underset{1}{\mathrm{H}}$
$\begin{aligned} & 204 \\ & 205 \\ & 206 \\ & 207 \end{aligned}$	$\left\|\begin{array}{l} \mathrm{cc} \\ \mathrm{CD} \\ \mathrm{CE} \\ \mathrm{CF} \end{array}\right\|$	$\begin{array}{lll} \text { D } & \text { BAA4 } \\ \text { DAB84 } \\ \text { D } & \text { BAA42 } \\ \text { DA842 } \end{array}$		$\left\|\begin{array}{l} 11001100 \\ 110010101 \\ 1100110 \\ 110011111 \end{array}\right\|$	
$\begin{aligned} & 208 \\ & 209 \\ & 210 \\ & 211 \end{aligned}$	$\left\|\begin{array}{l} \mathrm{D} 0 \\ \mathrm{D} 1 \\ \mathrm{D} 2 \\ \mathrm{D} 3 \end{array}\right\|$	$\begin{array}{ll} \text { BA } & \\ \text { B } & 1 \\ \text { B } & 2 \\ \text { B } & 21 \end{array}$	$\begin{array}{\|l\|l} \mathrm{BC} \\ \mathrm{TIO} \\ \mathrm{LA} \end{array}$	11010000 111010001 11010010 11010011	$\}$
$\begin{aligned} & 212 \\ & 213 \\ & 214 \\ & 215 \end{aligned}$	$\left\|\begin{array}{l} 04 \\ 05 \\ 06 \\ 07 \end{array}\right\|$	$\begin{array}{lll}B & 4 \\ B & 4 & \\ B & 4 \\ B & 42 \\ B & 421\end{array}$		$\left\|\begin{array}{l} 11010100 \\ 111010101 \\ 11010110 \\ 11010111 \end{array}\right\|$	$\begin{aligned} & \text { M } \\ & \text { N } \\ & \text { O } \\ & \text { P } \end{aligned}$
$\begin{aligned} & 216 \\ & 217 \\ & 218 \\ & 219 \end{aligned}$	$\left\|\begin{array}{l} \mathrm{D} 8 \\ \mathrm{Dg} \\ \mathrm{DA} \\ \mathrm{DB} \end{array}\right\|$	$\left\lvert\, \begin{array}{llll} & B & 8 & \\ & B & 8 & 1 \\ D & B & 8 & 2 \\ D & B & 8 & 21 \end{array}\right.$		11011000 1011001 1110111010 11011011	$\begin{aligned} & \mathrm{O} \\ & \mathrm{R} \end{aligned}$
$\begin{aligned} & 220 \\ & 221 \\ & 222 \\ & 223 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{DC} \\ \mathrm{DD} \\ \mathrm{DE} \\ \mathrm{DF} \\ \hline \end{array}$	$\begin{array}{lll} D & B & 84 \\ D & 8 & 84 \\ D & B & 84 \\ D & B & 84 \\ D & B & 8421 \end{array}$		11011100 10111101 11011110 11011111$\|$	

$\begin{array}{\|l\|} \hline \text { Dec } \\ \text { Val } \\ \hline \end{array}$	$\begin{aligned} & \text { Hex } \\ & \text { Val } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Card Code } \\ \text { DCBA8421 } \\ \hline \end{array}$	Mnem	EbCDIC	Symbol
$\begin{aligned} & 224 \\ & 225 \\ & 226 \\ & 227 \end{aligned}$	$\begin{aligned} & E 0 \\ & E 1 \\ & E 2 \\ & E 2 \\ & E 3 \end{aligned}$	$\left\lvert\, \begin{array}{llll} \mathrm{D} & \mathrm{~B} & \\ \mathrm{D} & \text { A } & \\ & & \text { A } & 2^{1} \\ & & 21 \end{array}\right.$	$\begin{aligned} & \text { BC } \\ & \text { TIO } \\ & \text { LA } \end{aligned}$	11100000 11100001 11100010 11100011	$\begin{aligned} & S \\ & T \end{aligned}$
$\left.\begin{aligned} & 228 \\ & 229 \\ & 230 \\ & 231 \end{aligned} \right\rvert\,$	$\begin{aligned} & \text { E4 } \\ & E 4 \\ & E 5 \\ & E 6 \\ & E 7 \end{aligned}$	$\begin{array}{ll} A & 4 \\ A & 4 \\ A & 1 \\ A & 12 \\ A & 421 \end{array}$		$\left\|\begin{array}{l} 11100100 \\ 111000101 \\ 11100110 \\ 11100111 \end{array}\right\|$	$\begin{aligned} & u \\ & v \\ & w \\ & w \end{aligned}$
$\begin{aligned} & 232 \\ & 233 \\ & 234 \\ & 235 \end{aligned}$	$\begin{array}{\|l\|l} & \text { E8 } \\ \vdots & \text { E9 } \\ \hline \text { EA } \\ \text { EB } \end{array}$	$\begin{array}{lll} & A 8 \\ & A 8 & 1 \\ D & A 8 & 2 \\ D & A 8 & 21\end{array}$		$\left\|\begin{array}{l} 11101000 \\ 11101001 \\ 11101010 \\ 11101011 \end{array}\right\|$	$\begin{aligned} & Y \\ & Z \end{aligned}$
$\begin{aligned} & 236 \\ & 237 \\ & 238 \\ & 239 \end{aligned}$	$\begin{array}{ll} \text { EC } \\ \text { ED } \\ \text { ED } \\ \mathrm{EE} \end{array}$	$\left\lvert\, \begin{array}{ll} D & \text { A84 } \\ D & \text { A84 } \\ \text { D } & \text { A842 } \\ D & \text { A8421 } \end{array}\right.$		$\left\|\begin{array}{l} 11101100 \\ 111010101 \\ 1110110 \\ 111011111 \end{array}\right\|$	
$\begin{aligned} & 240 \\ & 241 \\ & 242 \\ & 243 \end{aligned}$	$\begin{aligned} & \text { F0 } \\ & \text { F1 } \\ & \text { F2 } \\ & \text { F3 } \end{aligned}$	$\left.\begin{array}{ll} A & \\ & 1 \\ 2 \\ 21 \end{array} \right\rvert\,$	$\begin{array}{\|l\|l\|} \hline \text { HPL } \\ \text { APL } \\ \text { JC } \\ \text { II } \end{array}$	$\left\|\begin{array}{l} 11110000 \\ 11110001 \\ 11110010 \\ 11110011 \end{array}\right\|$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$
$\begin{aligned} & 244 \\ & 245 \\ & 246 \\ & 247 \end{aligned}$	$\begin{aligned} & \text { F4 } \\ & \text { F5 } \\ & \text { F6 } \\ & \text { F7 } \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 42 \\ & 42 \\ & 421 \end{aligned}$		$\left\|\begin{array}{l} 11110100 \\ 11110101 \\ 11110110 \\ 111101111 \end{array}\right\|$	$\begin{aligned} & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$
$\begin{aligned} & 248 \\ & 249 \\ & 250 \\ & 251 \end{aligned}$	$\begin{aligned} & \mathrm{FB} \\ & \mathrm{F9} \\ & \mathrm{FA} \\ & \mathrm{FB} \end{aligned}$	$\begin{array}{lll} & 8 & \\ 8 & 8 & 1 \\ \mathrm{D} & 8 & 2 \\ \mathrm{D} & 8 & 21\end{array}$		$\left\|\begin{array}{l} 111111000 \\ 11111001 \\ 11111010 \\ 111111011 \end{array}\right\|$	$\begin{aligned} & 8 \\ & 9 \end{aligned}$
$\begin{aligned} & 252 \\ & 253 \\ & 254 \\ & 255 \end{aligned}$	$\begin{aligned} & \mathrm{FC} \\ & \mathrm{FD} \\ & \mathrm{FE} \\ & \mathrm{FF} \end{aligned}$	$\begin{array}{ll} \mathrm{D} & 84 \\ \mathrm{D} & 84 \\ \mathrm{D} & 842 \\ \mathrm{D} & 842 \\ \mathrm{D} & 8421 \end{array}$		$\begin{aligned} & 111111100 \\ & 11111101 \\ & 1111110 \\ & 11111111 \\ & \hline \end{aligned}$	

| EBCDIC | Hex
 Val | Symbol | EBCDIC | Hex
 Val | Symbol
 and
 Cursor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

CPU Tie-downs
The following tie-downs are required when the following memory features are installed:
Feature
12 K or 16 K memory
16 K memory Pin Locatio A-B2B2B10 A-B2B2B10 A-B2B2B10

2265 II Attachment Tie-down
If the LCD attachment is installed with the 2265 attachment, the tie-down required is 01A-B1N2G 12 to 01A-B1O2D12.

5444 Disk Attachment Tie-downs

Signal Name	Jumper from pin (on board A-A1)	TO: (on board A-A1)		
		If Model 1	$\begin{aligned} & \hline \text { If } 1 \text { or } 2 \\ & \text { Model 2(s) } \end{aligned}$	If Madel 2 and 3 Together
-100 Cylinder	R2G07	T2U07	T2G13	T2G13
-Model 6 CPU	R2P11	R2U11	T2U07	R2U11
+ Model 3 Ready	т2м08	T2J11	T2J11	T2U07
+'Spin 1 data unsafe'	C4J12	C4J08	Remove	Remove

Chapter 2. Console and Maintenance Facilities

2.1 INTEGRATED MAINTENANCE PACKAGE (IMP)

System failures in the 5406 system, its I/O devices and attachments, are
diagnosed with the aid of the IMP.
The IMP ties all maintenance equipment and information together and
requires a minimum of recall about detail circuit operation.
The IMP consists of the following:

1. Maintenance Analysis Procedure (MAP) charts
2. CE aids
3. Diagnostic programs
4. FE education and FE publications

MAP charts are systematic flowcharts of failure analysis. Failure symptoms and/or a coded halt in a diagnostic program indicates the map chart to start with.
CE aids are: the CE probe, CE sense bits, single pin extenders, and MST card extenders. The MAP charts refer to these aids and call out when they are to be used
Diagnostic programs are loaded and controlled by a diagnostic control program (DCP). The DCP may be modified by the CE to call specific test programs into use or perform a specific operation. Halts may occur during operation of the DCP or a diagnostic program that refers to a MAP chart for further diagnostic procedures.
FE education and FE publications expand on overall system and I/O
device operation to aid in free-lance troubleshooting in the event that other IMP procedures fail to locate a problem.
For further information about IMP, MAPs, or the DCP, refer to the Integrated Maintenance Package User's Guide, the MAP charts, or the Diagnostic Control Program User's Guide. Each section contains a description adseific operating instructions for its use
2.2 CONSOLE

The operator console contains the switches and lights necessary for operator control of the system. It is divided into two sections: system indicator lights, and system control switches.

2.2.1 System Indicator Lights

The system indicator lights section is divided into six parts. They are: system check lights, halt code indicator lights, field/operation indicator lights, keyboard ready light, command key indicator lights, and the system power on light.

Individual attention lights are provided for disk 1, disk 2, CRT, ledger card device, data recorder, SIOC, BSCA, and the printer. The processor check light is also displayed on the console
The nine halt indicator lights, which are under program control, indicate to the operator a cause for system halt. The stop light (not under program control) indicates a halt when the stop switch is pressed.
The field/operation group of lights consists of eight lights that may be labeled by use of a plastic overlay. The program uses these lights to inform the operator at what point in the program he may enter specific data fields or take specific action.
The command key indicator light group consists of eight (standard) or sixteen (feature) lights that are associated with the command keys on the operator keyboard. Command key indicator lights are turned on or off by program control (LIO instruction). In addition, the program can light a specific command key light whenever there is a need to communicate a predefined condition to the operator. Plastic overlays are provided for the lights so that the significant meaning for a light can be changed by typing on the overlay
Processor Check Light (PROC CHECK)
The processor check light turns on whenever an invalid op code, CPU parity error or invalid SAR condition is detected. It is also turned on when an invalid Q code is detected. If the check stop switch (on the CE console) is set to STOP, the processor check light is turned on when an I/O parity error is detected. It is turned off by system reset or by pressing the check reset key on the CE panel. Any of these errors cause the processing unit to come to an immediate stop. The clock is stopped and the input/output data may be lost. The specific error that caused the stop is displayed on the CE console display section

I/O Attention Lights

Any of the following lights on indicates that the corresponding I/O device has been issued a start I / O instruction but is not ready to operate. A not ready condition can be caused by power not being on, or by some condition involving the paper or cards to be handled by the I/O device. The I/O attention indicators are SIOC, BSCA ATTN, LCD, CRT, DATA RCRDR, PRINTER, DISK DRIVE 1, and DISK DRIVE 2. The specific conditions that cause each I/O light to turn on are discussed under the individual I/O devices.

ReSEt	DRIVE 1 DRIVE 2 ON ON
	ON ON
Q	Q 8
	Off Off
	$\begin{gathered} \text { ON } \\ \text { POWER } \\ \text { OFF } \end{gathered}$

$\underset{\text { DELECT }}{\text { DISK }}$	${ }_{\text {Program }}^{\text {LOAD }}$	$\begin{aligned} & \text { DATA } \\ & \text { RCRDR } \end{aligned}$	INQURY	$\left\lvert\, \begin{aligned} & \text { SYSTEM } \\ & \text { START } \end{aligned}\right.$
removable	ON	on line	ON	
Q	8	8	8	(8)

Halt Code Lights

These lights are turned on by the individual bits (nine) and the halt identifier bytes of the halt program level instruction.

Power On Ligh

This light is turned on when system power-on sequencing has been success fully completed and stays on until system power is turned off.

Keyboard Ready Light (KEYBD READY)

This light is on when the keyboard has been enabled and unlocked.

Stop Light

This light is turned on when the system start switch is moved to the stop position and is turned off by moving the system start switch to the start position, or by system reset.

Field/Operation Lights
These lights are turned on by a load I/O instruction. The meaning of each light is determined by the program being used. A plastic overlay is provided for the field/operation lights so that appropriate labels can be applied. These labels identify the particular meaning given to the lights by the programmer. Once turned on, the field/operation lights remain on until another load I/O instruction specifying the field/operation lights is executed

Command Key Light

These lights are controlled by the load I/O instruction. Separate load I/O instructions are used to turn the command lights on or off. Once turned on, command lights remain on until a load I/O instruction turns them off, or until a system reset takes place. A plastic overlay is provided for the command lights so that appropriate labels can be assigned to each command light in order to identify the particular meaning given to the light by the programmer

2.2.2 System Control Switches

The system control switches section includes those switches required for system powering, program loading, system starting, stopping, resetting, and 1/O selection.

Lamp Test

This switch, located behind the hinged command indicator panel, is used to check for faulty indicator lamps.

System Reset Switch
When this switch is moved to the on position, a system reset occurs. A system reset causes the system to idle (become inactive) and resets all I/O and machine registers, I/O controls, and status indicators. The program IAR and the program status register LSR's are reset to zero in a system reset.
Normally, a complete program restart is required after a system reset ha been performed.

Disk Drive 1 and Disk Drive 2 Switches
These switches apply electrical power to their respective disk drive motors.

Disk Select Switch

This switch selects the disk from which the initial program load will be performed. When the switch is moved to the removable position, sector zero of cylinder zero of the removable disk is used for program loading. Similarly, when the switch is in the fixed position, sector zero of cylinder zero of the fixed disk on disk drive one is used for program loading.

rogram Load Switch

This switch initiates loading the program into main storage. The following actions occur when this switch is on:

1. All I/O and machine registers, controls, and status indicators are reset.
2. The instruction address register is set to zero.
3. The disk file data address register is reset to zero. The record in cylin der zero, sector zero on one of the disks in disk drive one is read into storage starting at location 0000 . The disk that provides the first ecord is selected by the setting of the disk select switch on the console.
When the program load switch is released, the processing unit executes he instructions read into storage from cylinder zero, sector zero, starting location 0000.
If disk drive one is not ready, the I / O attention light is turned on. When he program load switch is operated, it is necessary only to make disk drive one ready to complete the program load function.

Data Recorder Switch (DATA RCRDR)
Moving this switch to the on-line position places the data recorder under program control when the verify-punch switch on the data recorder is in the punch position. The data recorder keyboard is disabled. Data can be entered ito the system from the data recorder reading station or punched at the data keyboard under program control.
Moving this switch to the off-line position places the data recorder under its own control and allows it to function as a normal (off-line) data recorder. Note. Switches on the data recorder must be properly set for the data recorder to operate under program control (see page 10-109).

Inquiry Request Switch

This switch is mounted on the console, and although this key is not under keyboard bail interlock control, it operates as though it were a key on the keyboard. Moving this switch to the on position causes the data and status bytes to be stored in the keyboard attachment circuitry. Interrupt level on the function key bit (bit 3) on and the data byte contains the unique data haracter code for the inquiry request key (0001 0001). With
ogram enabled the interrupt. At interrupt poll time, the inter sets if the latch output will activate the 'interrupt polled KB^{\prime} line which forces a keyboard bit 1 to the local storage register through the DBI channel. This board bit 1 to the local storage register through the DBI channel. This
signals a keyboard interrupt request to the CPU. When the CPU accepts th signals a keyboard interrupt request to the CPU. When the CPU accepts the
keyboard interrupt request, a sense instruction is issued to the keyboard to allow the data and status bytes (generated by the inquiry request switch) to enter the CPU on the DBI channel. These bytes point to the main storag ocation containing the keyboard sub routine to unlock the keyboard and turn on the keyboard ready indicator
Prior to the initiation of the inquiry request signal, the keyboard is locked (bail bar forward) and the interrupt is enabled.

System Start Switc

When this switch is moved to the start position the processor resets the halt dide lights and resumes normal operation. When this switch is moved to the top position the processor hal ts at the end of the operation in process. This halt is indicated by turning on the stop light on the console. I/O data trans fers are completed without loss of information. The system can be restarted without loss of information only by setting the switch to the start position.

ower ON-OFF Switch

This switch controls the main electrical power to the system. When it is moved to the on position a partial system reset is generated and a power up sequence is started. The partial system reset prevents any I/O operations from starting until they are requested. The power up sequence is performed to apply the various voltages within the system in a manner to protect infor mation in main storage. The on position of the power switch is interlocked with power supply safety circuits (overload protection and thermal circuits) and logic gate thermal protection. The system will not power up until th interlock circuits are complete.
In the off position, the system sequences the system power off in a manne protect the information in main storage and opens the main power to th
 may not be preserved.
2.3 FIELD ENGINEER CONSOLE PANEL

The FE control panel contains those switches and lights necessary for the field engineer to maintain the system. These controls and indicators are hidden behind a hinged panel and normally not used for customer operation. However, some of the switches on the FE console must be positio correctly for the system to process in customer mode. The FE panel
located at the end of the CPU and may be removed from its normal mounting by lifting it upward. Support feet underneath the panel can be turned cross-wise to support the panel in an upright position. The cable attached to the panel is long enough to allow the panel to be placed on top of the CPU in position to be viewed while servicing the main gate of the CPU.

2.3.1 CE Display Indicators

CE Rotary Display
The rotary display unit consists of a row of 18 lights and eight legend strips mounted on an eight position roller. At any one time, only one of the eigh strips is visible through a cutout in the console above the row of lights. A knob in the upper-left corner of the panel is attached to the roller to turn it to each of the eight positions. Turning the roller to each legend position selects the register or check condition as defined in the legend strip and connects each light to indicate the conditions of the signals. The over-all view of the eight legend strips and a description of each position is shown below.

1	sar hi	P	0	1	2	3	4	5	6	7	P	0	1	2	3	4	5	6	7	sar lo
2	LSR HI	P	0	1	2	3	4	5	6	7	P	0	1	2	3	4	5	6	7	Lsp lo
3	op reg	P	0	1	2	3	4	5	. 6	7	P	0	1	2	3	4	5	6	7	areg
4	${ }^{\text {B Reg }}$	P	0	1	2	3	4	5	6	7		$\begin{array}{\|l\|l\|} \hline \mathrm{DIG} \\ \mathrm{CAR} \end{array}$	DEC	RE COMP		sub	$\left\|\begin{array}{c} \mathrm{TEMP} \\ \mathrm{CAR} \end{array}\right\|$	And	or	alu
5	a reg	P	0	1	2	3	4	5	6	7	P	0	1	2	3	4	5	6	7	alu out
6											P			$\underset{\substack{\text { Bin } \\ \text { OVF }}}{ }$	TF	DEC	H	Lo	ео	cond reg
7	csasnmt	P	0	1	2	3	4	5	6	7		0	1	2	3	4	5	6	7	int lev
${ }^{8}$	РROC СНк	$\begin{array}{\|c\|} \hline 1 / 0 \\ \hline \text { LSR } \end{array}$	$\begin{aligned} & \hline \text { LSR } \\ & \mathrm{F} 1 \end{aligned}$	${\underset{F 2}{\text { Lsi }}}^{2}$	$\underset{\text { H1 }}{\substack{\text { Ls8 } \\ \text { H1 }}}$	$\begin{array}{\|c\|c\|c\|c\|c\|} \hline \text { LS } \end{array}$	$\begin{array}{\|c} \text { SAR } \\ \mathrm{HI} \end{array}$	$\left.\begin{array}{c} \text { SAA } \\ \text { LO } \end{array}\right]$	$\begin{aligned} & \text { INv } \\ & A D D \end{aligned}$	SDR	car	DB1	A/B	alu	$\begin{array}{\|c\|c\|} \hline \text { CPO } \\ \mathrm{BBO} \end{array}$	00/0	INV	$\begin{array}{\|c\|c\|c\|} \hline \text { CHAN } \\ \hline \text { Pan } \end{array}$	Novo	Proc снк

1. SAR HI/SAR LO. Displays the contents of storage address register high and low.
. LSR HI/LSR LO. Displays the contents of the LSR selected by the LSR display selector
2. OP REG. Displays the contents of the op register

Q REG. Displays the contents of the Q registe
4. B REG. Displays the contents of the B register

ALU CTL. The state of the following ALU controls are displayed:
DIG CAR (digital carry)
DEC (decimal instruction)
RE COMP (recomplement)
ADD (addition)
SUB (subtraction)
TEMP CAR (temporary carry)
AND
5. A REG. Displays the contents of the A register. ALU OUT. Displays the contents of the output of the ALU.
6. COND REG. The contents of the condition register is displayed as follows:

BIN OVF (binary overflow)
TF (test false)
DEC OVF (decimal overflow)
HI (high)
LO (low)
EO (equal)
7. CS ASNMT. Cycle steal assignment is displayed as it is presented to the I/O devices on the I/O interface.
INT LEV. Interrupt level indicates which I/O device is interrupting the program.
8. PROC CHK. The processor checks are displayed as follows: I/O LSR. Indicates selection of an LSR by an I/O device was not performed correctly.
LSR F1. Parity is incorrect on the output of the LSR feature 1.
LSR F2. Parity is incorrect on the output of the LSR feature 2. (This feature LSR is not used currently by the Model 6, but this position is reserved in the event of future expansion.)
LSR HI. Parity is incorrect on the output of the basic LSR high LSR LO. Parity is incorrect on the output of the LSR low. SAR HI. Parity is incorrect in the storage address register high NAV ADDR. The SAR cothins an inalid addres. SDR Parity in the con
CAR. The carry out of the ALU is incorrect.
DBI. Parity is ist.
A / B. Parity is incorrect in the A register or in the B register.
ALU. Parity is incorrect in the ALU register.
ALU. DBO. Parity is incorrect on the CPU end of the data bus out the I/O devices.
OP/Q. Parity is incorrect in the op register or the Q register. INV OP. Invalid op code in the op register.
CHAN DBO. Parity is incorrect on the I / O device end of the data bus out from the CPU.
INV Q. An invalid Q byte is present in an I / O instruction.
Refer to the Field Engineering Handbook System/3 Model 6, order number ZY25-5501 for information to determine which check occurred first.

Machine Cycles
Twelve indicator lamps represent the twelve CPU machine cycles. They identify the processor cycle just completed in all modes of operation. However, when the CE mode selector switch is in clock step mode, the cycle indicator is on if (1) progress. Except durh in the test position, (2) asystem reset has occurred, or (3) an address compare stop has occurred or (4) the stop key has been operated

NTLEV

The interrupt level lamp indicates if any interrupt level is being serviced Clock
en lamps indicate machine clock cycles 0 through 9 . If the CE mod selector switch is in one of the test or step modes, the clock is stopped at 9. In step mode the machine can be stepped through each cycle. Normal (process) mode uses only clock cycles 0 through 8 .

Address Compare Lamp

This lamp comes on when the address set in the address/data switches matches the SAR. For this to occur, the rotary display switch must be in position 1 (SAR). The system will not stop when the data matches unless he address compare switch is on. However, a sync point is available to indicate when an equal compare is made. See ALD KE 141
/O Check Lamp
This lamp is turned on when unit checks are detected by an addressed I/O device. The I/O check lamp can be turned off with a system reset, check reset or by the I / O attachment de-activating the I / O check interface line,

2.3.2 CE Controls

Address/Data Switches
These switches are used to set up addresses or data. Switches 1 through 4 can be used to load a 16 bit address into SAR. Switches 3 and 4 enter data into main storage: either 4 bits (switch 4) or 8 bits (switches 3 and 4) can be entered.

I/O Overlap Switch
This switch modifies control of the system so that I/O operations may be executed in either an overlap or a non-overlap mode. With the switch urned to the normal position of ON, I/O operations are executed in an overlap mode. When the switch is turned off, the I/O operation is completed on the FE panel cover insures that the I/O overlap switch is in the on position with the cover closed.

File Write Switch
In the off position, this switch prevents writing on all disk surfaces. Its primary purpose is to permit analysis of file write problems without destroying information written on the file. A mechanical interlock on the FE pane cover insures that the file write switch is on, with the cover closed.

BSCA Switches (Local Test and BSCA Step)

The BSCA must be in a SIO test mode of operation for these switches to be effective. In the test mode, the switches allow the following actions
Local Test Switch. Placing the BSCA in test mode removes the BSCA from the communications line for diagnostic testing purposes. Data transmitted is ent to the receive trigger to allow wrap-around operation. Test mode is switch turned off, data is sent directly from the transmit trigger to the receive trigger; with the switch turned on, data is sent from the transmit trigger to the modem and then back to the receive trigger. The external test switch is located at the modem end of the medium speed cable. For high speed modems the switch is located on the CPU CE control panel.

BSCA Step Switch. Step mode allows stepping through a test operation by using the BSCA step key located on the CPU CE panel. The stepping oper ation can also be performed by using the machine cycle step or clock step and the CPU start key to step through each data phase and BCC phase within the bit time.

I/O Check Switch
This switch, when set to stop, forces the processor to an immediate stop on an I/O error. The console display is frozen to indicate the processor status at the time the error stop occurred. For normal operation, this switch is se to RUN.
To restart after an I/O error, activate CHECK RESET and then the start key.
Parity Switch
This switch, normally set to STOP, forces the processor to stop whenever a parity error is detected. Normal restart after a parity stop is to press CHECK RESET and then the start key. With the parity switch set to RUN, all parity errors are detected and displayed, but the processor stops for only some of the errors. The parity errors I/O LSR, INV ADR, INV OP, CHAN DBO, and INV O are not affected by the setting of the parity switch and he processor willalways stop on these errors. For all other errors, processor will continue to run when the switch is in the run position,

Storage Test Switch
In the step position, a storage location is accessed with each depression of the start key. In the run position and the start key pressed, main storage is exercised by accessing either the same location repetitively or all of core sequentially.
Note: The storage test switch must be in the step position to avoid a processor check when changing the CE mode selector from alter storage position to display storage position or vice versa.

Address Increment Switch

This switch allows address incrementing when in the CE test modes of alter or display storage. With the switch on, the contents of SAR are incremented by 1 after each storage access. When the switch is off, SAR is not incremented.

Address Compare Switch

This switch allows a compare of the address/data switch setting and the register display when the register display is turned to SAR. When the address compare switch is in the run position, the address switch setting compared to SAR through the register display, but no processor stop is initiated when a match occurs. The matched signal is provided as a syn point.
When the switch is in the stop position, a match of the address switches and the register display causes a processor stop at the completion of the storage read-write cycle. The processor is restarted by pressing the start key. I/O data transfer takes place without loss of information. The contents of SAR do not necessarily match the setting of the address switches when the processor stops.

System Reset KeV

When this key is pressed, it resets all I/O registers, CPU registers, controls, and status registers, including the program status register (PSR) and the current IAR (P1 or P2 IAR) register to zero. System reset is operable only when the CE mode selector is set to the process mode.

Check Reset Key

This key resets the processor and I/O check conditions. Check reset removes the current error conditions and allows the processor to resume its operation after the start key is pressed. It also resets the system power-check function and allows a power-on retry.
Start/Stop Switch
In the start position, this switch takes the processor out of the stop or hal state, turns off the program stop lights, and allows the processor to resum its normal operation.
In the stop position, the processor halts at the end of the operation in progress. The halt state of the CPU is indicated by the stop indicator on the system keyboard console. I/O data is transferred completely and without loss of information. The processor can be restarted, without loss of information by placing the switch in the start position.

LSR Display Selector
This rotary switch selects the local store register (LSR) to be displayed in position 2 of the rotary display switch. The LSR's that can be displayed are the instruction address register (IAR), address recall register (ARR), index egister 1 (XR1), and index register 2 (XR2). The selected LSR is displayed whenever the CPU is not in CPU or I/O cycles. When this switch is in the whernever the CPU is not in CPU or I/O cycles. When this switch is in the controls the selection and display of LSR's.
The off position is for CE use. In this position LSR's other than IAR, ARR, XR1, XR2, may be displayed by selecting the desired LSR manually as follows:
Turn the LSR display switch to OFF.
2. Turn the rotary display switch to position 2. (LSR Hi-Lo)

Tie up the desired LSR to -0.75 volts as shown below.

Device	+ Tie up	ALD Page
CPU	${ }^{\text {B2C2M }}$	$\begin{aligned} & \text { MA } 122 \\ & \text { MA177 } \end{aligned}$
Disk	A1T2G13 A1S2M13 A1F2J04	$\begin{aligned} & \text { GD2011 } \\ & \text { GD211 } \\ & \text { GD326 } \end{aligned}$
Data Recorder	B1R2S09 B1T2G10	RP201 RP311
CRT	B102D12	CT101
Keyboard	B1M2G11	PK024
Channel	B1J2P13	KE161
Printer	A2O2DO4 A2O3DO4 A2U2004 A2S2J10 A2R2B04 A2M2G12	PR111 PR123 PR221 PR271
$\underset{(B) \mathrm{Bate})}{\mathrm{SOC}}$	A154G08	

BR174
CE Mode Selector Switch
This rotary switch selects one of three processor operating modes: process ode and two positions for CE use, test mode and step mode

Process Mode. Process mode is the normal position for customer operation of the system. The CE mode switch should be left in this position before returning the system back to the customer for use.

Test Mode. In the test mode, data in core storage can be displayed by the CE panel indicators. Data set up in the address/data switches 3 and 4 can be entered into core storage, or the SAR address can be altered. A functional description of each test position is as follows:

1. Display Storage. The contents of main storage at the address specified by SAR, are transferred to the B register when the start key is operate When the start key is released, the data is rewritten back into storage and transferred to the Q register
Note: In the test mode, invalid storage addresses are not checked, therefore the following SAR (Hi) bits are ignored:
8 K memory bits 0,1 , and 2 ,
12/16K memory bits 0 and 1 .
A processor check will occur if the CE mode selector is changed from the alter storage position to display storage (or the reverse) and the storage test switch is not in the step position.
2. Alter Storage. Data set up in address/data switches 3 and 4 , is trans ferred to the A register when the start key is operated. When the start key is released, the data is written into core storage at the address specified by SAR, and transferred into the Q register. Data may also be entered into main storage with the system console keyboard. This procedure is useful for hand-entering several continuous bytes of data cre storage. Data can be entered from the keyboard as follow:
a. Load SAR with the main storage address where the first data byte is to be entered as per the instruction in alter SAR.
b. Set the address increment switch to ON , and the storage test switch to STEP.
c. Hexadecimal characters can now be entered by typing on the key board. Each byte is entered as two key strokes. After each second key stroke the hexadecimal character is entered into main storag and the address in SAR is incremented by one.
Only the keyboard keys 0 through 9 , and A through F can be used to enter data. The use of any other keyboard key results in a keyboard lockup. To unlock the keyboard, note the address in SAR, and perform a system reset to unlock the keyboard. Then reload SAR and retype the byte entered in error.
3. Alter SAR. An address set up in the address/data switches 1 through 4 is transferred into SAR through the IAR when the start key is operated. The IAR address will be the same as the address in SA after an alter SAR operation.
Note: When the CE selector switch is rotated through the alter storage position, it causes a keyboard bail reset and unlocks the keyboard. If this action is undesired, a system reset should be performed to relock the keyboard.

Step Mode. There are three positions in the step mode of operation. Each position controls the manner in which the processor performs the stored program

Instruction Step. This mode causes one complete instruction to be performed with each operation of the start switch. The I-phase is performed when the switch is activated and the E-phase, if any, when the start switch is released.
2. Machine Cycle Step. This mode advances a program instruction through one machine cycle with each operation of the start switch When the start switch is activated, data in storage is accessed, modified as required and the result displayed in the FE panel indicators. ding on the instruction operation) is written back into storage.
3. Clock Step. This mode advances the CPU clock through an od numbered clock cycle with each operation of the start switch, and an even-numbered clock cycle on the release of the start key.
Note: The clock is allowed to run at the end of the 1 -phase during a start I/O instruction, until the I/O data transfer is complete. In the step mode, the start key is not functional during the time a I/O device transferring data
fier lights do not turn on when the CPU is in the clock tep mode.

Program Load Switch (Pushbutton)

This switch is functionally the same as the one on the keyboard console and initiates loading a program into main storage. The following action occur when this switch is on:
. All I/O and machine registers, controls, and status indicators are reset.
2. The instruction address register is set to zero.
3. The disk file data address register is reset to zero. The record in cylin der zero, sector zero on one of the disks in disk drive one is read into storage starting at location 0000 . The disk that provides the first record is selected by the setting of the disk select switch on the console.
When the program load switch is released, the processing unit executes he instructions read into storage from cylinder zero, sector zero, starting

If disk drive one is not ready, the I/O attention light is turned on. When the program load switch is operated, it is necessary only to make disk drive ne ready to complete the program load function.

J1
his jack is for connecting the alternate program load device (APLD) output signal to the CPU for diagnostic program loading or updating programs.

4 ERROR LOG AND STATISTICAL DATA RECORDING

The System/3 Model 6 accumulates two types of error recording. All I/O
device errors are recorded in an area called out board recording (OBR), Various counts of temporary errors (ones subsequently overcome by retry) and other statistical data are recorded in an area called statistical data (SDR). OBR I/O errors cause the Q, R, sense bytes and oth data to be recorded in the OBR table located on sectors 7 and 8 of the fixed disk on drive 1 . The most current OBR entry is found by using the first two bytes of sector 7 as displacement from the beginning of sector 7 . Sectors 3 through 6 contain 512 two-byte counters which are used to accumulate statistics about temporary and permanent I / O errors which
have occurred. This data in these counters is called statistical data recording. SDR data is recorded on sectors 3 through 6 of the fixed disk on drive 1 . The OBR and SDR data are retrieved from the disk and printed on the printer by the CE utility program ERAP. The ERAP ID is FF7 and is called in via DCP.

2.5 Voltage levels

Acceptable voltage levels for monolithic system technology (MST)-1 and solid logic dense (SLD) 700 technology are:

MST-1 Voltage Levels

2.6 ERROR RECOVERY PROCEDURES

Refer to the system operating guide for operator recovery procedures indicated by the I/O attention lights on the console.

2.7 SPECIAL TOOLS

The following special tools used in troubleshooting System $/ 3$ are either included in the System/3 shipping group or are available from the branch included in the System/3 shipping group or are available from the branch
office. See the Integrated Maintenance Package User's Guide for detailed descriptions of the tools.
2.7.1 CE Diagnostic Probe

The CE diagnostic probe (see figure to the right, part 817971) acts as a free running oscilloscope which replaces scope usage for most System/3 service calls. The probe can measure SLD $100 / 700$ and MST-1 signal levels. The probe also has wo MST gates or gied operation. Consult he megrated The lamps (part 454612) and probe tips (part 453163), shown in the dis

2.7.2 Jumper Wires

Six jumper wires (see figure below) are included in each 5406 shipping group; two 6 inch wires (part 829117), two 12 inch wires (part 2588263) and two 18 inch wires (part 829118). These jumpers are for use with the MAP charts and diagnostic programs.

2.7.3 Single Pin Extenders

The single pin extender (shown below, part 2594238) is used to extend oard pins when using the CE meter to measure voltage levels. The use of

2.7.4 MST-1 Card Extender

The MST-1 card extender (shown below, part 2360068) allows the CE to extend a card above the tops of adjacent cards on a board. This makes the module pins on the back of the card more accessible for probing with a scope or the diagnostic probe. These card extenders are stocked at the branch office.

2.8 ALTERNATE PROGRAM LOAD DEVICE

The alternate program load device (APLD) is a cassette tape recorder that serves as an alternate input device to the Model 6. It is used to load file diagnostcs we to libraries. libraries.

2.8.1 Interface Circuits

The APLD attachment contains only pulse shaping circuitry. Error detection, tape speed synchronization, noise elimination, signal detection, data separa tion, and de-serialization functions are all performed by the tape loader program.
The interface circuits are contained on a single wide two high MST-1 card which is located on the printer attachment board (location A-A2B4). The function of the interface circuits is to convert the tape audio signals to machine readable MST-1 levels. They consist of:

1. 60 Hz noise filter
2. Comparat
3. Shaper
4. Level Converter

The read signal is first filtered to eliminate 60 Hz noise. It is then compared to a reference voltage, and a signal is generated at the comparator output when a positive input signal swing is detected. The generated comparator signal is shaped to the write signal pulse width by a single shot shaper. Then it is converted in the level converter to the desired logic level. The output of the level converter goes to a polarity hold latch which is conditioned during clock 2 of each CPU cycle. The output of the polarity
hold latch is OR'ed with the 'printer busy' line. During a read data sample, hold latch is OR'ed with the 'printer busy "line. During a read data sample, the 'printer busy' cond tion is tested by perfor ing a test When 'printer busy is 1 bur not present during the sample, a binary 0 is placed in core

2.8.2 Tapes

There are two types of tapes used with the alternate program load device.

1. The first type of tape consists of the tape loader and the diagnostic control program (DCP). To load this tape, a 38 byte bootstrap program must be manually entered into core. Following the loader and DCP, there are a number of file section programs.
2. The second type of tape takes the place of card input decks used with the editor program. This tape allows the editor to function nearly

unchanged from its normal mode, except that the card read routine is overlayed with a tape read routine. The tape consists of card images of the editor data deck (one card per tape record). During operation, each time the editor program calls for a card input, a tape image of the card is read in rather than the card. To use the card image tapes, DCP and the editor programs must be fully loaded.

2.8.3 Programs

To load programs from tape, refer to the procedures contained in the $F E$ Diagnostic User's Guide.

Bootstrap Loader

The bootstrap loader is a thirty-eight (38) byte manually entered program used to bring in the normal tape loader when the file is inoperable. This program contains no automatic tape speed synchronism, but instructions are provided in the tape MAPS for modification of timing constants if retry is required.

Bootstrap Loader:		
Storage	Program	Program Descriptio
005D	C202005D	Load address XR2 (005D)
061	AFD9FFFF	SLC (branch from itself 218 times)
0065	E1E20E	TIO (for busy branch to 006B)
0068	E08708	BC to 0065
006B	ACFFFFFF	MVC 256 (approximately 772 us)
006F	AC62FFFF	MVC 99 (approximately 303 us)
0073	BA01FF	SBN (set bit on) at 015C
0076	E1E21F	TIO - (for busy branch to 007C)
0079	BB01FF	SBF at 01FC (set off)
007C	AED9FFFF	ALC (218 position binary counter)
0080	E02008	BC - binary overflow

Tape Loader (Normal)

The tape loader is a three hundred fifty (350) byte tape read program with the following features.

1. Tape speed synchronization
2. Error detection (record hash total),
3. Specification for length of data record and address where data is to be placed in memory.
4. Record number.
. FE communication via command and field indicator lights
5. Record identification (any normal input card for diagnostic control program andor section programs).
6. Bit count (overflows beyond 8 bits are ignored)
7. Provision for restart in case of soft tape errors

Diagnostic Control Program (DCP)
This is the standard DCP modified for tape use, and can be read in from the cassette so that it can be used with the file diagnostics.

2.8.4 File Diagnostics

These are the complete set of file diagnostic programs in sequential order. They are coupled with the MAPS for fault locating.

2.8.5 APLD Setup

Connect the 7.5 Vac adapter from the ac adapter socket to the ac convenience outlet.
2. Connect the shielded audio cable from the cassette output socket to J 1 on the CE panel.
Note: When the audio cable is plugged into the cassette output socket, the cassette speaker is disabled.
The volume control setting should be approximately 6 .
. The read MST card is plugged into location A-A2B4.

2.8.6 Maintenanc

or maintenance of the tape cassette, refer to the manufacturers handbook issued with the tape cassette.

Chapter 3. Preventive Maintenance

3.1 SCHEDULED MAINTENANCE

The preventive maintenance philosophy for the System/3 Model 6 is that it is done during unscheduled interrupts whenever possible. When an unsched led interrupt does not occur on a syst below, scheduled maintenance is perfor as follows:

1. Blowers-check every six months for proper operatio
2. Filters-replace every six months, if necessary.
3. Memory-no preventive maintenance is performed if the memory is operating properly. If adjustments are required, the XYZ drive voltag is varied from -30 V by $\pm 1.2 \mathrm{~V}$ while exercising the BSM with a worst case pattern. This should establish an operating point Adjustments are made using the voltmeter specified in chapter 4

Chapter 4. Checks, Adjustments, and Removals

4.1 MONOLITHIC SYSTEM TECHNOLOGY (MST) MAINTENANCE

All normal maintenance procedures for monolithic system technology con ponents are found in the IBM Field Engineering Theory of Operations Manual, Monolithic System Technology Packaging, Tools, and Wiring Change Procedure. This manual includes information regarding:

MST packaging
Tools
Wiring change procedure
Emergency card repair

4.2 MONOLITHIC TECHNOLOGY SYSTEM CARDS

The lettering within a logical block on a systems diagram page gives the location of that block in the card gates. It also indicates other pertinen data as described in the MST packaging FETOM (described above). dentification of pins, panels, rows, and columns is also described in this manual.
locations within the system diagrams are shown on system diagram card location charts. The system index contains the machine eatures indexing of automated logic diagrams (ALDS) and maintenance diagrams.
4.3 BRIDGE BASIC STORAGE MODULE (BSM)

For reliable storage operation, the BSM diagnostics should run 2 minute without errors when the -30 volt XYZ drive voltage is biased 1.2 volts in ither direction from its initial setting. If BSM operation is unreliable, fault exists, or XYZ drive voltage (-30 V) reoptimization is required, or trobe setting and -30 V reoptimization is required
Proper setting for the -30 V power supply and the strobe settings for each BSM are recorded on a decal located on the XYZ current limiting resistor cover (see the figure to the right).
Note: The -30 V power supply is self-adjusting for temperature and adjusts by -75 mV for each degree Fahrenheit temperature rise.
If the BSM operation is unreliable, a fault should be the first problem suspected. The only repairs possible are card replacement, voltage and strobe adjustments, and repair of minor (visible) shorts, open diodes, or open ciruits. Major array failures (shorted diodes, internal opens, etc.) necessitate SSM replacement.
Most problems fall into 2 categories of component failures,
. Normal circuit failures (card, loose connector, etc.)
2. Array failures (shorted lines, open line, diode, etc.)
intermittent or random failures are treated separately.

8K Basic Storage Module (Probe Side)
BR1749

16K Basic Storage Module (Probe Side)
4.3.1 Fault Location

If a failing pattern is not already evident, try manually storing and displaying or scanning storage to establish a pattern. If this fails, run the storage
diagnostics. diagnostics.

8K Basic Storage Module (Card Side)

16K Basic Storage Module (Card Side)

3.1. Circuit Failures

All BSM problems should be approached as if there has been a circuit failure. Circuit failures (card, connector, etc.) can be broken into distinct patterns. For example:

- Single bit-all addresses
- Single bit-one block of addresses

Multiple bits-all addresses

- Multiple bits-one block of addresses

The 'all addresses' failure could be caused by the drive current source card or the control driver card. The 'block of addresses' failure could be caused by a defective gate driver card. For example, if SAR bit 7,8 or 9 are alway ctive in the failing address, the chart in the figure indicates the failure could be the Y-Lo gate driver.

Single-bit or multiple-bit failures may be caused by a sense/inhibit card which also contains the SDR latch for that bit.

Card location

Bits	8K BSM	16 K BSM
0, 1, 2	x×J4	x×J4
3, 4, 5	XXH4	XXH4
6,7,8	XXG4	XXG4
9, 10, 11	-	XXF4
12, 13, 14	-	XXE4
15, 16, 17	-	XXD4

$$
\begin{aligned}
& \text { Note: Bits } 9.17 \text { are 0-8 } \\
& \text { when SAB bit 2 is active }
\end{aligned}
$$ when SAR bit 2 is activ Bit 8 and 17 is the P bit

BR1753
Multiple-bit failures at all addresses may also be caused by the strobe driver card. (For card location, see ALD page SR224.)
Using bridge map charts (trouble analysis flowcharts) allows repair of most of the failures by swapping or replacing cards. Use the CE pocket meter and diagnostic probe for help in locating and repairing the trouble.

4.3.2 Array Failures

If the array fails, replacement is necessary unless the failure can be traced to cabling defects, visual defects, or an open diode. Trouble caused by open diodes can be repaired by patching a new diode across the open one. Shorted diodes require replacing the array.
4.3.2.1 Single Bit, Multiple Address Failures

A sense/inhibit (S / Z) problem usually shows up as an extra or missing bit throughout an 8 K block of storage (each sense/inhibit line passes through 8,192 cores). If the sense/inhibit card is not at fault, check the wiring to the inhibit current limiting resistor. (Refer to SR071-076 and to SR264 for locations.) Check that -30 volts appears on pin 2 of the affected resistor. Check also for a broken S / Z wire between the array and the back pane ins on the sense amplifier. A complete S / Z winding resistance should within the core plane, replace the BSM

4.3.2.2 Multiple Bits, Multiple Address Failures

If his type of failure cannot be corrected by card swapping or replacement, an array fault probably exists. If the failure is related to a combination of more than one address pattern, suspect a short between drive lines.
4.3.2.2.1 Continuity Check of XY Drive Lines. The charts on SR174 and SR184 describe all X and Y drive lines and contain all the points (terminals) for performing a continuity check. Example: See the figure to the right This example is for the failing X-address of 000110 . X-read current is shown from left to right through the array X-winding. X-write current is shown from right to left through the same array X-winding.
(In the following discussion, column numbers refer to the chart on SR174.) Starting from the X-read lo gate, D2G10 (column 13) current flows to terminal 56 on the top diode board (column 12), through a diode in diode pack 25 on the top diode board (column 11), to pin 161 on top diode board 7), thermin 4 on the top diode board (colum 3) to the X read hi gate, E2B12 (column 2).

Likewise
Likewise, it can be seen that X-write current flows from the X-write hi gate, S2D11 (column 4), in the reverse direction through the X-winding, to the X-write lo gate, D2J09 (column 15).
4.3.2.2.2 Locating an Open Diode. Because of the complex connections of the isolation diodes, a continuity check is difficult. To locate an open diode, use the method described next. The cards named are for the same failing X -address (000110) discussed in Section 4.3.2.2.1. Refer also to the figure on the next page, "Locating an Open Diode.'

1. Turn off power.
2. Remove X gate cards D2 and E2
3. Probe the points shown with the ohmmeter; be sure to observe the polarity of the meter as indicated by the + or - . Expected meter readings are infinity (∞) or some resistance (R, unpredictable becaus of circuit variations and the meter in use).
An open drive line may also be verified by scoping the source driver load resistor on the resistor panel. See page 1-408 "Scope Pictures F" for the
waveform of the Y -read current source with and without an open diode (see SR264). This method will identify an open array drive line if both YRD and YWR appear open. If either is correct, an open diode is likely. Make a continuity check to determine which of the two diodes in the line is open.
If an open diode exists, the charts of SR174 and SR184 indicate the polarity of the diode to be replaced. See the bottom of the figure above for diode locations with respect to the charts.
4.3.2.2.2 Replacing an Open Diode. An individual diode cannot be removed since it is part of a module containing 16 diodes. Replacement consists of soldering an individual GY diode (part 2414891) over the defective one. A shorted diode calls for replacement of the BSM.)
When replacing a diode, use thermal set compound (part 814007) as a heat sink. Wrap one end of a yellow wire to the wrap terminal on the diode board and solder the other end to the diode. Solder the remaining end of the diode to the solderable pin on the edge of the diode board. After diode replace ment, check for reliable BSM operation,
4.3.2.2.4 Exposing Bottom Diode Board. If an open Y -drive line exists and the fault cannot be located on the top diode board, remove the BSM to ex pose the bottom diode board.
4. Disconnect all cables to the BSM.

Remove all the cards.
Remove the BSM (weight-approximately 18 pounds) and lay the unit on a table with the card side down, pin side up.
Loosen the 4 nuts which hold the array onto the board. It is now connected by only the drive and sense-inhibit cables.
Note: It is now possible to raise the board separately leaving the array resting on the table and expose the bottom diode board, or you may continue.
5. Turn the unit over. Support the array since it is connected only by wiring.
6. Pull the array out vertically and turn it over so that the top side is down and lying on the card sockets. The bottom diode board is now completely exposed.
4.3.2.2.5 BSM Replacement. Some systems supply -30 volts to the BSM with a single 'mini-bus' connector to the following points: C5D09, D5D09, E5D09, F5D09, G5D09, H5D09, and J5D09 (see SR264). Earlier system supplied - 30 V with a single wire to C5D09. The remaining points were jumpered on the board. This includes the associated DO8 ground pins. When repl if a BS Mit may be neessary to savi mini-bus' connector
4.3.2.3 Poor So!der Connections and Welds

If a problem appears to be an open diode or an internal open within the array, a complete resistance check should be made. Any poor solder connec ions or welds should be resoldered
Also check for an open land pattern in the X-return card (for an X-drive line). If there is an open land pattern, use a piece of $\# 30$ wire to repair the break.
4.3.2.4 Shorts Between Drive Lines

Shorts between X - or Y -drive lines usually show up as dropping one or more bits of two addresses. In almost all cases, analysis of the failing addresses hows that two adjacent X - or Y -drive lines are the problem. Once the two lines are located, make a resistance check of the lines, moving from one end of the array to the other. Because of the resistance of the windings, less

Example: Locating an open diode associated with the failing X -address of
000110

IMPORTANT: Remove X-Gate Cards D2 and E2

resistance is seen as you get closer to the short.
In almost all cases, the short is either some foreign material between two adjacent pins or two pins touching. A visual check with a strong light may show the short. However, if foreign material is causing the short, it may not be visible. Try passing a piece of paper between the pins at the area of the short.

4.3.2.5 Defective Cores

A defective core position usually shows up as dropping a single bit in a single address. This type of problem can be caused by the individual core losing its magnetic properties because it is cracked, chipped, or broken. Vary the -30 drive voltage and the strobe setting to see if the rate of BSM Chacement is necessary, See 4.3 .4 ad 4.35 for drive voltage and trobe

4.3.3 Intermittent or Random Failure

If a failure pattern cannot be determined, check the following for possible failure causes.
sing an oscilloscope, probe the:
a. $X Y$ drive voltage pulses on the $X Y$ read and write current limiting resistors and compare them to those shown in BSM waveforms B, C, D and E, page 1-407 and 1-408

Note: Probe pins 1 and 3 are common. No pulse can be observed on resistor pin 2 , since it is ground.
b. Z drive voltage pulses on the Z (inhibit) current limiting resistors and compare them to those shown in BSM waveform F, page 1-408A.
Note: No pulse can be observed on resistor pin 2 since it is the -30 V power supply connection. Note also that the magnitude of he pulses may vary slightly if the XYZ drive voltage setting is no supply.) supply.)
c. Control driver (BSM waveform G, page 1-408A).
d. Strobe driver (BSM waveform H, page 1-408B).
2. Check for improper setting of the $-30 \mathrm{~V},+6 \mathrm{~V},-4 \mathrm{~V},-14 \mathrm{~V}$, and/or +3 V . (Use a Weston 901 meter or equivalent when adjusting these voltages.)
Note: The +3 V supply should be adjusted with reference to +6 V . This results in a negative reading.
3. Check the voltage connectors to the large circuit board. (See SR264.)
4. Check to see if the back panel resistor assemblies are misplugged. (See SR264.)
5. Check for loose interface cables or terminator cards. (See SR 201, 224, 228, 229.)
6. Check for improper MST-1 levels at the interface.

4.3.4 XYZ Drive Voltage (-30 V) Reoptimization ($8-16 \mathrm{~K}$)

Reverify drive voltage marginal limits whenever replacing S / Z, timing, driver source, or strobe driver cards.
To reoptimize the drive voltage:

1. Loop storage diagnostics no. 96 .
2. Determine the upper drive voltage (-30 V) limit by slowly decreasing the drive voltage reading until an error occurs. Record the last oper-
ating voltage as the upper limit. If system reset and start does not start the diagnostic, set the drive voltage close to normal and reload the diagnostic. Determine the lower limit by slowly increasing the voltage reading until an error occurs (do not exceed a more negative voltage than -35 V). Record the last operating voltage (or -35 V) as the lower limit.

Note: The BSM should run error free for a minimum of 30 seconds at the last operating point.
3. The optimum drive voltage is the average of the upper and the lower BSM limits.
4. If the difference between the upper and lower limits is less than 2.4 volts, strobe reoptimization may be necessary.
Note: When reoptimizing the drive voltage or strobe setting, a thermometer (part 5392366 or any standard thermometer) placed at the base of the array should read between 68 degrees and 86 degrees Fahrenheit. The voltage may be reoptimized outside of this range, but a check at the current temperature should be made as soon as possible.
4.3.5 Strobe Setting Reoptimization (8-16K)

To reoptimize the strobe setting:

1. Loop storage diagnostics no. 96 .
2. Refer to the decal on the XYZ current limiting resistor cover. Use the present strobe setting and determine the upper and lower XYZ drive voltage limit, which is explained by 4.3.4 step 2. Record these imits as shown by point A and B in scope picture A (on this page). Repeat 4.3 .4 step 2 for strobe setting 10,20 and 30 ns before and after the present strobe setting. Strobe settings are made on the strobe
driver card (SR254). Plot the XYZ drive voltage limits as shown in the driver card (SR254). Plot the XYZ drive voltage limits as shown in the figure. Set final strobe timing between points where the XYZ driver voltage limits start to drop off.
3. If the difference between the upper and lower limits is less than 2.4 volts, a fault probably exists which must be corrected before further reoptimization is attempted.
4. Set the optimum drive voltage $(-30 \mathrm{~V})$ which is the average of the upper and lower BSM limits at the selected strobe setting.
5. BSM access time is measured from when 'Rd call/Write call' becomes active, until all sense data latches are active. (Measure access time while writing all ones into the BSM.) Access time must be 445 ns o less. If necessary, reset the strobe setting to obtain 445 ns or less.
The minimum 2.4 volt spread for $X Y Z$ voltage must still be met at the new setting.
Note. If the strobe driver card is replaced, strobe jumpers must be put in the new strobe driver card.

10ns Strobe Increments
Scope Picture A
Scope Picture A
Optimization-Strobe and XYZ Drive Voltage

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	'00'
Storage Test	Run
Address Increment	On

Sync:	Plus External
Time Base:	200ns/m
Sync Pin:	B4A1011
Signal Name:	Reset
Channel 1	
Vertical Gain:	$1 \mathrm{~V} / \mathrm{cm}$
Signal Pin:	B4B3G03 (8K-16K BSM)
Signal Name:	Reset
Channel 2	
Vertiaca Gain:	$1 \mathrm{~V} / \mathrm{cm}$
Signal Pin:	B4A2B02 (8K-16K BSM)
Signal Name:	Rd Call Wr Call

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	'00'
Storage Test	Run
Address Increment	On

Sync:
Time Bas
Time Base:
Sync Pin:
Signal
Signal Name:
Channel 1.
Vertical Gain:
Signal Pin:
Vertical Gain:
Signal Pin:
Signal Name:
4A2802 $18 \mathrm{~K}-16 \mathrm{~K}$ BSM
Signal Name: $\quad \begin{aligned} & \text { B4A Call Wr Call }\end{aligned}$
Channel 2
Vertical Gain
Signal Pin:
Signal Name:
B4J2G05 (8K-16K BSM)
$\times \mathrm{RA}$

BR0657A

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	'00'
Storage Test	Run
Address Increment	On

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	'00'
Storage Test	Run
Address Increment	On

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	'00'
Storage Test	Run
Address Increment	On

Sync:
Time Base:
Time Base:
Plus External
200ns/cm
$\begin{array}{ll}\text { Sync Pin: } & \begin{array}{l}\text { B4A1D11 } \\ \text { Signal Name: }\end{array} \\ \text { Reset }\end{array}$
Channel 1
Vertical Gain: $1 \mathrm{~V} / \mathrm{cm}$
Signal Pin: B4J2B03 (8K-16K BSM)
Signal Name: Write Time
$\underset{\text { Channel } 2}{\text { Vertical }}$
Vertical Gain: $\quad 10 \mathrm{~V} / \mathrm{cm}$
Signal Pin: \quad B4J2D07 ($8 \mathrm{~K}-16 \mathrm{~K}$ BSM)
Signal Name: YWrite Current Source Resistor

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	'00'
Storage Test	Run
Address Increment	On


```
Plus External
200ns/cm
R4A1D11
\(1 \mathrm{~V} / \mathrm{cm}\)
B4A2B02 (8K-16K BSM) Rd Call Wr Call
\(10 \mathrm{~V} / \mathrm{cm}\)
Signal Name: \(\quad \mathrm{Y}\) R 22005 ( \(8 \mathrm{~K}-16 \mathrm{~K}\) BSM)
```

Sync Pin:
Sync Pin:
Signal Name:
Channel 1
Vertical Gain
Signal Pin:
Signal Pin:
Signal Name:
Channel 2
Vertical Gair
Signal Pin:
Signal Name:

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	'O0'
Storage Test	Run
Address Increment	On

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	'00'
Storage Test	Run
Address Increment	On

*Ground
BSM Waveforms E

Plus External
$200 \mathrm{~ns} / \mathrm{cm}$
200ns/cm B4A1D11
Reset
Sync Pan:
Sync Pin:
Signal Name:
Channel 1
Vertical Gain: $1 \mathrm{~V} / \mathrm{cm}$
Signal Pin: \quad B4A2BO2 (8K-16K BSM)
Signal Name: $\quad \begin{aligned} & \text { Bd Call Wr Call }\end{aligned}$
Channel 2
Channel 2
Vertical Gain:
1 V
Signal Pin: $\quad \begin{aligned} & \text { BV/cm } \\ & \text { B42BO3 (8K-16K BSM) }\end{aligned}$
$\begin{array}{ll}\text { Signal Name: } & \begin{array}{l}\text { B4J2BO3 } \\ \text { Write Time }\end{array} \\ \end{array}$

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	'00'
Storage Test	Run
Address Increment	On

Plus External
200ns $/ \mathrm{cm}$
Sync: \quad Plus Extern
Time Base:
Sync: Time Base:

Sync Pin: | Sync Pin: | $\begin{array}{ll}\text { B4A1D } \\ \text { Signal Name: } & \\ \text { Reset }\end{array}$ |
| :--- | :--- |

Channel 1
Vertical Gain
ignal Piain. V / cm
$\begin{array}{ll}\text { Signal Pin: } & \begin{array}{l}\text { B4A2B02 (8K-16K BSM) } \\ \text { Signal Name: }\end{array} \\ \text { Rd Call Wr Call }\end{array}$
Channel 2
Channel 2
Vertical Gain Signal Pin:
Signal Name:

B4J4G10 (8K-16K BSM) Signal Name: $\quad \mathrm{Z}$ Load Bit 0

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	'00'
Storage Test	Run
Address Increment	On

Plus External
Sync:
Time Base
Sync Pin:
Sync Pin:
Signal Name:
200ns/cm
B4A1D11
Channel 1
Channel 1
Vertical Gain: Vertical Gain:
Signal Pin:
Signal Name:
$1 \mathrm{~V} / \mathrm{cm}$ Signal Pin:
Signal Name:

Channel 2
Vertical Gain:
Signal Pin:
Signal Name:
B4J4G 10 ($8 \mathrm{~K}-16 \mathrm{~K}$ BSM)
z Load Bit 0

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	00'
Storage Test	Run
Address Increment	On

Sync:
Time Bas
Sync Pin:
Signal Name:
Channel 1
Vertical Gain: $\quad 1 \mathrm{~V} / \mathrm{cm}$
Signal Pin: \quad B4B2B03 (8K-16K BSM)
Signal Name: Rd Control
Channel 2
Vertical Gain: $10 \mathrm{~V} / \mathrm{cm}$
Signal Pin: \quad B4B2D10 ($8 \mathrm{~K}-16 \mathrm{~K}$ BSM)
Signal Name: $\quad \times$ Rd Lo Gate Ctr
 XRd or YWr Lo Gate Ctrl signal is shown
for reference only. This is a current wave-
form and can be a different level at similar form and can be a different level at similar
test points in a BSM, and can be a different test points in asM, and can be a differe
level at the same test point and different
BSMs. level at
BSMs.

Sync:
Time Base
Sync Pin:
Sync Pin:
Signal Name:
Channel 1

$$
\begin{aligned}
& \text { Vertical Gain: } \\
& \text { Venel }
\end{aligned}
$$

Vertical Gain:
Signal Pin:
$\begin{array}{ll}\text { Signal Pin: } & \text { B4B2B } \\ \text { Signal Name: } & \\ \text { WBC } \\ \text { St }\end{array}$
Channel 2
Vertical Gain: $10 \mathrm{~V} / \mathrm{cm}$
$\begin{array}{ll}\text { Sertical Gian: } & \text { B4B2D06 (8K-16K BSM) } \\ \text { Signal Pin: } \\ \text { Signal Name: } & \times \text { Wr Lo Gate CtrI }\end{array}$
*rond
BSM Waveforms G

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	'00'
Storage Test	Run
Address Increment	On

Sync: Time Base: Sync Pin:
Signal Name

Channel 1 Vertical Gain Signal Pin: Signal Name Channel 2
Vertical Gain Signal Pin: Signal Pin:
Signal Name:

Plus External 200ns/cm B4A1D11 Reset
$1 \mathrm{~V} / \mathrm{cm}$ $1 \mathrm{~V} / \mathrm{cm}$
B4A2BO2 (8K-16K BSM)
Rd Call Wr Call
$5 \mathrm{~V} / \mathrm{cm}$
B4B5D10 (8K-16K BSM) Strobe Bits 0-8

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	'FF'
Storage Test	Run
Address Increment	On

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	'FF'
Storage Test	Run
Address Increment	On

This is a 'three exposure' picture. 'Rd Cal Wr Call', and 'Strobe' are shown only for time reference points.

Sync: Sync Pin:
Signal Nam

Plus External 200ns/cm
B4A1D11 Reset

Note: Core output measured with Tektronix ${ }^{\circledR} 453$ scope as follows: hannel 1 and 2 set for $100 \mathrm{Mv} / \mathrm{cm}$
'Mode' switch set to 'Add'
Channel 2 'Invert' switch set to 'Add'
Channel 1 signal pin - B4J4B02 (8K-16K BSM)
Channel 2 signal pin - B4J4DO2 (8K-16K BSM)
*Ground
BSM Waveforms

These are 'Three' exposure pictures. 'Rd Call Wr Call
and 'Strobe' are included for horizontal references.

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	'00'
Storage Test	Run
Address Increment	On

Sync:
Time Base:
Sync Pin:
Plus External 200ns/cm
B4A1D11 Reset

Rd Call Wr Call B4A2BO
$1 \mathrm{~V} / \mathrm{cm}(8 \mathrm{~K}-16 \mathrm{~K}$ BSM)

Strobe Bits 0.8 B4J4B07 (8K-16K BSM)
Core output writing ' 0 ' in all bit positions.
See Note on waveform located on right
hand side of page 1-408B.

Switch Name	Setting
CE Mode Selector	Alter Storage
Data	'80'
Storage Test	Run
Address Increment	On

Ground
BSM Waveforms

Switch Name	Setting
CE Mode Selector	AlterStorage
Storage Test	Run
Address Increment	Off

open drive line (broken weld in
open d
array).
 Reset
BSM Waveforms

4 KEYBOARD

For maintenance information on the basic keyboard, refer to the Field Engineering Theory-Maintenance Manual, Elastic Diaphragm Encoded Key boards, Order No. SY27-0073.
Refer to the figure at the right for the location of components to be removed.

4.4.1 Keyboard Removal

1. Remove power from the system.
2. Pull forward the top left hand side of the console panel (over the command lights). Remove the switch cover on the right hand side of the console by pulling it straight forward.
3. Loosen, but do not remove (1) the screw above and to the left of the lamp test switch, (2) the screw at the top right corner of the switch mounting plate.
4. Remove the two screws that mount the keyboard to the console pan. These screws are located under the front of the table top of the machine.
machine.
. Remove the two screws (one on each side) of the console pand
Pivot the console panel back out of the way
B. Remove the four nuts (one on each corner) of the keyboard mounting bracket.
Disconnect the signal cable located on the left hand side and under the encode board.
5. Remove the yellow wire from the lower contact of the inquiry request switch.
6. Disconnect the plug connector. It may be necessary to lift the key board up and to the right to gain access to this plug.
7. Lift the keyboard up and out of the machine.

4.4.2 Keyboard Replacement

Note: Check that all leaf springs are in their proper position relative to their respective key lever.

1. Perform the above steps in the reverse orde
2. Check that there are no binds between the console cover and the keyboard. If there are, loosen the four nuts that mount the keyboard and reposition the keyboard until there are no binds between the keys and the console cover.

4.4.3 Console Lamps

Test the console indicator lamps with the CE lamp test switch

4.4.3.1 Lamp Removal

1. Pull the console panel forward to expose the lamps.
2. Remove the faulty lamp by pulling it forward out of the panel.
3. Insert a new lamp in its place by pushing it backwards into the socket.

4.4.4 Kerbord Encode Board

Troubleshooting procedures for the keyboard encode board can be found in the system automated logics on pages PK030 and PK031. Information on these pages includes keyboard voltages, bail magnet voltages, and test points for weighted codes.

4.5 SINGLE SHOTS

All single shot adjustment procedures are covered in the MAP charts. They should be adjusted to the time durations called out in the MAP charts or should be adjusted to the time durations called out in the MAP charts or locate the single shot on the board and in the ALDs.
4.5.1 Use Meter Single Shot

The use meter single shot is located on gate A, board $B 1$, card $S 4$ ($A-B 1 S 4$). Refer to ALD page CR101 for the duration of the pulse.

4.5.2 Printer Attachment Single Shots

The illustration below shows the location of the printer attachment single shots.

ALD Pages PR111 and PR112

Gate A, Board A2, Card Q3 (A-A2O3) ALD Pages PR121 and PR122 Single shot 1A (pin feed carriage) is located on Gate A, Board A2, Card U2 (A-A2U2), ALD Page PR123.

4.5.3 Ledger Card Device Attachment Single Shots

The illustration below shows the location of the ledger card device attach ment single shots.

Card Skew SS2

Drive Check ss
Card Skew SS1

Gate A, Board A2, Card D5 (A-A2D5) ALD Pages PR721 and PR 722

4.6 DISK DRIVE

Note: If system power is off, the file drawers may be opened by inserting a small screwdriver in an opening in the right hand file side cover and lifting the interposer. The drawer may then be opened in a normal manner

4.6.1 Disk Drive Service Positio

To move the file to its rear service position, follow the steps below:

1. Open the file drawer and loosen four front cover mounting screws A and remove front cover. Remove the two lower screws (A) from

Remove the cover at the rear of the file enclosure.
Note: If the lower file drawer is to be moved to the rear service position, remove bracket B
3. The file slide mounting base may now be pushed to its rear service position.

4.6.2 File Drawer Interlock Adjustment

1. Move the upper and lower drawer (if installed) to the rear service position.
Note: If a second 5444 is not installed, remove the lower front cover C . Two screws hold the lower cover in place and these screws are accessible when the top slide base is moved to the rear service position.
2. Remove the right hand side cover D. The 8 screws that hold the side cover in place are accessible when the drawers are moved to the rear service position.
Note: Adjustments in items 3 and 4 need not be made unless the front covers are out of alignment
3. Reinstall the drawer front covers and adjust vertically with screws so that the top edge of the upper cover is $1 / 4$ inch below and parallel with the lower surface of the table top.
a. If a second 5444 is installed, (lower drawer) adjust the lower front cover so that the bottom edge is flush with the lower edge of the system frame with screws
b. If a second file is not installed, adjust the lower front cover c in adjustment 3a.
4. Adjust the EMC blades (top and bottom for each drawer) so the blade enters the center of the finger stock co located in the cover.
5. Adjust the drawer latch retaining nut (H) so the latch is horizontal in its rest position. (This is a preliminary adjustment.)
6. The latch stud is adjusted to hold the drawer securely closed and still allow the drawer latch to release and latch easily.

Note. The adjustment made in step 5 should not keep the drawer latc from resting on the latch stud when the drawer is closed. Re adjust the drawer latch retaining nut, if necessary, to meet this requirement.

$\prod_{\text {RR0665A }}$
7. Move the interlock mounting bracket vertically so interposer to latch (interlock surfaces) clearance is .040 to .080 inches. The drawer latch must be holding against the latch stud (in a closed position), and the interposer should be butted against the drawer latch as shown in note 1 in the figure.
8. Adjust the solenoid bracket so that the solenoid coil is from . 312 to .372 inches above the interposer when the interposer is at rest. The bottom surface of the solenoid coil must remain parallel to the top edge of the interposer during this adjustment.
9. Adjust the switch bracket to close the switch contacts when the drawer is closed. The switch contacts should not transfer when the 060 to .080 inch travel of the latch is moved up toward the inter poser. After this adjustment is made, insure that the switch actuato does not raise above the top surface of latch stud when the drawer is open. This is to prevent damage to the switch actuator, by
10. The solenoid should attract the interposer to its released position when the system power is turned on and the disk drive power is off. The terposer should freely drop to prevent the drawer from being opened when the system power is turned off.

4.6.3 Data Separator Adjustment

1. Remove card in location A-A1J2 to select 'read gate spin 0 ' and 'read gate' for data separator A card.
2. Disable '+spin 0 read data' and '+spin 1 read data' inputs to data sepa rator A, with jumpers to -4 volts (D4G13 to D4B06) and (D4J13 to D4G06).
3. Disable 'ratio circuit 2 ' output on data separator A with jumper to logic ground (D4B07 to D4D08).
4. Jumper ' 3.177 MHz oscillator output’ signal on oscillator card (D3D07) into data separator A card (D4G03).
5. Observe 'ramp' waveform on data separator B output (E4GO2).
6. Adjust potentiometer on data separator B card (A-A1E4) until 'ramp' waveform is swinging equally about logic ground with a ± 100 millivolt tolerance (i.e., V1 should equal V2 within $\pm 100 \mathrm{mV}$).

Volts

4.7 DATA RECORDER FE LATCH

A spare latch in the data recorder is used as a FE latch to aid in troubleshooting (with the MAP charts or for general troubleshooting). This latch is used when the data recorder is located away from the central processing unit and it is impossible to view the CE probe when operating the console. The following procedures apply to questions asked by the MAP charts for the data recorder.
4.7.1 "Pulse on Line?"

1. Check point to be monitored with CE probe. If point is up, jumper it to A-A1A2B08. Jumper A-A1A2D09 to ground. If point is down,
jumperit to A-A1A2D
2. Momentarily apply a minus SLD pulse or ground to A-A1A2B06 to reset the FE latch.
3. Jumper A-A1A2D07 to the CE probe input. Rerun the program.

If a pulse occurs, A-A1A2D07 is plus and the probe red light or up light is on.
4.7.2 "Level Change Down?"

1. Jumper A-A1A2D09 to ground to negate the 4 -way AND block.
2. Momentarily apply a minus SLD pulse or ground to A-A1A2BO6 to Momentarily apply
Jumper A-A1A2B08 to the point to be monitored.
3. Jumper A-A1A2D07 to the CE probe input. Rerun the program
4. If the level changes down A-A1A2D07 is plus and the proge red light or up light is on.
4.7.3 "Level Change Plus?"
5. Check point to be monitored with CE probe directly to see if already minus or down (it should be in this state to check for plus change)
6. Jumper point to be monitored to A-A 1 A2D09.
7. Momentarily apply a minus SLD pulse or ground to A-A1A2B06 to reset the FE latch.
8. Jumper A-A1A2D07 to CE probe input. Rerun the program.
9. If the or up light is on.

\qquad 3.3K \qquad A2D03

danger
Unless CB1 is turned off, power is available at K1 and K2 input terminals
and at transformer (T3) terminals. The 24 volt control voltage is also not
turned off.
Replacements of power supply components generally follows the replace ment philosophy of the system; that is, replacement is limited to voltage regulator cards, fuses, and relays. However, in some cases it will be necessary
to replace the series regulator and the filter capacitors.

5.1 INPUT POWER REOUIREMENTS

The input power requirements for the System/3 Model 6 are:

1. 60 Hertz-200, 208, and 230 Vac 3 phase at 30 amps
2. 50 Hertz-200, 220, 235,380, and 408 Vac 3 phase at 30 amps

5.2 POWER SUPPLY OUTPUTS

The power supply outputs and the location of each supply are shown below. The primary use of each of the supplies is also given. The using system supplies $-30 \mathrm{~V},+6 \mathrm{~V}$, and -4 V to the BSM. An internal BSM +3 V and V sense $(-14 \mathrm{~V})$ is generated from the +6 V and the -30 V respectively. Th -30 V is a temperature compensated drive voltage.
In power sequencing, the -30 V is the last up and the first down, with respect to the -4 V and +6 V .

Power Supply	Location	Primary Use
-4 Vdc at 70 amps	CPU	Logic Voltage
+6 Vdc at 12 amps	cPu	Logic Voltage
-30 Vdc at 9.5 mps	CPU	Storage Supply
+24 Vdc at 25 amps	CPU	I/O Units
+24 Vdc	cPU	Control Voltage for Power Sequencing
-12 Vdc	CPU	BSCA (medium speed only)
-4 Vdc at 32 amps	CPU	B gate only (used in non-printed circuit board sequence pane machines only)
-4 Vdc at 32 amps	CPU	B gate only (used in printed circuit board sequence pane machines only)

21 Check and Adiustments

All voltage measurements should be made in a normal environment (temperature between 68 degrees and 86 degrees Fahrenheit) with a Weston 901 meter or its equivalent.
The +3 V supply may be adjusted by connecting meter leads to C4J03 (minus) and C4G11 (plus). Then adjust potentiometer on the upper half of card C 4 (board B 3 for up to 16 K storage). The +3 V is set by referencing it ot the +6 V (meter reading will be 3 V).
The 14 V supply may be adjusted by using the lower potentiometer on the same card (C4). Connect meter leads to C4J11 (minus) and C4D08 (plus) and adjust for 14 ± 0.05 volts.
See 5.5 and 5.6 for the adjustment of the -4 V and +6 V supplies. See 4.3.4 for the adjustment of the -30 V supply.

5.3 POWER SEOUENCING

Power sequencing is controlled by the 24 Vdc control voltage. The power supplies come on in the following order:

1.	-4 V logic voltage	3.	-30 Vdc storage supply
2.	+6 Vdc logic voltage	4.	+24 Vdc supply
Power On Sequence			

Power On Sequence

Note: +24 Volt control voltage is on whenever the main line switch is on.
Note: +24 Volt control voitage is on whenever the main line switch is on.
Note 1 : For machines with printed circuit board sequence panel, the delay of
-30 V is approximately 500 ms .

Power Off Sequence

Note: $+\mathbf{2 4}$ volt control voltage is on whenever main line switch is on.

5.4 MST REGULATORS

The monolithic solid technology (MST) regulator trips when the system xperiences an overcurrent condition (approximately 15% above the set current) or an overvoltage condition (4.7 volts). When this regulator trips, he system powers down and thus is protected from high currents and voltages. Refer to the figure below for a graphic representation of the MST regulator. Also note the following

1. E12 must be tied to the up (most positive) level.
2. E8 goes to ground when the regulator trips (overcurrent or overvoltage condition).
3. E8 of the -30 Vdc regulator goes to ground when the output of the +6 Vdc regulator is lower than 5.28 V .

5.5 ADJUSTMENT OF THE -4 VOLT POWER SUPPLY

5.5.1 Overcurrent Adjustment

1. Connect the meter across the 4 volt load between E2 (-4 V) and E4
2. Adjust the voltage adjustment potentiometer (shown below) to -4.6 V . Do not go beyond this. Set the overcurrent regulator to trip. If you cannot reach -4.6 V before the regulator trips, turn the overcurrent adjustment clockwise until you can reach -4.6 V before it trips.
3. When the overcurrent adjustment trips, the machine will power down.
4. Turn the voltage adjustment back down and power up the machine.
5. Adjust the voltage adjustment potentiometer as given in 5.5.2

5.5.2 Voltage Adjustment

1. Connect meter between E2 (-4 V) and E 4 (ground) on regulator.
2. Adjust voltage for -4.15 V .
3. Connect meter across A-B1C2B06 (-4 V) and A-B1C2D08 (ground). This voltage should fall between -3.85 volts and -4.15 volts.
4. If voltage measured in step 3 is out of tolerance, readjust the -4 vol supply.

5.5.3 Overvoltage Adjustmen

There is no field adjustment for overvoltage. It is set and sealed at the time of manufacture. Replace regulator card if overvoltage condition fails to trip regulator (5.4)

(Voltage Pot (To increase output voltag
turn clockwise)

O O/C Pot (To increase O/C adjustmen turn clockwise)
 O/V Pot (Sealed)

End View of 4 Volt Regulator Card

End View of 30 Volt Regulator Card

End View of 6 Volt Regulator Card
BR0675
5.6 ADJUSTMENT OF THE +6 VOLT POWER SUPPLY

5.6.1 Voltage Adjustment

1. Connect meter between E 4 (+6 volt terminal) and E 2 (ground term inal) on regulator.
2. Adjust voltage adjustment potentiometer (shown above) for +6.00 volts.
Note: This adjustment has no plus or minus tolerance. Set as close to +6.00 volts as possible.
5.6.2 Overvoltage-Overcurrent Adjustment

There are no field adjustments for overcurrent or overvoltage in this power supply. They are set and sealed at the time of manufacture. Replace regula tor card if overcurrent or overvoltage conditions fails to trip the regulator.
5.7 ADJUSTMENT OF THE - $\mathbf{3 0}$ VOLT POWER SUPPLY Refer to 4.3 .4 for adjustment of the -30 V power supply.

5 POWER SUPPLY TEST POINTS

Refer to the figure to the right for test points (TPs) for the power system,
The machine powers down in any of the conditions detected at TP1,2, or 3 Twenty-four volts is readable at TP1,2, or 3 until the system reset switch is pressed. Loss of either the -4 V or +6 V while the machine is running powers
down the system and 24 V is present at TP1 (loss of -4 V) or TP2 (loss of +6 V).
Loss of -30 V or +24 V while the machine is running does not cause power down, but cau falt condition (own power fault condition (overvoltage/overcurrent) will drop system power.

FAULT	POWER ON/ OFF SWITCH	THERMAL INDICATOR	ACTION
Internal power supply malfunction	On	Off	1. Turn power switch to off 2. Correct problem 3. Press System Reset 4. Turn power on
Thermal condition	On	On	1. Turn power switch to off 2. Power on indicator is off 3. Thermal light stays on until condition is removed
Customer power source loss	On	On	1. Turn power switch to off 2. All indicators turn off 3. Turn power swutch to on and continue operation

Spare © TP8 Ground

Ground (○) TP9 Not present

5.9 ISOLATION OF AC AND DC GROUND

1. Disconnect the flexible aluminum power distribution system (FAPDS) and the black wire fastened to the power distrond side of the (Feglotor

Disconnect the black wire on position 8 of the frame ground lugs located on the right inner panel of the primary power box.
3. If a CRT is on the system, disconnect the dc cable to TB4 position and 9 , and the CRT flat yellow ribbon cable from the I/O disconnect. See page $1-605$ for disconnect and TB4 locations.
4. If a data recorder is attached to the system, disconnect the shield wire from the interonecting buk signal cable. The shield is fastened
the bottom plate of the machine frame in the rear of the machine.
5. A short is indicated by zero ohms from any dc common point to the

Chapter 6. Locations

The figure on this page shows the locations of the covers and access panels on the 5406 .

Access Panel	
Area	Panel
Logic Gate A, CPU, Memory and Attachments	A
Logic Gate B, BSCA and SIOC	B
Rear access to disk mechanics and electrical units.	C
Access to CRT mechanics and electrical units.	D
Access to printer mechanics.	E
Power Supplies	F
CE Panel	G
Cables	H
Primary Power Box	I
Secondary Power Box	J
Keyboard mechanics and Encode Board.	K
Ferro's	LR0678

Appendix A. Special Circuits

There are no special circuits on the 5406 processing unit.

Appendix B. World Trade

The input power requirements for World Trade machines are as follows:
$50 \mathrm{~Hz}-380 / 408 \mathrm{~V}$ ac for Y input
$220 / 235 \mathrm{~V}$ ac for \triangle input
200 V ac for Japan
$60 \mathrm{~Hz}-200 \mathrm{~V}$ ac for Japan

These sections of the 5406 FETMM contain the maintenance diagrams for the processing unit. These diagrams are to be used with the Field Engineering Theory of Operations Manual (IBM System/3 Model 65406 Processing Unit, Order No. SY34-0023) to fully explain the operation of the processing unit.
The sections are:
Section 2. Error Conditions
Section 3. Data Flow
Section 4. Functional U
Section 5. Operations
Section 6. Power and Cooling

Section 2. Error Conditions 2-010
Processor Check 2-010
Processor Check 2-010
/O LSR Select Check 2-020
$\begin{array}{ll}\text { SR Parity } & 2-030 \\ \text { SAR Parity } & 2-040\end{array}$
Invalid Address $\quad 2-050$
SDR Parity 2-060
$\begin{array}{ll}\text { Sar Parity } & \text { 2-060 } \\ \text { Check } & 2-070\end{array}$
DBI Parity 2-080
A/B Register Parity $\quad 2-090$
ALU Parity 2-100
DBO Parity 2-110
Op and Q Register Parity 2-120
Invalid Op Code 2-130
Channel P Check 2-140
Invalid Device Address 2-150

ection 3. Data Flow 3-010

Data Flow 3-010
Storage Data Flow 3-020
Section 4. Functional Units 4-010
ALU 4-010
ALU P Bit Generation 4-012
ALU Controls (2 Parts) 4-014, 4-016
Clock 4-020
Cycle Controls (2 Parts) 4-030, 4-032
Run Controls (4 Parts) 4-035 through 4-038 A Register Controls $4-040$
B Register Controls $4-044$
Condition Register $4-050$
Data Bus In and DBI Translator 4-060
Cycle Steal Request Priority Assignment 4-064
Data Bus Out and DBO Translator 4-065
Local Storage Registers (LSR) 4-070
LSR Select 4-072
SR Select (Dual Program Feature) 4074
SSR LSR Select (I/O) 4-0
Storage Unit 4-080
nd Timing $4-082$
Op Register and Q Register Decode $4-105$

Section 5. Operations 5-005

Instructional/Functional Signal Reference 5-005
I-Op and I-Q Cycles (3 Parts) 5-010, 5-012, 5-014
I-R Cycle (2 Parts) 5-020, 5-022
I-H or I-L Cycles (3 Parts) 5 -030, 5-032, 5-034
I-X Cycles (3 Parts) $5-040,5-042,5-044$
Set Bits On/Off Masked and Test Bits On/Off Masked (2 Parts) 5-050, 5-052 Store, Load, or Add to Register (3 Parts) 5-060, 5-062, 5-064 Move Hex Character (2 Parts) 5-070, 5-072
Move Characters or Compare, Add, or Subtract Logical Characters
(3 Parts) 5-080, 5-082, 5-084
Compare Logical Immediate 5-090
Move Logical Immediate or Compare Logical Immediate 5-092
Move Logical Immediate 5-094
Zero and Add Zoned and Add or Subtract Zoned Decimal (4 Parts)
5-100 through 5-106
Edit (3 Parts) 5-110, 5-112, 5-114
Insert and Test Characters (3 Parts) 5-120, 5-122, 5-124
Branch On Condition 5-130
Jump On Conditio
Start I/O $\quad 5-150$
Load I/O (2 Parts) \quad 5-160, 5-162
$\begin{array}{ll}\text { Tenst I/O (2 Parts) } & \text { 5-170, } \\ 5-180\end{array}$
Load Address 5-190
Advance Program Level 5
Halt Program Level 5-210
System Reset (3 Parts) 5 5-200
System Reset (3 Parts) 5-220, 5-222, 5-224
Alter SAR (3 Parts) 5 5-230 $5-23$
$\begin{array}{ll}\text { Alter SAR (} 3 \text { Parts) } \\ \text { Display Storage (} 3 \text { Parts) } & 5-250,5-252,5-254\end{array}$
Interrupt (2 Parts) 5-260, 5-262
Section 6. Power and Cooling 6-010
Power Sequencing (2 Parts) 6-010, 6-011

$\underset{\substack{\text { E.cror } \\ \text { Location }}}{ }$	
Base LSR High	${ }^{\times 1}$
Base LSR Low	
Feat I LSR High	$x \times$
Feat I LSR Low	x x
Feat 2 LSR High	$\times \times$
Feat 2 LSR Low	

Note: | Rotate drum switch to position 1 to |
| :--- |
| display |
| $A R$ contents |

B

Note: Rotate drum switch to position 1 to
Rotore drum switch to
display SAR contents

B

B

B
e: Rotate drum switch to position 5 to display A registe
contents, position 4 to display B reaister contents

Note: Rotate drum switch to position 5 to

B

- Note: Rotate drum suxitch to position 7 to
display cs cs riority bits,
5 to display

B

B

1

B

B

B

B

Cycle
Clock
Lood SAR
Read Call/Write Call
IAR Select
LSR Lood
Lood A o od B Reg
A Rees input
B Reg input
Lod A AU
ALU OUTout
bin Compl A Reg
bin Sub Gate
Op End

* Jump Instruction only

obiectives:
- Lood B Address Register except during load
- Lood selected Index Register for load address
- Lood Address Register for second addres
- Lood Adress Recall Register for branch or

A
${ }^{5}$
-

3

Clock 586

2

ALD Reference
KC122
KC142
KC142
KC132
KC132
KL141 KL121 KL121 KL141
KLIO1 RA101 RA111 ${ }^{\text {RA101 }}$ AV132
AV142 ${ }_{\text {KY121 }}$ KY121

* Lood ARR during IHI and ILI If
BC, TOO or Decimal listruction
-

$\quad \begin{gathered}\text { Force } \text { bit } 7 \text { if } I A R \text { Lo contains all } 1 \text { 1 } \\ \text { (Predicts a corry from } \mid A R \text {-Lo })\end{gathered}$

B

Objectives:
Set Bits On Masked \qquad

If a bit is present in the Q code, furn on the
corresponding bit in the storage location
corresponding bit in the storgee loc
Specififed by the B Address Resister

- Do not change bits which correspond with bits
not present in the Q code

-1 a bit is present in the Q code, tum off
the corresponding bitit the sterage location
specified ty the B Adress Register
- Do not change bits which correspond with

- If a bit is present in the Q code, tess to see
if the corressonding bit in the storge Iloction specified by the B Address Register is on
lon
- Ignore bits which correspond with bits not
-
- Turn on 'test false' latch if selected bits
 -If a bit is present in the Q code, test to see
if the corresponding bitt in the storge location if the corresponding bitr in the tioroge location
- Innore bits which correspond with b
not present in the Q code
not present in the Q cod
-Turn on 'test false' latch if selected bits
ore no all off

Objectives:
Store Register Op Code bits - 01234567

- Store the registers which ore selected by the Q
code into the location specified by bye $B A R$
 - Lood the registers which are selected by the Q code with dotara from the location specififed
by the A aR

- Add the dota from the location specified by the
BAR to the contents of the registers which are

Belected by the Q code
A
-

B

Machine Cycle Clock Read Call/Write Call Lood SAR BAR Select LSR Select(Determined by Q Code)
B Reg Input
A Reg Input
$\operatorname{Lood} A$ and B Reg
Bin Compl A Reg
Bin Sub Gate
Lood ALU
ALU Output
Lood LSR
CR Control (Lood and Add Res)
EA Eliminate
Store New (Store Reg Operation)
First E Cycle
Op End
-

ALD Reference
KC122
KC132
${ }_{\mathrm{KCl} 142}$
KC142
KL121
KL121
RA101
RA111
RA111
RA101
KY121
${ }^{\text {KY101 }}$
AVI32
AVI42
${ }^{\text {AVI42 }}$
kG111
KY111
кDII
KD131

LSR Selection		
Q Code bits	With Q bit 0	With No Q bit 0
1	Interrup I IAR	P2-IAR
2	Interrupt 2 IAR	Pl-IAR
3	Interrupt 3 IAR	IAR
4	Interrupt 4 IAR	ARR
5	-	PSR
6	-	XR2
7	-	XR1
No other bits	Interrupt 0 IAR	

B

Condition Register						
Operation	Equal	Low	High	Binary Overflow	Test False	Decimal Overfiow
Load PSR	If ALU bit 7	If ALU bit 6 , not 7	If ALU not bit 6 or 7	If ALU bit 2	If ALU bit 3	If AlU bit 4
Add to Register	If Result is zero	If Result is not zero and a high order carry	If Result is not zero and no high order carry	If Result is too large for Register (no high order carry)		

Mochine Cycle
Clock Read Coll/Write Call
Lood SAR
AAR Select BAR Select LCR/DRR Select
A Reg Input
B Reg Input
A
$\operatorname{Lood} A$ and B Res Bincory Subtract Gate Lood ALU AlU Output Lod LSR
Store New
Load Q Reg
CR Control
Op End

ALD Reference

-

Condition Register				
Operation	Equal	Low	High	Binary Overflow
Move				
Add	If Result is zero	If Result not zero and a high order carry	If Result not zero and no high order carry	Result too large for field (no high order carry)
Subtract	If A field equals B field	If B field is lower than A field	If B field is higher than A field	
Compare	If A field equals B field	If B field is lower than A field	If B field is higher than A field	

Obiectives

- Store the Q oode, which is located in the Data

- Compore the Q code, which is located in
the Data Recall Register, with the data in the location specifified by the B Address
- Record the result of the comparison

A

3

Note 2: Operation repeats A and B cycles until end of A field (Q register numeric portion blank). 'EA eliminate' 'then allows B cycles
until end of B field (Q register blank). Operation ends unles

 field is establ shed by the LCRR. 'EA eliminate' then allows
cycles until end of field (Q register blank). Operation ends.

3

∇

A

5406 CPU-Operations
Zero and Add Zoned and Add or Subtract Zoned Decimal (Part 4 of 4)

Obiectives:	
	Code $\times \times \times$
-Skip other characters in B field leaving them as they were	
EXAMPLE: $Q_{\text {coder }}$	
B field before edit	x, xxx. $\times \mathrm{x}$ \%
A field B field after edit	0,907.15
RReplaceable Cha	cter (2/)

- Cycle

Clock
Read Call/Write Call
Lood SAR
AAR Select
BAR Select
BAR Select
LCR/DRR Select
Lood LSR
Load A and B Reg
Lood ALU
ALU Output
A Reg Inpur
B Reg Input
B Bi
Binary Sub Gate
ALU Control (And/
Sign Change
CR Control
Lood Q Reg
Lood Q Reg
EA Eliminate
EA Eliminate
Store New
Store New
Op End

KC122 KC132 KCl 32
$\mathrm{KC1} 142$ KL121
KL21

5406 CPU-Operations
Insert and Test Characters (Part 1 of 3)

- Replace all characteris to leff of first significant
digit in 8 field with A field character
- Only yumeric characters 1 to 9 are considered
significont digits
- Length of B field is Q code +1
- A field is only 1 charcacter in length

EXAMPLE:
Edited field before operation
A field charocter 0,907.15 Afield choroctere
Edited field ofter

- Condition register is tested for condition
specified in Q code
- Bronch tod lass is ploced in ARE
- Bit 0 of Q code is ysed to specify if the
branch is perform
condition folse
- IAR/ARR interchange if tested condition is scatisfied
- Toke I-H and I-L or I-X cycle

- Condition register is is tested for condition
specified in Q code
- If tested condidion is satisfied, control
code is added to IAR for next sequential instruction
- Q code bit 0 is used to specify if iump
is perfirmed on
condition false
- Toke I-R cycle

SEE DIAGRAM 5-020

- Q oode contains device address ond
function to be perfirmed (read, punch, eta)
- Control code contains additional instruction
- $1 / \mathrm{O}$ device busy cusess; (1) program to

$\xrightarrow[\text { Toke I-R Cycle }]{\text { enabled }}$ Nou used on 5406.
SEE DIAGRAM 5-020

Test $1 / O$ and Branch

- Test for $1 / 0$ condition specified in
Q code N field
- Bronch to oddress is looded into ARR
- 1 AR/ARR interchange occurs if tested
condition is satisfified
-Take I-H and I-L or I-X cycle
SEE DIAGRAM $\underset{5-040(1-030(1-\mathrm{H})}{5(\mathrm{I})}$

A

- Lood one or two bytes from storage into one
index registers
If instruction formar is four bytes, lood two by Q adress into index $b i t s 6$ and 7
- If instruction format is three byyes, odd last
 by Op Code bits 2 and 3 . Then lod result
into index register selected by Q code b bits into index register selected by Q code bits
6 and 7
- Toke I-H and I-L cycle

SEE DIAGRAM 5-030

- Take I-X cycle (three byte fomat)

SEE DIAGRAM 5-042

Advance Program Level

 Basic Machine- Test for $1 / O$ condition specified in Q code N field
- Loop on APL instruction until condition tested for
- Q code N field of all zeros couses cutoma
advance to next sequentiol instruction

A

5406 CPU-Operations
Advance Program Level, and Halt Program Level

Line Activated by Any Device	Significance
'I/O Condition B^{\prime} only	Correct address, valid N doesn' \dagger need attention -instruction accepted
'I/O Condition A' only	Correct address, valid N code, device busy or needs attention--instruction rejected
Both lines	Incorrect parity--causes processor check and DBO parity check
Neither line	Invalid address or N code --causes processor check and invalid device address

Halt Proram Leve

Basic Machine
xt sequential instruction

- Loops on instruction until system start key is presed
- Instruction bytes three and four re displayed on console
-- - - Dual Program Feature Enobled - -
- Prevents execution of next sequential instruction
- Branches to alternate program level if DPF is enabled

Program returns to original level if appropriate halt reset key is pressed
Take I-R cycle SEE DIAGRAM 5-020

$$
\text { Not used on } 5406 \text {. }
$$

V
2

Note: Parity checking is disobled during System Reset

A

B

-

B

ALD	象 Clock Force Clock 9 Read Call/Write Call Load SAR Enable Clock Run IAR Select A Reg Input B Reg Input Load A or B Reg Bin Compl A Reg Bin Sub Gate Load ALU Load LSR				W	W\%				O O.	
Reference KC122		-	\| 1 ¹	1 ${ }_{\text {L }}$	+	\mid	\|	1	- ${ }^{7}$	+	$\mid 11{ }_{1+1}$
KA232											$\xrightarrow[\text { Recycles until }]{ }$
KC132											storae test switch
KC142											
KA232											
KL141											
RAIII								e Bit 7			
RAIT					SDR			(Lo)		R Hi	
${ }^{\text {RA1 }} 101$											
RA101			m		-		-		m		
KY121											
кY121											
AV132											
KL101								Lo		Hi^{-}	
KD141											

Obiectives:

- Interrupp enable is turned on in $1 / 0$
attrcchment by control code of $5 / 0$ attrachent by
instruction
- I/O attachment sends interrup request to CPU
- Interrupt occurs only offer current instruction
is finished
- Interrupts main program with separate program
- Highest interrupt device ta

A

- Intervupt program ends with another sIO to
discole interrupt

B

Note 1. Required only for machine
with $B S C A$ medium speed (YB133).

Section 7. Keyboard and Console

Contents

This section of the 5406 FETMM contains the theory and maintenance This section of the
diagrams for the operator console and the keyboard attachment. It consists f three chapters as follows:

Chapter 1. Introduction
Chapter 2. Functional Unit
Chapter 3. Operations

Chapter 1. Introduction 7-101
5406 Keyboard-Console 7-101
Keyboard 7-102
Key Identification System and Key Operation $\quad 7-103$
Weighted Codes (2 Parts) 7-104, 7-105
Keys and Lights (2 Parts) 7-106, 7-107
Console 7-108
Console Lights 7-109
Keyboard Attachment 7-115
Load I/O Instruction Format 7.116
Test I/O and Advance Program Level Instruction Format 7-117
Sense I/O Instruction Format $\quad 7-118$
Instruction Format $\quad 7-119$
Data Flow Operations 7-120
Data Flow 7-121
Keyboard Timing 7-122
Chapter 2. Functional Units 7-201
Introduction to Functional Units 7-201
Board Layout 7-202
Encode Board $7-203$
Console Lights 7-205
Initial Selection 7-206
Control Latches 7-207
Chapter 3. Operations 7-301
Introduction to Operations 7-301
Load I/O Instruction Flowchart (2 Parts) 7-302, 7-303
Load I/O Instruction Timing Chart 7-305
Sense I/O Instruction Flowchart 7-306
Sense I/O Instruction Timing Chart 7-307
Start I/O Instruction Flowchart 7-308
Start I/O Instruction Timing Chart 7-309
Key Operation-Programmed $\quad 7.310$
Keyboard Interrupt Request 7.311
Alter Storage From Keyboard Flowchart (2 Parts) 7-314, 7-315
Typamatic Operation 7-316

5406 KEYBOARD-CONSOLE

The model 6 can be controlled by an operator with the combination key-board-console. The keyboard provides a means for data entry and the con sole provides system control and display.
his section of the 5406 FETMM contains the following information

1. Keyboard description and key codes.
2. Console description of lights and switches.

Keyboard attachment including the encode board
Electrical and mechanical timing for the keyboard appears on page 7-122. For further information concerning the basic keyboard, refer to the Field Engineering Theory-Maintenance Manual, Elastic Diaphragm Encoded KeyBoards, Order No. SY27-0073

KEYBOARD

The operator keyboard-console for the model 6 provides the operator with
the ability to control the system and to visually display many of the machin operations. Although comprised of two different components (the operator keyboard and the operator console), the keyboard-console is described in
this section as one unit.
The keyboard and key codes are described in the first part of this section. The keyboard is made up of four groups of keys:
Alpha-numeric and special character keys
Ten-key numeric keyboard
Function keys
Command keys
The alpha-numeric and special character keys are laid out similar to a typewriter keyboard. All of the characters found on the model B typewriter may writer keyboard. All of the char
The ten-key numeric keyboard section is comprised of an adding machine type ten-key numeric cluster. Digits 0 through 9 may be entered with this section. Three of the function keys (ENTER +, ERASE, and ENTER -) are used in conjunction with these keys.
The ten function keys available are
TAB
SACKSPACE
INOUIRY REOUEST (located on the operator console)
program start
RETURN
ENTER +
ENTER -
ERASE and the
Space bar.
There are eight basic command keys and indicators provided for operator influence over executing the program. The indicators are located on the operator console. Both the keys and indicators are numbered 01 through 08. An optional feature is available to increase the number of keys and indica
tors to 16.
The keys are mechanically interlocked in such a manner that simultaneous character generation is prevented and yet rolling of the keys is allowed. A start I/O instruction must be issued by the CPU enable keyboard inter rupts, and unlock the keyboard (when operating in the process mode).

KEY IDENTIFICATION SYSTEM

The position of each key on the keyboard is defined by the following notational system:
$\leftarrow L \quad L$ designates keys located on the left hand side of the keyboard. \rightarrow R designates keys located on the right hand side of the keyboard. a Lower case alphabetic characters (a, b, c, d, and e) designate the key rows.
1 Numerals represent the key position on the keyboard When
case.

Example: Le 10 is the left most key in the top row of keys. Lc5 lower is a lower case a.

KEY OPERATION-PROCESS MODE

When the keyboard is ready (keyboard unlocked and interrupts enabled) and a key is pressed, an interrupt request is sent to the CPU. Two bytes ar generated by pressing a key, a data byte and a status byte. These bytes are stored in the DBI assembler in the keyboard attachment. They are sent to the CPU during a sense instruction.
The first byte sent to the CPU is the status byte. This byte indicates the type of key pressed and the parity of the forthcoming data byte.
The second byte sent to the CPU is the data byte. The data byte is made up of a weighted code (eight bits and parity). It is called a weighted code because it represents the key position pressed rather than an EBCDIC, card code, or any other coded character that represents the graphic on the key button.
Keys that generate upper and lower case characters are controlled by the shift bar. They generate two bytes (status and data) in upper or lower shift, The keyboard is assigned interrupt level 1. An interrupt is granted to the keyboard when no other device with a higher priority is polling for an inte rupt. When the interrupt is granted, the CPU issues a sense instruction to he keyboard. During the sense instruction, the two bytes are sent to the
CPU. The status byte is sent first followed by the data byte.
The status byte is stored in main storage in the address specified by the first operand address of the sense instruction. The data byte is stored in the
specified operand address minus one. specified operand address minus one

WEIGHTED CODES

Each key position (except the shift key) has a weighted code assigned (8 bits plus odd parity). The command lights and field/operation lights are each assigned a weighted code so that the program can turn them on or off. The key has been pressed. The lights are turned on or off with a load I/O instruc tion.
The key position or light number, the weighted code, and the associated keybutton symbol (graphic) are shown for domestic and World Trade Corporation (WTC) keyboard-consoles.

	Weighted Code	USA
Key Position	01234567	Key Symbol
Le5 upper	00010001	\uparrow
Le5 lower	00000001	1
Le4 upper	00010010	@
Le4 lower	00000010	2
Le3 upper	00010011	\#
Le3 lower	00000011	3
Le2 upper	00010100	\$
Le2 lower	00000100	4
Le1 upper	00010101	\%
Le1 lower	00000101	5
Re1 upper	00010110	¢
Re1 lower	00000110	6
Re2 upper	00010111	
Re2 lower	00000111	7
Re3 upper	00011000	,
Re3 lower	00001000	8
Re4 upper	00011001	1
Re4 lower	00001001	9
Re5 upper	00010000	1
Re5 lower	00000000	0 (zero)
Re6 upper	00111110	_ (underscore)
Re6 lower	00101110	-
Re7 upper	00111111	\square
Re7 lower	00101111	=
Ld5	00100100	Q
Ld4	00101010	w
Ld3	00001110	E
Ld2	00100101	R
Ld1	00100111	T
Rd1	00101100	Y
Rd2	00101000	U
Rd3	00011100	1
Rd4	00100010	0
Rd5	00100011	P

	Weighted Code	USA			WTC	Replaces
Key Position	01234567	Key Symbol	Austria/Germany	Weighted Code	Character	USA Character
Rd6 upper	00111000	\| (logical OR)	Key Position	01234567		
Rd6 lower	00110000	+	Le4 upper	00010010	:	@
Ra2	00110001	(See note)	Le3 upper	00010011	;	\#
Lc5	00001010	A	Le2 upper	00010100		\$
Lc4	00100110	S	Re3 upper	00011000	?	
Lc3	00001101	D	Re7 upper	00111111	=	\square
Lc2	00001111	F	Re7 lower	00101111	+	=
Lc1	00011010	G	Rd1	00100111	z	Y
Rc1	00011011	H	Rd6 upper	00111000	\cdots	1
Rc2	00011101	J	Rd6 lower	00110000	Ü	+
Rc3	00011110	K	Rc5 upper	00111010	!	:
Rc4	00011111	L	Rc5 lower	00110010	Ö	;
Rc5 upper	00111010	:	Rc6 lower	00110011	Ä	*
Rc5 lower	00110010	;	Lb5	00101101	Y	z
Rc6 upper	00111011	\#	Rb5 upper	00110111	*	?
Rc6 lower	00110011	*				
Lb5	00101101	Z	Denmark	Weighted Code	Character	
Lb4	00101011	X	Key Position	01234567		
Lb3	00001100	C				
Lb2	00101001	v	Le4 upper	00010010	:	@
Lb1	00001011	B	Le3 upper	00010011	;	\#
Rb1	00100001	N	Le2 upper	00010100	?	\$
Rb2	00100000	M				
Rb3 upper	00111100	$<$	Rd6 upper	00111000	\square	1
Rb3 lower	00110100		Rd6 lower	00110000	\AA	+
Rb4 upper	00111101	>	Re7 upper	00111111	+	
Rb4 lower	00110101		Re7 lower			
Rb5 upper	00110111	?	Rc5 upper	00111010	1	:
Rb5 lower	00110110	1	Rc5 lower	00110010	E	
Note: As an option for World Trade Corporation, the decimal point may			Rc6 lower	00110011	\varnothing	*
			Rb5 upper	00110111	*	?

		WTC	Replaces			WTC	Replaces	Brazil/Portu				
Norway	Weighted Code	Character	USA Character	Finland/Sweden	Weighted Code	Character	USA Character	Le2 upper		0100		\$
Key Position	01234567			Key Position	01234567			Le3 upper	0001	0011	\%	\#
Le4 upper	00010010	:	@	Le4 upper	00010010	:	@	Le4 upper	0001	0010	A	@
Le3 upper	00010011	;	\#	Le3 upper	00010011	;	\#	Re3 upper	0001	1000	?	
Le2 upper	00010100	,	\$	Le2 upper	00010100		\$	Rc5 lower	0011	0010	M	;
Re3 upper	00011000	?	,	Re3 upper	00011000	?		Rc6 upper	0011	1011	;	\#
Rd6 upper	00111000	*	1	Rd6 upper	00111000	*	1	Rb2	0010	0000	9	M
Rd6 lower	00110000	1	+	Rd6 lower	00110000	1	+	Rb3 lower	0011	0100		
Re7 upper	00111111	$=$	\square	Re7 upper	00111111	$=$	\bigcirc	Rb4 lower	0011	0101		
Re7 lower	00011111	+	$=$	Re7 lower	00011111	+	$=$	Rb5 upper	0011	0111	\#	?
Rc5 upper	00111010	\square	:	Rc5 upper	00111010	1	:					
Rc5 lower	00110010	\AA	;	Rc5 lower	00110010	.	;					
Rc6 lower	00110011			Rc6 upper	00111011	\square	\#					
Rb3 lower	00110100	\varnothing	,	Rc6 lower	00110011	,	*					
Rb4 lower	00110101	A	.	Rb3 lower	00110100	A	,					
Rb5 upper	00110111	1	?	Rb4 lower	00110101	Ä						
Rb5 lower	00110110	.	1	Rb5 upper	00110111	\#	?					
				Rb5 lower	00110110	ö	1					
		WTC	Replaces									
Belgium/France	Weighted Code	Character	USA Character			WTC	Replaces					
\#1 Key Position	01234567			Spanish Speaking	Weighted Code	Character	USA Character					
Le4 upper	00010010	,	@	Key Position	01234567							
Le2 upper	00010100	f	\$	Le3 upper	00010011		\#					
Le1 upper	00010101	1	\%	Re3 upper	00011000	?						
Re1 upper	00010110	\%	¢	Rc5 upper	00111010	\leqslant	:					
Re3 upper	00011000			Rc5 lower	00110010	N	;					
Ld5	00100100	A	0	Rc6 upper	00111011	>	\#					
Re4 upper	00011001	9	1	Rb3 upper	00111100	;	$<$					
Ld4	00101010	z	w	Rb4 upper	00111101	:	>					
Re5 upper	00010000	à)	Rb5 upper	00110111	\#	?					
Lc5	00001010	Q	A	Le2 upper	00010100	Pts	\$					
Re6 upper	00111110)		(For Spain Only)								
Lb5	00101101	w	z									
				United Kingdom								
		WTC	Replaces	Le2 upper	00010100	£	\$					
Belgium/France \#2 Key Position	Weighted Code 01234567	Character	USA Character	Re1 upper	00010110	\$	¢					
Le4 upper	00010010	'	@									
Le2 upper	00010100	f	\$									
Le1 upper	00010101	1	\%									
Re1 upper	00010110	\%	¢									
Re3 upper	00011000		\therefore									
Re4 upper	00011001	9	1									
Re5 upper	00010000	à	1									
Re6 upper	00111110)	-									

KEYS AND LIGHTS

Command Keys		
Key Position	$\begin{aligned} & \text { Code } \\ & 01234567 \end{aligned}$	Keytop Number
Le10	00000001	01
Le9	00000010	02
Le8	00000011	03
Le7	00000100	04
Ld10	00000101	05
Ld9	00000110	06
Ld8	00000111	07
Ld7	00001000	08
Lc10	00001001	09
Lc9	00001010	10
Lc8	00001011	11
Lc7	00001100	12
Lb10	00001101	13
Lb9	00001110	14
Lb8	00001111	15
Lb7	00010000	16
Field/Operation Lights		
Light	Control	
Number	Code	
1	1xxx Xxxx	
2	x1xx XXXx	
3	xxix xxxx	
4	XXX1 XXXX	
5	xxxx 1xxx	
6	XXXX X1xx	
7	XXXX XX1X	
8	XXXX XXX1	
Function Keys		
Key Position	Weighted Code 01234567	Name
Le6	00000101	tab
Ld6	10000001	program start
Space	01000000	space
Rd7	00010101	return
Re8	00010110	backspace
Re10	00000011	erase
Rc11	10010001	enter +
Re 12	00000010	enter -
Inquiry request (on console)	00010001	inquiry request

Numeric Keyboard Keys

Key Position	Weighted Code O123 4567	Basic Keytop Notation
Ra1	00000000	0
Rb7	00000001	1
Rb8	00000010	2
Rb9	00000011	3
Rc8	00000100	4
Rc9	00000101	5
Rc10	00000110	6
Rd8	00000111	7
Rd9	00001000	8
Rd10	00001001	9
Re9	00000001	See note
Re11	00000010	See note

Note: These keys are located below, but not activated by, the erase key on Note: These keys are located below, but not activated by, the erase key the domestic keyboard. They are available for World Trade Corporation they cause the status byte preceding the data byte to have bit 4 active. For the other keys in this table, the status byte will have bit 1 active.

KEY FUNCTIONS

Before a key can be operated, a keyboard start I/O instruction must be given to the CPU to enable interrupts and unlock the keys. All keys on the keyboard (except the shift key) cause an interrupt request to the CPU and generate two characters (status byte and data byte) from the keyboard into the attachment. The status and data bytes are transferred to the CPU when a sense instruction is issued to the keyboard.

Numeric Keyboard Keys

These keys are grouped on the right side of the keyboard. They are used to enter numeric data and a decimal point.
Status Byte Data Byte
01000000 See "Weighted Codes"
Three function keys (Enter + Enter - and Erase) are associated with these keys for use in controlling the data entered.

Alpha-Numeric and Special Character Keys

These keys occupy the center portion of the keyboard and resemble an electric typewriter keyboard. All of the direct entry system graphics are entered from this section.
Status Byte Data Byte
01000000 See "Weighted Codes"

Function Key

The ten shaded keys (shown in the illustration on-page $7-102$) and the inquiry request switch on the console are called function keys. These keys are under program control to perform the function stated on the keybutton or console. Bit 3 of the status byte identifies the data byte as a functio character. The programmed function of these keys follows

Tab Key
This key has two levels of depression. When pressed down to the first level the print element is spaced until the next programmed tab is sensed. Whe the key is pressed down to the second level, the weighted code continues to be sent to the CPU until the key is released. This operation is called typamatic and is accomplished through a combination of mechanical and program controls.
Status Byte Data Byte
0001000000000101
Backspace Key
This key has two levels of depression. When pressed down to the first level, the print elerment is spaced one position to the left. The program can either physically reposition the print element or merely readdress the previous
address position in storage, whichever is appropriate for the operation in address posion in storage, whichever is appropriate for the operation in code continues to be sent to the CPU until the key is released. This operation falled typamatic and is accomplished throug a combination of mechani al and program controls. cal and program controls.
$\begin{array}{ll}\text { Status Byte } & \text { Data Byte } \\ 00010000 & 00010110\end{array}$
Program Start Key
When pressed, this key indicates to the program that the keyed in field is complete and may be acted upon; example: printed if desired.
Status Byte Data Byte
$00010000 \quad 00000001$
Enter - Key
When pressed, this key indicates to the program that the keyed in field is complete and is a negative number.

Status Byte Data Byte

0001000000000010

Erase Key

When pressed, this key indicates to the program that the presently keyed field is to be deleted from storage.
Status Byte Data Byte
00010000
00000011

Return Key

When pressed, this key causes the print element to return to the left margin and normally index one line. Indexing may or may not occur, depending on the program.
Status Byte Data Byte
000100000001010
Enter + Key
This key indicates to the program that the keyed in field is complete and is a positive number.
Status Byte Data Byte
0001000000010010
Inquiry Request Switch
This switch is located on the console. Interrupt level 1 must be enabled to recognize this switch. The switch is not under keyboard bail interlock control. When activated, it normally indicates to the program that a keyboard operation is desired and requests that the keyboard be unlocked.
Status Byte Data Byte
00010000
00010001

Space Bar

The space bar accomplishes the same result as in standard typewriter use, When this key is pressed, the print element is programmed to advance one position to the right, either by printing a blank, or a tab right command.
Status Byte Data Byte
0001000001000000

Shift Keys
There are two of these keys, one located on either side of the bottom row of alpha-numeric keys. These keys have the same function; they do not request an interrupt or generate a weighted code, but condition the encode logic for upper shift characters (numeric and special characters).

Command Key

The command keys are grouped to the left side of the keyboard. Eight com mand keys are standard. An optional feature provides an additional eight command keys. The standard keys are labeled 01 through 08 . The optiona keys are labeled 09 through 16.
The program assigns functions to these keys to permit the operator to influence the execution of the program routine. Command key lights are used to signify that the associated key function is in effect.
Bit 2 of the status byte identifies the data byte as a command character. The code associated with the command keys and lights is shown in "Weighted Codes."

CONSOL

The operator console contains the switches and lights necessary for operato androl of the system. It is divided into two sections: system indicator lights, and system control switches.

System Indicator Lights

The system indicator lights section is divided into six parts. They are system check lights, halt code indicator lights, field/operation indicator system check lights, halt code indicator lights, field/operation indicator
lights, keyboard ready light, command key indicator lights, and the system power on light.
Individual attention lights are provided for disk 1, disk 2, CRT, ledger card device, data recorder, SIOC, BSCA, and printer. The processor check light is also displayed on the console.
The halt indicator group of lights are provided for use under program control to indicate to the operator a cause for system halt. They are: stop ight, and nine halt indicator lights.
The field/operation group of lights consists of eight lights which may be labeled by use of a plastic overlay. The program uses these lights to inform the operator at what point in the program he may enter specific data fields or take specific action.
The command key indicator light group consists of eight (standard) or xteen (feature) lights that are associated with the command keys on the and ights the associated command light on the console. When a command key is pressed and the associated command light is on, the program will turn off hat light. In addition, the program can light a specific command key light whenever there is a need to communicate a predefined condition to the operator. Plastic overlays are provided for the lights so that the significant meaning for a light can be changed by typing on the overlay

ystem Control Switches

he system control switches section includes those switches required for system powering, program loading, system starting, stopping, resetting, and configuring.

WITCHES

ystem Start Switch

When this switch is moved to the start position the processor turns off the halt code lights and resumes normal operation. When this switch is moved to the stop position the processor halts at the end of the operation in process. This halt is indicated by turning on the stop light on the console. I/O data transfers are completed without loss of information. The system can be restarted without loss of information only by setting the switch to the start position.

Inquiry Request Switch

This switch is mounted on the console, and although this key is not unde keyboard bail interlock control, it operates as though it were a key on the keyboard. Moving this switch to the on position causes the data and statu bytes to be stored in the keyboard encode circuitry. Interrupt level one
 the function key bit (bit 3) on and the data byte contains the unique data thater code for the inquiry request key (0001 0001).

Data Recorder Switch

Moving this switch to the on line position places the data recorder under program control when the verify-punch switch on the data recorder is in the punch position. The data recorder keyboard is disabled, data can be be punch 1 the data rorder punching station, and datan, can bled from the 1
be entered from the system keyboard-console.
osition places the data recorder under it to function as a normal (off-line) data recorder.

Program Load Switch

This switch initiates loading the program into main storage. The followin actions occur when this switch is operated to the orl position

1. All I/O and machine registers, controls, and status indicators are reset.
2. The instruction address register is set to zero.
3. The disk file data address register is reset to zero. The record in cylinder zero, sector zero on one of the disks in disk drive one is read into storage starting at location 0000 . The disk that provides the first record is selected by the setting of the disk select switch on the console.

When the program load switch is released the processing unit executes the instructions read into storage from cylinder zero, sector zero, starting t location 0000.
If disk drive one is not ready, its I/O attention light is turned on. When he program load switch is operated, it is necessary only to make disk drive one ready to complete the program load function.

Disk Select Switch

This switch selects the disk from which the initial program load will be 'performed. When the switch is moved to the removable position, sector ero of cylinder zero, of the removable disk is used for program loading, or when the switch is in the fixed position, sector ze zero, of the fixed disk on disk drive one is used for program loading.

Disk Drive 1 and Disk Drive 2 Switches

These switches turn power on or off to the disk drive motors.

Power Switch

This switch controls the power to the system. When this switch is turned on a system reset is performed in such a manner that no I/O operations are performed until explicitly directed. Unless the stop switch is actuated before power off switch is used, the integrity of data in storage is not quaranteed the cpu, ill
wh
turned off, and interrupts, are disabled An initializi all indicator lights O instruc-位 keyboard operation ('KB Ready').

CONSOLE LIGHTS

rocessor Check Light

The processor check light turns on when an invalid op code or parity error is detected in the CPU. It is also turned on when an invalid Q code is detec ted. It is turned off by system reset or pressing the check reset key on the CE panel. Any of herrors causes the processing unit to come to an Therecific

I/O Attention Lights

When any one of the following lights is on, it indicates that the corresponding I/O device has been issued a start I/O instruction but it is not ready to operate. A not ready condition can be caused by power not being on or by ome condition involving the paper or cards to be handled by the I/O devic The I/O attention indicators are SIOC, BSCA ATTN, LCD, CRT, DAT CRDR, PRINTER, DISK DRIVE 1, and DISK DRIVE 2. The specific conditions that cause each I/O light to turn on are discussed under the Iual I/O devices.

Halt Code Lights
These lights are turned on by the individual bits (nine), and the halt indicator, halt identifier bytes of the halt program level instruction.

Power On Light

This light is turned on when system-power-on sequencing has been successfully completed and stays on until system power is turned off.

Keyboard Ready Ligh

This light is on when the keyboard has been enabled and unlocked.
Stop Light
This light is turned on when the system start switch is moved to the stop position and is turned off by moving the system start switch to the start position, or by system reset.

Field/Operation Lights

These lights are turned on by a load I/O operation. The meaning of each light is determined by the program being used. A plastic overlay is provided or the field/operation lights so that appropriate labels can be applied. These abels identify the particular meaning given to the lights by the programmer. Once turned on, the field/operation lights remain on until another load I/O specifying the field/operation lights is executed.

Command Key Light

These lights are controlled by the load I/O instruction. Separate load I/O instructions are used for turning on or turning off command lights. Once turned on, command lights remain on until a load I/O instruction turns them off, or until a system reset takes place. A plastic overlay is provided for the command lights so that appropriate labels can be assigned to each command light in order to identify the particular meaning given to the light by the programmer.

KEYBOARD ATTACHMENT

The keyboard attachment is the interface between the processing unit and the operator keyboard. The attachment consists of five circuit cards. Two of these cards are MST circuitry and are two-high, four-wide cards located in 01 -frame, A -gate, on B 1 -board, at L 2 and M 2 (B1L2 and B1M2). The to MST These the

Keyboard/CPU Interface

The keyboard console and attachment operate under program control The attachment communicates with the CPU during interrupts; information is sent to the CPU main storage upon receiving a sense I/O instruction. The attachment operates on interrupt level number one, which is interrup number four in interrupt priority (lowest level).
1 The data bus out lines and control lines. The attachment decodes the instructions to determine whethe the operation is a load $1 / 0$, start $1 / O$, or sense $1 / O$, and turns on a latch to The contrors for the forthcoming data information.
Theriate bits active in the control code) restores themion (with the board is restored and interrupts are enabled information can be keyed tion can be keyed. Pressing one of the keyboard keys causes two actions:

1. Two bytes are stored in the keyboard attachment circuitry.

The first of these bytes is a status byte that defines whether:
function key or a World Trade key; (2) the keyboard is or (3) the key is a typamatic key. The second byte is the data byte.
2. An interrupt request on interrupt level 1 is generated

If no higher priority interrupt is being serviced, the CPU honors the interrupt request and branches to the interrupt subroutine. The interrupt subroutine must perform a sense I/O instruction to transfer the two bytes stored in the attachment circuitry into storage. The routine must also restore the keyboard and reset the interrupt request by issuing another start I/O instruction.

LOAD I/O INSTRUCTION

- Three or four bytes make up the load I/O instruction.
- The load I/O instruction selects the keyboard when the device address equals 1 (hexadecimal).
- The M field of the load I / O instruction is not used by the keyboard and may be any value.
- The N field of the load I / O instruction is bit significant in the two low order bits and the high order bit (bit 5 of the Q byte) may be either 0 or 1 .
- The control byte transfers the one byte field located at the operand address and the one byte field at the operand address minus one (which is not used) to the attachment circuitry.
- This instruction is used to turn on or off field/operation indicators or to turn on or off command indicators.
This instruction causes two bytes of information to be sent to the keyboard attachment for the purpose of controlling lights on the console. The instruction is composed of three or four bytes. The first byte is the The instruction is composed of three or four bytes. The first byte is the contains the device address (hexadecimal 1 for the keyboard), an M bit that may be either 0 or 1 , and the N code that selects either the command lights or the field/operation lights. The byte field located at the operand address is transferred to the attachment for turning on or off individual lights within the group selected by the N code

Load I/O Turn On Command Lights

- The N field equals X01.
- Two bytes of information are sent from main storage to the attachmen the first byte from the main storage address specified by the operand one address, and the second byte from the address of the first operand address minus one
- The first byte is the active byte and selects the desired command key lights to be turned on for one of the two following reasons:

1. The corresponding command key was pressed on the keyboard
2. The program desired to turn on the light as a communication to the operator.

- The second byte of information sent to the attachment is not used.
- The command light whose decimal label corresponds to the decimal value of the binary number in the rightmost byte of the operand is turned on.
- If only the eight basic command keys are installed, binary values more than 8 in the operand byte are ignored.

LOAD I/O (LIO) INSTRUCTION FORMAT

Load I/O Turn Off Command Light

- The N field equals X00.
- Two bytes of information are sent from main storage to the attachment the first byte from the main storage address specified by the operand one address, and the second byte from the address of the first operand address minus one
- The first byte is the active byte and selects the desired command key lights to be turned off for one of the two following reasons:

1. The corresponding key was pressed on the keyboard when the light was on
2. The program desired to turn the light off as a communication to the operator.

- The second byte of information sent to the attachment is not used.
- The selected command key function is no longer active after the program turns the light off as a communication to the operator (see 2. above).
- The command light whose decimal label corresponds to the decima value of the binary number in the rightmost byte of the operand is turned off.
- If only the eight basic command keys are installed, binary values more than 8 in the operand byte are ignored.

Load I/O Field/Operation Lights

- The N field equals X 1 X .
- Two bytes of information are sent from main storage to the attachment the first byte from the main storage address specified by the operand one address, and the second byte from the address of the first operand address minus one.
- The first byte is the active byte and selects the desired field/operation lights to be turned on.
- The selection of specific lights to be turned on automatically resets all the non-selected lights (hexadecimal 00 turns off all the lights)
-The second byte of information sent to the attachment from main storage is not used.

EST I/O AND ADVANCE PROGRAM LEVEL INSTRUCTION

Test I/O (TIO) Instruction

The keyboard attachment does not respond to this instruction

- Issuing this instruction to the keyboard console results in a processo check with invalid Q indication issued with the keyboard console device address.

Advance Program Level (APL) Instruction

- The keyboard attachment does not respond to this instruction.
- Issuing this instruction to the keyboard console results in a processo check with invalid Q indication issued with the keyboard console device address.

SENSE I/O INSTRUCTION

- Four bytes make up the sense instruction.
- The sense instruction selects the keyboard when the device address equals 1 (hexadecimal).
- The M and N fields of the sense instruction are not used by the keyboard and may be any value.
- This instruction places the data available in the keyboard attachmen into the field in storage specified by the first operand address
The sense instruction is composed of four bytes. The first byte is the op code, a YO (hexadecimal) for a sense instruction. The second byte contain the device address (DA), and an M and N field that are not used. The third and fourth bytes contain the address of the low order byte of the two byte field where the sense bytes will be stored.

Response to Sense Keyboard Instruction

- The code for the key position pressed is transferred from the attachment circuitry to the CPU.
In response to a sense keyboard instruction, two bytes (representing the key position pressed) are gated on 'data bus in' (DBI) for storage in the two-byte field specified by the first operand address minus one, and the first operand address.
The high-order byte stored in storage is a status byte and is bit significant. This byte defines the low-order byte that is to be transferred to the CPU on the next cycle.
The second byte (low-order) in storage contains the unique bit configuration for the particular key position pressed.
If a sense keyboard instruction is issued by the program before a key is pressed (no interrupt request generated), the status byte will be:

$$
10000000
$$

the second byte (data or function character keyed) will be 00000000

SENSE I/O (SNS) INSTRUCTION FORMA

Storage Address
In response to a sense instruction to the keyboard, the bit structure shown below, kevboard, the bit structure shown below,
will be sent to the CPU on the DBI lines
for store in for storage in the field specified by
first operand address portion of the instruction. The second byte is stor
This is DBO 3 bit on during IO at the first operand address minus one
This is DBO 3 bit on
cycle for keyboard.
M field is not used for the
keyboard attachment.

```
N field is not used for the
```

Byte 2 Contains the coded representation the key position
that was keye that was keyed.
See K Key Codes.
$\begin{array}{ll}\text { Bit } 1 & \text { Parity Check } \\ \text { Data Character Identifier } \\ \text { Bit } 2 \text { 何 } & \text { Command Key Identifier } \\ \text { Bit } 3 & \text { Function Character Identifier } \\ \text { Bit 4 } & \text { World Trade Identifier }\end{array}$
World Trade Identi
Bit 5 Keyboard Ready
$\begin{array}{ll} & \begin{array}{ll}\text { Bit } 6 \\ \text { Bit } 77 & \text { Typamatic } \\ \text { Not Used }\end{array} \\ \end{array}$

START I/O INSTRUCTION

- Three bytes make up the start I/O instruction.
- The start I / O instruction selects the keyboard when the device address equals 1 (hexadecimal).
- The M and N fields of the start I / O instruction are not used by the keyboard and may be any value.
- The control code of the start I/O instruction causes the keyboard and attachment circuitry to perform the operations specified by the contro code.
This instruction is composed of three bytes. The first byte is the op code, F3 (hexadecimal) for a start I/O instruction; the second byte contains the dilds (nat used in the attachment circuitry); and the third byte contains control code to provide control information for the ke operation The control code of the start $1 / \mathrm{O}$ instruction is used by the proga
to:
Reset previously sensed parity check
Lock or unlock the keyboard.
Enable or disable interrupts.
interrupt requests.
the keyboard (required to prepare the keyboard for a succeeding key depression).

6. Cause an interrupt request (see bit 2 in "Control Code" chart)

The restore keyboard function, necessary to unlock the keyboard for succeeding key operation, is accomplished by issuing a start $1 / O$ instruction with both bits 4 and 5 present. All bit combinations of the control field a ned if the appropriate bits are on, xcept that bits 2 and 7 on will not result in interrupt request being set,

START I/O (SIO) INSTRUCTION FORMAT

- Enter +
- Erase
- Decimal Point (.)

KEYBOARD ATTACHMENT-Introduction

KEYBOARD TIMING

The figure at the right shows the basic keyboard timing. The variable
electrical and mechanical timings are shown in relation to the maximum
time between key cycles. Their duration is determined as follows:

- Elastic Diaphragm Switch (EDS) Closure-Closes as soon as the interposer clears the latch spring. It remains closed until the restore is nearly com plete. Time of restore is determined by the system and is, therefore, variable.
- Bit Lines-Coincident with the EDS closure.
- Character Ready-Brought up by the bit lines and reset by 'bail contact. Restore is controlled by the system; thus the rise of 'bail contact' is variable.
- Restore Magnet-De-energized when the system accepts data and picked when the bail closes the bail contacts. Mechanical travel time of the bail determines the time the contacts close.
- Bail Contact Signal-Begins when the restore bail closes the contacts and is held up by a circuit delay after the contacts open. The duration is variable depending on the time the contacts are held closed by the restore bail.
- Ball Interlock-The duration is determined by the operator releasing the keylever.
- Bail Interlock-The duration is directly related to the mechanical travel of the bail.

Chapter 2. Functional Units

INTRODUCTION TO FUNCTIONAL UNITS

Chapter 2 contains the functional units of the keyboard attachment. The first page of the chapter is a board layout of the keyboard attachment. It is broken down into cards and contains the following information:

1. Card locations
2. Circuits found on that card

ALD page reference numbers that describe the circuits found on th
card
4. Card type number. The part number of the card will change each time that the card has an engineering change to it. The card type number however, will always stay the same
The card location number appears on each page, or section of a page, that describes the circuitry on that card. For example, M2 on a page refers to the DBI assemble

Symbols

There are two symbols that must be understood in order to read this chap ter. They are:

1. Numbers in squares.
2. A Letters in circles.

If only one of these symbols appears on a page, it will be numbers in squares. They are placed next to a functional unit, and correspond to the same number in a square on the facing page. Next to the symbol on the facing page, an explanation of that functional unit can be found. If both numbers in squares and letters in circles are found on a page, the numbers refer to a reading order of the basic operation of a group of functional units. These numbers refer to corresponding numbers on the same or facing page, that when read consecutively explain the data flow between functional units. The letters in circles refer to operation of $j u$ the only symbol on the page. This is the only application for letters in circles.

Chapter 3. Operations

INTRODUCTION TO OPERATIONS

Chapter 3 contains the detailed flowcharts and timing charts of the operations performed by the keyboard attachment

Flowchart

The flowcharts contain three levels of information. By reading down the heavy dark lines, the reader can learn the major objectives of the operation.
The second level of information is obtained by reading the information in The second level of information is obtained by reading the information in the boxes that branch off the heavy dark line. The information that is contained in each block in a heavy dark line is explained in the blocks that lo (F) d) for los in tion has been performed.

Timing Charts

The timing charts in this chapter are to be used to supplement the information found in the flowcharts.

LOAD I/Q INSTRUCTION TIMING CHART

Load I/O Operation

- The CPU decodes the op code of the instruction and activates the control line 'chan LIO instr' in the attachment.
- The attachment takes an I-O cycle to:

1. Decode the Q byte for the device address.
2. Determine the condition code and send it back to the CPU.
3. Decode the N code of the Q byte to set a load I/O latch in the attachment.

- Take EB cycles to:

1. Turn on a command indicator.

Turn off a command indicator.
3. Turn on field indicator(s)

EB Cycles
The CPU gates the first byte from the main storage location specified by the operand one address through the DBO register to turn on or off the desired command indicator or field indicator(s) latches. The output of the latches control the on or off status of the lights.
If a load I/O instruction is issued to turn on or off command lights with codes other than those shown in "Weighted Codes," the instruction is accepted, but no command lights are turned on or off.
A load I / O instruction issued to turn on field indicator(s) resets the nonselected field indicator latches. All bit combinations are valid for turning selected field indicator latches. Alr bit combinations are valid for turning
on the individual field indicators (all eight indicators can be turned on with on the individual field indicators (all eight indicators can be turned on with
one load $/ \mathrm{O}$ instruction). When all bits are zero, all of the field indicators are turned off.
The second byte transferred from the main storage location specified by the operand one address minus one is also gated to the DBO register, but it is not used.

Note 1. Reset at clock 2 of the next $1-0$ cycle
Note 2. Will be reset by next 'gate command ind off' pulse,
Note 3. Will be reset by the next 'LIO field ind latch' pulse.

sense i/o instruction timing chart

Sense Operation

The CPU decodes the op code of the instruction and activates the control line 'chan SNS instr'.

- The attachment takes an I-O cycle to

1. Decode the Q byte for the device address.
2. Send a condition code of B back to the CPU
3. Set the 'SNS latch'.

- The attachment takes an EB 1 cycle to gate the status byte out of th DBI assembler to send it to the CPU.
- The attachment takes an EB not 1 cycle to gate the data byte out of the DBI assembler to send it to the CPU.

EB Cycles

Prior to the EB cycles, the data and status bytes (generated by a previous': pressed key) are stored in the encode board. The status byte is the first byte to be gated to the CPU. This byte identifies the type of key that was pressed. The CPU stores this byte in the field specified by the operand portion of the sense instruction. The bit significance of this byte makes the portion of the sense instruction. The bit significance of this byte makes program aware of the type of data that is contained in the data byte.
The data byte is gated to the CPU during the EB not 1 cycle. This byte is stored at the operand address minus one (as indicated by the operand portion of the sense instruction). The program in the CPU uses this data byte as a displacement, and adds it to a base address. The resulting address points to the core location that contains the EBCDIC code for that key.

Note 1 . Reset at clock 2 of the next $1-Q$ cycle.

START I/O INSTRUCTION TIMING CHART

Start I/O Operation

- The CPU decodes the op code of the instruction and activates the control line 'chan SIO instr'.
- The attachment takes an I-Q cycle to

1. Decode the Q byte for the device address.
2. Determine the condition code and send it back to the CPU 3. Set the 'SIO latch'

- The attachment takes an I-R cycle to decode the I-R byte.
- The bits in the I-R byte set or reset latches in the attachment in prepara tion for a keyboard operation.

I-R Byte
The bits present in the I-R byte are determined by the main program in the CPU. Bits 4 and 5 must both be present to restore the keyboard. All bit CPU. Bits 4 and 5 must both be present to restore the keyboard. All bit bit are performed except for the following, if bits 2 and 7 are both present, interrupt request is not set.

Line Title	ALD Page	012345678	012345678	012345678
1. Chan SIO Instr	PK007			
2. 1-O Instruction	PK006			
3. (decode DA)	PK007		戊	
4. KB I-O Condition (A, B)	$\begin{aligned} & \text { PK002 and } \\ & \text { PK015 } \end{aligned}$ PK015		cre	
5. SIO Latch	PK007		3 max	
6. Chan I-R Cycle	PK007			
7. (1-R byte in DBO reg)	PK001			(1)
8. Pre-Bail Latch	PK014			5, and bit 5
9. Inter Enable Latch	PK014			5 , and bit 6
10. Bail Latch	PK014			8,9
11. KB Ready				10

ote 1. Reset at clock 2 of next 1 - Q cycle.
ote 2. Reset at clock 4 of next I-R cycle if DBO bits 4 or 5 are present.
Note 3. Reset at sample DBO clock 5 of next I-R cycle if ' DB Kb bit 6 ckt 2 ' is inactive.

KEY OPERATION-PROGRAMMED

- A start $1 / O$ instruction is given to enable interrupts.
- Interrupt request is generated by pressing any key (except the shift key)
- A sense instruction from the CPU gates two encoded bytes from the DBI assembler in the attachment to the CPU These two bytes represen the key position (the key that was pressed).
- A second start I/O instruction is issued to restore the keyboard. Before the keys on the keyboard can be operative, a start I/O instruction must be issued to enable interrupts, restore the keyboard, and unlock the keys.
When a key is pressed, its EDS latch spring is released and the elastic diaphragm is pressed through a hole in the separator by the actuator spring projection. The diaphragm common conductor contacts the normally open contact on the substrate, which completes the circuit to the encode circuit board
Pressing a key generates 'character ready' in the encode board which is sent to the attachment circuitry. 'Char ready' (and all other lines from the encode board) is converted from an SLD logic level to an MST logic level in the attachment. After the logic conversion, the line is called 'any char'. The diode logic circuits of the encode board, decodes the output of the key that was pressed (EDS switch) into two bytes of information. The data byte is stored in the encode board bit latches, and the function latches that represent the bits to make up the status byte are also located in the encode board.
An interrupt request is generated by raising the 'interrupt polled KB' line. This line is activated by channel interrupt poll ANDed with the interrupt request latch which is set on by the 'any char' line and the 'intk int' and 'inter enable' latches that were set earlier by the start $1 / O$ 'KB DBI 1 bit' to the CPU to request an to the DB

When the interupt is gred by the CPU (intup

, CPU branches to the 1 for the
 the bit latches through the DBI assembler onto DBI.
The interrupt routine can now issue a second start I/O instruction with bits 4 and 5 active in the I-R byte of the control code to restore the keyboard in order that another key can be pressed. Depending on the main program in process, the start I/O instruction can turn off the 'int req' latch with bit 7 active in the control code. This turn off interrupt request instruction causes the CPU to exit from the keyboard interrupt routine and return to the main program.

Keyboard interrupt request

- A start I/O instruction is issued to the keyboard attachment to: unlock the keyboard, restore the keys, and enable interrupts
- Pressing a key on the keyboard, or the inquiry request key on the console, turns on the 'inter req' (interrupt request) latch in the attachment
- With 'interrupt poll' active in the attachment at clock 5-7 time and the int req' latch on in the attachment, the 'interrupt polled KB' line in the ttachment gates 'KB DBI 1 bit' out of the DBI assembler to request an interrupt.
- If no interrupts with a higher priority are pending and the program in progress is at the end of an instruction, the main program is interrupted by a branch to the keyboard interupt routin
- The keyboard interrupt routine issues a sense instruction to the keyboard attachment and allows the two bytes (generated as the result of pressing a key) onto DBI.
- After sensing the two bytes of information generated by pressing the key, the keyboard is restored (enabled) when the keyboard interrup routine issues a start I/O instruction. The keyboard keys can now b operated again
The keyboard interrupt level has a separate IAR and ARR in the CPU local storage registers so that the IAR and ARR for the main program are not disturbed. Local storage register 15 contains the interrupt level 1 instruction address register (IAR-1), and local storage register 16 contains the interrupt level 1 address recall register (ARR-1) for the keyboard. The interrupt routine performed is established by the interrupt priority latches. As in the case of cycle steal, the highest interrupt level device tak precedence over low 1 level bether interrupt routine to interrupt the keybord. However, maintains its interrupt request until it is satisfied The lower level priority device finishes its routine upon complation of the higher level routine The stored program controls the ability of the keyboard to interrupt enabling and disabling the keyboard through the use of start $1 / O$ instructions. Once an interrupt has occurred, it is also ended by a start I/O instruction. During the I-O cycle, keyboard selection occurs in the same manner as an start I/O instruction. At clock 5 of the I-R cycle, the control code (I-R byte) is sent to the attachment on DBO. The control code is decoded by the attachment to turn on the 'inter enable' latch. This latch remains on until another start I/O instruction is sent to the attachment to reset (disable) the

When a key is pressed on the keyboard, the 'inter req' latch is turned on At the end of the operation being performed in the CPU, interrupt poll' is sent to the keyboard attachment. This activates interrupt poiled KB^{\prime} in the attachment. This line gates 'KB DBI 1 bit' out of the DBI assembler to turn on the interrupt latch for the keyboard in the CPU. If more than one device is requesting an interrupt, only the highest level priority latch is turned on

With any interrupt latch on, the selection of the normal IAR/ARR (P1 or P2) is blocked and the IAR/ARR for the active interrupt level latch is selected. The interrupt request latch in the attachment stays on until it is reset by a start I/O instruction.
Upon recognizing the keyboard interrupt, the CPU issues a sense instruct on to the keyboard attachment. The instruction decodes the contents of the DBI assembler, which is the coded character of the key that was pressed The output of the DBI assembler is sent to the CPU on DB

With this information, the stored program in the CPU determines the cause of the interrupt, branches to that routine, and performs the required operation. When the operation is complete, the CPU can issue another start I/O instruction to the attachment.
Refer to the flowchart on page 7-310 for the operation. The only difference is that a keyboard interrupt can be generated by pressing either the inquiry request key or a data key.

ALTER STORAGE OPERATION

The alter mode of the keyboard is used to key in test programs and sub routines. The operation of the keyboard in this mode is intended for field engineering use as an aid in locating machine troubles by checking and testing machine functions.
When the CE mode selector switch is at the alter storage position, the system stops at clock 9 , and the bail contact modified signal (generated by the bail contacts being closed) turns on the bail latch. The bail latch output signal turns on the bail magnet driver which provides current through the bail magnet coils. This causes the bail bar to move back and unlock the
Keys A through F, and 0 through 9 are the only keys that can be used in alter storage mode. Depression of any other key casses the bail bar to 90 forward and lock the keyboard If this occurs, position the CE mod selector switch to the process position and press SYSTEM RESET. selecto undech and ing, an alter SAR must be performed ing, an alter SAR must be performed.
alter SAR is made to a specific starting address. For this description of the encode board rester

First Key Depression (Odd Key Count)

- Depress key.
- EDS switch closes, allowing current through its contacts and associated diodes in the encode board
- The output of the diode gives the proper inputs to the bit latches to obtain the hexadecimal value for the key pressed (first half byte).
- These lines also provide inputs to the 'group H^{\prime} ' atch. This latch determines that the key pressed is a valid hexadecimal character
- Bits $0,1,2$, and 3 are gated by the 'alter up' latch output to turn on the '1st $1 / 2$ byte' latch. If either zero (0) key is depressed, the P bit turns on the first half byte latch.
- With ' 1 st $1 / 2$ byte' latch on, one input to the 'alter up' latch is removed.
- At this time data is gated through the DBI assembler onto DBI, but it is not accepted by the CPU because it is idling at clock 9 time. However, the keyboard is restored (unlocked) to allow entering the second half byte from the keyboard

Keyboard Restore

- 'Alter up' latch ANDed with 'group H' latch, '1st $1 / 2$ byte' latch and (not) 'bail contacts' generate a 'drop bail pulse' line.
- This line turns off the bail latch, causing the bail magnet current to drop and the bail bar moves forward under spring tension.
- The bail contacts close generating a 'bail contact' signal, which

1. Turns off the 'group H' latch
2. Turns off the ' P bit' latch
3. Turns on the 'bail latch'.

- The 'bail latch' causes the bail magnets to receive current to draw the bail bar back and unlock the keyboard.
- When the bail contacts open, the 'bail reset' line is activated to turn off the 'alter up' latch.
- The active bits, representing the hexadecimal key that was pressed, now make up the first half byte of data. The keyboard is unlocked and ready for the second half byte of data (even key count) to be entered.

Second Key Depression (Even Key Count)

- Depress key.
- EDS switch closes, allowing current through its contacts and associated diodes in the encode board.
- The output of the diode gives the proper inputs to the bit latches to obtain the hexadecimal value for the key pressed (second half byte).
- With the 'alter up' latch off, the lower group of bit latches (4, 5, 6, and 7) are gated to form the second half-byte (hexadecimal).
- The '2nd $1 / 2$ byte' latch is turned on by bit $4,5,6,7$, or P with 'alter up' latch off.
- 'Alt char ready' is now activated.
- 'Alt char ready' turns on the 'system start' latch in the CPU to start the system.
- 'Clock 2' ANDed with 'alt char ready' turns off the 'bail latch' and locks the keyboard.
- The CE mode selector switch in the alter storage position gates the keyboard bit latch outputs out of the DBI assembler.
- With the 'bail latch' off, the bail contacts

1. Turn off the 'P bit', 'group H^{\prime}, and 'alter up' latches
2. Turn on the 'bail latch'.
3. The 'bail contact' line ANDed with 'alter char ready', and (not)
'inq req' latch turns on the 'reset' latch.
4. The 'reset' latch resets the bit latches (0 through 3 and 4 through
7). 7).

- The 'alter up' latch remains off until the 'reset' latch is turned off. When it comes on again, the keyboard is ready for the next odd-key depression.

Zero Key Depression

When the zero key is pressed, no hexadecimal character is generated, but the 'P bit' latch is set. This latch being set turns on the ' 1 st $1 / 2$ byte' latch. The 'P bit' latch ANDed with the 'alter up' latch off, turns on the ' 2 nd $1 / 2$ byte' latch. This generates an 'alter char ready' signal but no DBI bits when the 0 through 7 bit latches are not activated by the encode board circuit diodes. The ' P bit' latch turns on both half byte latches, but only:

1. The '1st $1 / 2$ byte' latch when a key is pressed on an odd key count. 2. The ' 2 nd $1 / 2$ byte' latch when a key is pressed on an even key count. This is done by ANDing (not) 'alter up' and ' P bit' to turn on the '2nd $1 / 2$ byte' latch a zero key is pressed on an even key count.
The ' P bit' line is active when any key giving an even number of bits is pressed (the P bit to the attachment is blocked by 'alter char ready'). Since ' P bit' does not enter the system DBI from the encode board in alter storage mode, the ' P bit' is generated in the attachment circuits and ANDed with the 'alter char ready' line. This allows correct parity to enter the CPU.

TYPAMATIC OPERATION
Typamatic keys (tab and backspace) have two operational levels or stops. The first level permits a single operation and is indicated by a spring loaded stop when a light key stroke is used. The second level allows a repeat action without repeated key strokes. A heavy key stroke will push the key lever through the spring loaded first stop into the typamatic level. This repeats the key function as long as the key is held in the lower level.
The typamatic function is indicated by the lower level of the key lever. However, the typamatic function is performed by the control program. Refer to the timing chart on this page for the following description of the typamatic operation.

Area 1 (In Timing Chart)

1. Assume that the keyboard is ready (enabled and unlocked).
2. The operator presses the tab or backspace key.
3. Data bits are stored in the bit latches in the keyboard encode board.
4. These bits are recognized as typamatic bits (bit 3 and bit 6 are prepared to be sensed on the first EB cycle of a sense instruction).
5. The next time the 'interrupt poll' line is activated, a system level 1 interrupt will occur (unless a higher level interrupt or cycle steal has been requested).
6. During the subroutine of the program, a sense instruction is given to the keyboard.
a. First EB cycle-bit 3 (function) and bit 6 are sensed to indicate a typamatic operation.
b. Second EB cycle-data is sensed (tab or backspace).
7. A start I / O instruction is given to the keyboard with bit 4 on in the control code to drop the bail and lock the keyboard. The start I/O instruction must occur within 15 ms of the sense instruction.
8. A time out of approximately 100 ms for the software begins. This time is required to maintain a 10 cycle per second rate for the CRT cursor. See "Note 2."
9. During the time out, the CRT cursor or print element can be moved one increment in the appropriate direction.

Area 2 (In Timing Chart)

1. The typamatic operation is still in process.
2. A sense instruction is issued to the keyboard at the end of the 100 ms time out.
a. First EB cycle-bit 3 and bit 6 are again sensed indicating a typamatic operation.
b. Second EB cycle-data is again sensed (tab or backspace).
3. The 100 ms time out occurs again.
4. The CRT cursor or the print element can again be moved.

Area 1

1. Enable Interrupt		
2. Data		
3. Typamatic	2	
4. Interrupt Request	2	
5. SNS Instruction		
6. First EB Cycle		
7. Second EB Cycle		
8. sı0 Instruction		

Area 3
DBI bits 3 and 6 identify typamatic character to the program.
Start I/O instruction must have bit 4 on in the control code to drop the bail and unlock the keyboard.
3 Program time out required for 10 cycle per second maximum cursor or print element rate.

Note 1. When tab or backspace keys are depressed, bits 3 and 6 of the first sense byte are on. This is true even if the keys are not fully depressed.

Note 2. Parity checks or additional incrementing may occur if approximate time intervals are not maintained.

Data byte is transferred (identifies tab or backspace key).No typamatic bit (6) is sensed in the status byte (the key was released).
No data bits are sensed in the data byte (only the P bit).
7 Start I/O instruction has bits 3 (to reset parity check), 5 (to pick the bail and unlock the keyboard), 6 (to enable interrupts), and 7 (to reset the current interrupt request) on.

Area 3 (In Timing Chart)

1. The operator has released the key and therefore the typamatic operation is no longer in process.
2. A sense instruction is issued to the keyboard.
a. First EB cycle-the typamatic bits (3 and 6) are no longer present. Bit 0 is sensed.
b. Second $E B$ cycle-data is sensed, only bit P is present.
3. A start I / O instruction is issued to the keyboard. The control code must have bit 3 on (to reset bit 0), bit 5 on (to pick the bail and unlock the keyboard), bit 6 on (to enable interrupts), and bit 7 on (to reset the current interrupt request).

Section 9. Printer and Ledger Card Device Attachments

This section of the 5406 FETMM contains the theory and maintenance
diagrams for the 5213 and 2222 Printer attachment and ledger card device attachment. It consists of six chapters as follows:
Chapter 1. Introduction to the Printer Attachment
Chapter 2. Functional Units of the Printer Attachment
Chapter 3. Operations of the Printer Attachment
Chapter 4. Introduction to the Ledger Card Device Attachment
Chapter 5. Functional Units of the Ledger Card Device Attachmen
Chapter 6. Operations of the Ledger Card Device Attachmen

Content

Chapter 1. Printer Attachment Introduction 9-101
Introduction to Printer and Attachment (2 Parts) 9-101, 9-102 Printer Operations (2 Parts) 9-103, 9-104
Load I/O Instruction Format 9-105
Test I/O Instruction Format (2 Parts) 9-106, 9-106A
Advance Program Level Instruction Format (2 Parts) 9-106B, 9-107 Sense I/O Instruction Format 9-108
Start I/O Instruction Format 9-109
Errors (3 Parts) 9-110, 9-111, 9-111A
Data Flow 9-112
Chapter 2. Printer Attachment Functional Units 9-201
Introduction to Functional Units 9-201
Board Layout 9-202
Printer Single Shots 9-203
Initial Selection (2 Parts) 9-204, 9-205
Printer Commands 9-206
Data Bus In Assembler 9-207
$\begin{array}{ll}\text { Stepper Motor Controls } & 9-208 \\ \text { Print Controls }\end{array}$
Print Controls 9-209
9-210
Cycle Steal Controls 9-211
Error Checking (2 Parts) 9-212, 9-213
Chapter 3. Printer Attachment Operations 9-301
Introduction to Operations 9-301
Load I/O Instruction Flowchart 9-302
Load I/O Instruction Timing Chart 9-303
Test I/O and Advance Program Level Instruction Flowchart 9-304 Test I/O and Advance Program Level Instruction Timing Chart 9-305 Sense I/O Instruction Timing Chart 9-307
Start I/O Instruction Flowchart $9-308$
Start I/O Instruction Timing Chart 9-309
Stepper Motor Start-Move Right (2 Parts) 9-310, 9-31
$\begin{array}{ll}\text { Stepper Motor Start-Move Right (2 Parts) } \\ \text { Stepper Motor Start Timing Chart } & 9-313\end{array}$
Element Return (3 Parts) 9-314, 9-315, 9-317
Element Return Timing Chart (2 Parts) 9-318, 9-319

Stepper Motor Stopping (2 Parts) 9-320, 9-321
Stepper Motor Stopping Timing Chart (2 Parts) 9-322, 9-323
Tab Right (3 Parts) 9-324, 9-325, 9-327
Tab Left (3 Parts) 9-328, 9-329, 9-33
Primary Skip (2 Parts) 9-332, 9-333
Primary Index 9-334
Secondary Index 9-335
Print Operation (3 Parts) 9-336, 9-337, 9-339
Print Operation Timing Chart (2 Parts) 9-340, 9-341
Bi-directional Print Operation (3 Parts) 9-342, 9-343, 9-344
Bi-directional Print Operation Timing Chart 9-345
Chapter 4. Ledger Card Device Attachment Introduction
Ledger Card Format 9-401
Indicators and Controls 9-402
Program Instructions 9-402
Ledger Card Devien Operations 9-402
Commands 9-402
9-403

Chapter 5. Ledger Card Device Attachment Functional Units
Introduction to Functional Units 9-501
Data Flow Diagram 9-502
LCD Pulse Generate and Sense Cell Latches (4 Parts) 9-503 through 9-507
Command Controls, Diagnostic LIO Controls, and LCD Attachment Resets
(2 Parts) 9-508, 9-509
DBI Assembler and Channel In Controls (2 Parts) 9-510, 9-511
Cycle Steal and LSR Selection (5 Parts) $9-513$ through 9-517
Read ID and Data Assembler (2 Parts) 9-518, 9-519
LCD Controls (2 Parts) 9-520, 9-521
LCD Attachment Error Conditions (2 Parts) 9-522, 9-523

Chapter 6. Ledger Card Device Attachment Operations

Introduction to Operations 9-601
Feed, Read ID, and Locate-Eject (10 Parts) 9-603 through 9-611 Index (3 Parts) 9-615 through 9-617
Read Mark and Eject (3 Parts) 9-619 through 9-621
Eject (3 Parts) 9-623 through 9-625
Read All Line Finder Marks 9-626

Chapter 1. Introduction

PRINTER ATTACHMENT

The IBM 5213/2222 Printer attachment provides a means for the attached 5213 or 2222 Printer to use the facilities of the IBM 5406 Processing Unit to communicate with main storage. The attachment provides the communication lines between the printer and the processing unit and controls the transfer of all information between the two.
A ledger card device attachment is a part of the printer attachment if a 2222 Printer is installed. The ledger card device attachment is described separately in chapters 4,5 , and 6 of this section (section 9).
The attachment circuitry is MST-1 logic, physically located on gate A, board A2 in the 5406 Processing Unit. The control interface lines between version to MST occurs at the attachment board.
The communications path between the processing unit and the printer attachment is through the I/O channel. Using this channel, data and control information is transferred from the processing unit, and status is sent to the processing unit under control of stored program instructions.
During the process of exchanging information, the printer and the processing unit operate together in multiplexer mode. This means the informa tion transfer takes pace between processing unit cycles on a priority basis
with other devices.
y the means of a fixed-cycle steal priority, I/O cycles may be interleaved between any two processing unit cycles.

Controls the transmission of data to and from the 5213

PRINTER

The 5406 Printer attachment has the capability of controlling five different models of printers (one printer per system), each of which is available in a variety of optional features. The basic printer is a 13 inch carriage serial printer which prints at a rate of 85 characters per second.
The five models of printers available are

1. The IBM 5213 Printer Model 1 can print 132 characters per line at 85 characters per second. Forms are moved by a pin feed platen with single or double spacing selectable by the operator.
2. The IBM 5213 Printer Model 2 has the same characteristics of the Model 1 , except the carriage is controlled by a pin feed tractor with tapeless vertical forms control.
3. The IBM 5213 Printer Model 3 can print 132 characters per line at 85 characters per second or functions as a bi-directional printer that can print approximately fifty 96 -character lines per minute. Forms movement is controlled by a pin feed tractor with tapeless vertical forms control.
The following illustration shows the combinations of printers and feature available.

4. The IBM 2222 Printer Model 1 can print 220 characters at 85 charac ters per second. Forms are handled with a dual pin feed tractor with tapeless vertical forms control (on the primary carriage only).
The 2222 Printer also has as a standard feature a ledger card device The ledger card device allows feeding, printing, and identification of ledger cards.
5. The IBM 2222 Printer Model 2 has the same characteristics as the Model 1 Printer, except that it is a bi-directional printer. It can print approximately fifty 96 -character lines per minute.
Vertical forms control allows skipping a number of lines from 2 to 256. The pin feed carriage on the 5213 Model 1 can space one or two lines by setting the manual control on the printer to the proper position.

Printing Principle

Printing is done by a print head capable of making seven dots in a vertical rrangement. The print head is moved across the paper from left to right or from right to left at a constant velocity. As the print head moves through one character space, the head can produce dots in any of seven horizontal positions. A restriction is applied, however, that none of the vertical dot positions can produce a dot in two consecutive horizontal dot positions. Therefore, the maximum number of horizontal dots that can be produced by any dot position on the print head is four.

Printer Functions

The serial printer (printing without the line printing feature) prints with the print head moving from left to right. The bi-directional printing feature allows printing with the print head moving either from left to right or righ ol left. The characters that can be printed and the bit patterns (EBCDIC ode) in storage that caused each character to be printed are shown on page 9-102.
In addition to printing data, the following functions can be performed

1. Tab right

Tab left
3. Element return

Primary carriage inde
5. Primary carriage skip (vertical forms control tractor only)
. Secondary carriage single index (dual feed carriage)

Dual Feed Carriage

Dual feed carriage is a standard feature of the 2222 Printer. Vertical forms control is utilized on the primary feed carriage with the ability to vertically Vertical motion secondary feed carriage is a single vertical space carriage. tions except printing.

Ledger Card Device

The ledger card device on the 2222 Printer allows the feeding, checking, and printing of data on ledger cards. The ledger card device is designed to interfere as little as possible with paper handling and readability of data printed on forms. Printing and forms motion of the ledger card are under control of the program.
For identification purposes and checking that the proper document is being printed on, space is provided for printing coded numeric identification in the upper right edge of the card and for reading such coded notation. The ledger card device also has a function that allows feeding the cards and locating the first available print line. Provision is also made for automatically signalling to the program when no print lines are available.
The right edge of the ledger card is always positioned in the farthest right printing positions of the 22 inch printer. The last 6 print positions on the ledger card (positions 215-220) are reserved for the line finder marks and two identification number (ID) code marks. These marks are printed in positions 216, 218, and 220. Except for the print mark code, no printing should be done beyond position 214.
The line finder marks are used for locating the next available print line. A line finder must be printed for each line printed to prevent over-printing the next time line posting of the same ledger card takes place.

PRINTER FEATURES

Bi-directional Printing

Bi-directional printing (line printing) is a standard feature of the 5213 Bi-directional printing (line printing) is a standard feature of the 5213
Printer Model 3, and the 2222 Printer Model 2. This allows printing with the print head moving either left to right or right to left. Printing can be performed at a rate of approximately fifty 96 -character lines per minute. Print ing more characters results in a slower throughput; printing fewer characters results in a higher throughput.

LOCAL STORAGE REGISTERS (LSR)

There are three local storage registers (located in the CPU) that are assigned to the printer attachment. Two of these are used in print operations, and the third is used with the ledger card device (LCD).

Print Data Address Register (PDAR)

The PDAR contains the leftmost or starting address of the data field when issuing a print command. This address has no core boundary restrictions.

This LSR must be reinitialized after each print command when not printing consecutive core fields. The LSR content points to the last printed character location plus one at the completion of a print command.

Print Command Address Register (PCAR)

The PCAR contains the leftmost storage address of the command field. The byte at this address contains the first command to be executed.

Locate Line Address Register (LLAR)

The LLAR is used only with the ledger card device to locate the next print able line and to detect the last printable line.
BITS

1010	${ }^{4}$	\uparrow		:
1011		\$,	\#
1100	<	*	\%	@
1101	1	1	-	
1110	+	;	$>$	$=$
1111	1	\neg	?	\#

\notin	\uparrow		$:$
\cdot	$\$$	\cdot	$\#$
$<$	$*$	$\%$	$@$
1	1	-	\cdot
+	$;$	$>$	$=$
1	\neg	$?$	\neq

Shared LSR's
The ledger card device uses the PCAR and the PDAR along with the printer. The PCAR is used in the same manner by both devices. In LCD operations, the PDAR contains the leftmost or starting address of the identification (ID) number that will be read from the ledger card. The address has no core boun dary restrictions. The LSR content points to the last position of the ID num ber plus one at the completion of the feed, read ID, and locate next print line command; or feed, read ID, and eject command.

CHARACTER SET

The basic printer attachment provides 62 print characters plus blank. This does not include the special dash used by the ledger card device.
The chart below shows the normal EBCDIC code used to print the basic basic set). All other blocks show the fold (bits 0 and 1), or what will print if presented to the attachment.

LOAD I/O INSTRUCTION

The load I/O instruction consists of three or four bytes (three if indexing is used).

- The load I/O instruction selects the matrix printer or the LCD if the de vice address equals E (hexadecimal).
- Two bytes in storage, addressed by the operand address, are loaded into the destination specified by the N code of the Q byte.
The load I/O instruction is composed of three or four bytes. The first byte is the op code, a Y 1 (hexadecimal) which indicates a load I/O operation. The second byte is the Q byte which contains the device address, an M code, and an N code. The third and/or fourth bytes indicate the address of the information to be loaded into the local storage register (LSR), or in the case of a control load I / O indicate the address of a byte in main storage which is bit significant as a diagnostic aid.

Q Byte Description

The upper four bits (bits $0-3$) specify the device address of the matrix print er E (hexadecimal). Bit 4 is the M code which is used to determine if the instruction is for the printer (bit $4=0$), or if it is for the ledger card device (bit $4=1$). The lower three bits are the N code or the function code.

The operand address of the load I/O instruction can serve one of two purposes. It can contain the address of storage bytes to be stored in the LSR selected for loading, or it can contain the address of the storage byte which is bit significant for diagnostic testing

Parity and Error Conditions

The load I/O instruction is accepted only if the printer is not busy (except or a control load I/O which is always accepted). A parity error detected by the attachment results in a processor check stop and the processor chec light comes on.

LOAD I/O (LIO) INSTRUCTION FORMAT

Device address 1110 (E) for mat printer or $L C D$.

M Code

 $M=0$ Selects printer$M=1$ Selects $L C D$.

TEST I/O INSTRUCTION

- The test I/O instruction consists of three or four bytes (three bytes if indexing is used)
- The test I/O instruction selects the matrix printer or the LCD when the device address equals E (hexadecimal).
- The test I/O instruction tests for
Printer
Ledger card device

1. Unit check
2. End of forms
3. End of
4. Unit check
5. Last printable line
6. Busy
7. Last printable line
8. LCD busy
Element at left margin
9. Read ID busy
10. Card not aligned
11. Card not aligned

The test I/O instruction is composed of either three or four bytes. The first byte is the op code, a $\mathrm{Z1}$ (hexadecimal) which indicates a test I/O operame ddres if

O Byte Description

The upper four bits (bits $0-3$) specify the device address for the matrix printer, E (hexadecimal). Bit 4 is the M code which is used to determine if the instruction is for the printer (bit $4=0$) , or if it is for the ledger card device (bit $4=1$). The lower three bits (bits $5-7$) are the N code which determines the test to be performed.

Branch To Address

The branch to address contains the address to be branched to if the conditions tested for as specified by the N code are met. It is either one or two tions tested for as specified by the N code

Parity and Error Condition

Odd parity must be maintained in the test $1 / O$ instruction. A parity error detected by the attachment results in a processor check stop, and the processor check light comes o

TEST I/O (TIO) INSTRUCTION FORMAT

LCD TIO Test Condition Description

Unit Check indicates any one of the LCD check conditions as shown in the TIO format diagram.
Last Printable Line indicates (1) that the last allowable print line is positioned at the platen or, (2) all the print lines have been used and the ledger card was ejected from the LCD. A sense I/O instruction must be issued to determine which of the two conditions exist. If the SNS instruction determines that either the card in switch or card out switch is made, condition xists, if neither switch is made, condition 2 exists.
LCD Busy indicates that the LCD is executing an SIO instruction.

SR Busy indicates:

1. A printer chained command is in progres.
2. A printer count command is in progress.
3. An LCD feed, read ID, and locate next line operation is in progress. 4. An LCD feed, read ID, and eject command is in progress and the ID number has not been transferred into main storage.
. An LCD read all line finder marks command is in progress and all the line finder marks have not been read.
4. An LCD read back and eject command is in progress and the line finder mark has not been read.
. An LCD index command is in progress
(active), printer and LCD operations cannot be overlapped.
Read ID Busy indicates that the ledger card ID number is being read from the ledger card and transferred into main storage. This condition is present during feed, read ID, and locate; or feed, read ID, and eject operations only. During a read all line finder marks command, read ID busy is active until 43 bytes (the complete card) have been read.
Card Not Aligned indicates that the ledger card is not aligned at the first feed rolls in the LCD. This condition must be present before issuing the ollowin co and read all line finder marks. This test will also cause the LCD I/O attention
light to turn on, and raise the LCD card gate if a card is not in the LCD

ADVANCE PROGRAM LEVEL INSTRUCTION

- The advance program level instruction consists of three bytes
- The advance program level instruction selects the matrix printer or the LCD when the device address equals E (hexadecimal),
- The advance program level instruction tests for:
Printer

Ledger Card Device

1. Unit check
2. Unit check
3. End of forms
4. Last printab

Element at left margin 4. LSR busy
5. Read ID busy
6. Card not aligned

The advance program level instruction is composed of three bytes. The first byte is the op code, an F1 (hexadecimal) which indicates an advance program level operation. The second byte is the Q code which contains the device address, an M code, and an N code. The third byte is not used

O Byte Description

The upper four bits (bits $0-3$) specify the device address for the matrix printer, E (hexadecimal). Bit 4 is the M code which is used to determine if the instruction is for the printer (bit $4=0$), or if it is for the ledger card device (bit $4=1$). The lower three bits (bits $5-7$) are the N code which determines the test to be performed.

Application

If the specified conditions tested for do not exist, the operation becomes equivalent to a no-op, and proceeds to the next sequential instruction. If the specified condition is present, the operation causes the CPU to loop (IR backup) on the APL instruction until the specified condition is no longer present, and then proceeds to execute the next sequential instruction.

Parity and Error Conditions

Odd parity must be maintained in the advance program level instruction. A parity error detected by the attachment results in a processor check stop, and the processor check light comes on.

ADVANCE PROGRAM LEVEL (APL) INSTRUCTION FORMAT

110 Element at left margin or busy
111 End of forms or busy or element at left margin.
x means bit can be a " 1 " or " 0 ".

LCD TIO Test Condition Description

Unit Check indicates any one of the LCD check conditions as shown in the TIO format diagram.
Last Printable Line indicates (1) that the last allowable print line is positioned at the platen or, (2) all the print lines have been used and the ledge card was ejected from the LCD. A sense I/O instruction must be issued to determine which of the two conditions exist. If the SNS instruction deterxists, if neither switch is made, condition 2 exists.
$L C D$ Busy indicates that the LCD is executing an SIO instruction.
LSR Busy indicates:

1. A printer chained command is in progress
2. A printer count command is in progress.
3. An LCD feed, read ID, and locate next line operation is in progress. A. An LCD feed, read ID, and eject command is in progress and the ID 5. An LCD

An LCD read all line finder marks command is in progress and all the line finder marks have not been read.
6. An LCD read back and eject command is in progress and the line finder mark has not been read.
An LCD index command is in progress.
Note. If the LCD LSR busy condition is true (active), printer and LCD operations cannot be overlapped.
Read ID Busy indicates that the ledger card ID number is being read from the ledger card and transferred into main storage. This condition is present during feed, read ID, and locate; or feed, read ID, and eject operations only. bytes (the complete card) have been read.
Card Not Aligned indicates that the ledger card is not aligned at the first feed rolls in the LCD. This condition must be present before issuing the following commands: feed, read ID, and locate; feed, read ID, and eject; and read all line finder marks. This test will also cause the LCD I/O atten tion light to turn on, and raise the LCD card gate if a card is not in the LCD.

- The sense instruction consists of three or four bytes (three if indexing is used).
- The sense instruction selects the matrix printer or the LCD when the device address equals E (hexadecimal).
- Data from the area specified by the N code is placed in main storage in the location specified by the operand address.
- The sense instruction can be used at any time, whether the printer is busy or not.
The sense instruction is composed of three or four bytes. The first byte is the op code, a YO (hexadecimal) which indicates a sense operation. The second byte is the Q bye which contains the device address, an M code, and an N code. The third and fourth bytes specify the area in main storage to store the sense information.

Byte Description

The upper four bits (bits $0-3$) specify the device address for the matrix printer, E (hexadecimal). Bit 4 is the M code which is used to determine if the instruction is for the printer (bit $4=0$), or if it is for the ledger card device (bit $4=1$). The lower three bits (bits $5-7$) are the N code.

Operand Address

The operand address of the sense instruction specifies the location in main storage in which to store the sense information.
is accepted at any time by the printer. A parity error detected by the attachment results in a processor check stop and the proces sor check light comes on

SENSE I/O (SNS) INSTRUCTION FORMAT

Source

Locate line address register (LLAR) With M bit $=0$, Printer status bytes 1 and 2 (Note 1) With M bit $=1$, LCD status bytes 1 and 2 (Note 4) With M bit $=0$, Printer status bytes 3 and 4 (Note 2) Print data address register (PDAR). Print command address register (PCAR)
$\mathrm{X}=$ Bit not checked, can be either 1 or 0 .
Note 3. Diagnostic device interface signals

Note 1. Status bytes 1 and

Note 2. Status bytes 3 and 4

	Bit	Status Byte 4 (oper addr -1)	Bit	Status Byte 3 (oper addr)
	0	ssA	0	Secondary carriage EOF
	1	ss3	1	Matrix output hammer dr 1
	2	Stepper trigger A	2	Matrix output hammer dr 2
	3	Stepper trigger B	3	Matrix output hammer dr 3
	4	ssz	4	Matrix output hammer dr 4
	5	ssY	5	Matrix output hammer dr 5
	6		6	Matrix output hammer dr 6
	7	ssw	7	Matrix output hammer dr 7

Bit	LCD Signals* (oper addr)	Bit	Printer Device Signals (oper addr -1) .
0	Skip line SS1	0	5213 printer attached
1	Skip line SS2	1	Not vertical forms control
2	Late mark	2	Not bi-directional print feature
3	Special tie-off	3	Secondary carriage EOF
4	Card alignment SS	4	Not Rmisw 1 slow and not Lm sw 2 stop
5	Spare	5	Rm sw 2 stop or Lm sw 1 slow
6	Spare	6	Primary or secondary forms motion contact
7	Stop Ss	7	Primary forms emitter advance

*If the LCD is not installed, this byte will be hex 00 with proper parity.

Bit	Status Byte 2 (oper addr -1)	Bit	Status Byte 1 (oper addr)
0	Sense amp 1	0	Sense amp check
1	Sense amp 2	1	Card skew check
2	Sense amp 3	2	Drive check
3	Sense amp 4	3	Read mark check
4	Timing pulse	4	Line finder mark check
5	Drive check ss	5	Invalid command check
6	Activate LCD feed clutch	6	Card in switch on
7	Hold busy SS	7	Card out switch on

START I/O INSTRUCTION

- The start I/O instruction consists of three bytes.
- The start I/O instruction selects the matrix printer or the LCD when the device address equals E (hexadecimal)
- The start $1 / O$ instruction initiates cycle steals to obtain printer or LCD commands.
The start I/O instruction is composed of three bytes. The first byte is the op code, an F3 (hexadecimal) which indicates a start I/O operation. The second byte is the Q byte which contains the device address, an M code, and an N code. The third byte is the I-R byte which contains the control code. The start I/O instruction has only one function, to initiate cycle stealing to obtain commands for the printer or LCD.

Q Byte Description

The upper four bits (bits $0-3$) specify the device address of the matrix printer, E (hexadecimal). Bit 4 is the M code which is used to determine the instruction is for the printer (bit $4=0$), or if it is for the ledger card device (bit $4=1$). The last three bits are the N code and are not used for a printer start I/O instruction.

-R Byte (Control Code)

I-R byte contains the control code. For the printer, it specifies if the peration to be performed is a serial or a bi-directional print operation. For normal LCD operation is to be performed
A control code of $\mathrm{XXXXXXX0}$ specifies a serial print operation or a normal LCD operation.
A control code of XXXXXXX1 specifies a bi-directional print operation or a diagnostic read all line finder marks operation for the LCD.

Parity and Error Conditions

Odd parity must be maintained in the start I/O instruction. If a parity error is detected in the attachment, a processor check stop occurs and the pro cessor check light comes on. Program interlock is effective if a printer busy condition is detected, or if operator intervention is required as indicated by the I/O attention light.

START I/O (SIO) INSTRUCTION FORMAT

$\mathrm{X}=$ Bit not checked, can be either 1 or 0 .
вR0721B

BASIC SIO OPERATION FOR THE PRINTER OR LCD

Requires a count byte if bit is on

Error	Description	Recovery	Notes
Horizontal Cycle Check	A horizontal cycle check will occur if there is no response from the motion contact within 35 ms after a horizontal action command was initiated by the attachment (print, tab, or element return commands).	The PCAR is pointing one position beyond the position that failed. If the attachment indicates no other problems, the program may subtract 1 from the PCAR and give a start I/O to retry the same command.	If a horizontal cycle check occurs during a command which had a vertical command included in the same command byte, the vertical command will have been attempted and properly completed, if possible. In this case the recovery routine should involve only the re-issuance of the horizontal command.
Data Check	A data check is a parity check detected by the attachment data register during a cycle steal to obtain a data character. The character in error will not be printed. If the character in error was not the last character to be printed, the next sequential character will also have been spaced over by the time the print element comes to rest.	1. To resume operation at the point where the data check occurred use the following procedure. If machine has bi-directional print feature, issue a sense I/O to determine the status of the print left command. If this bit is off, continue with this recovery procedure. If this bit is on, skip to paragraph 3. The PCAR will be pointing at the byte directly to the right (+1) of the count byte of the command that failed. Issue a sense I/O to the PCAR and retain the address. Subtract 2 from it, and issue a load I/O to load the PCAR with the results. The PCAR is now pointing to the command in which the error occurred. Subtract 1 from the originally stored PCAR address to obtain the count address. Issue a sense I/O status to check the status of the 'count end' bit. If it is off, use a value of ($X=2$) in the following procedure. If it is on, use a value of ($\mathrm{X}=1$). Add (X) to the content of the count byte just determined. Issue a sense I/O to the PDAR. Subtract (X) to determine the address of the character in error. Issue a load I/O to load the PDAR with this address. Reposition the print element to the left (X) print positions. The attachment will attempt to print the same character in the correct position, if a start I/O instruction is issued with bit 7 of the IR byte off. 2. If a complete retry of the print operation is desired, use the following procedure. Enter a programmed halt state. Upon depression of START, the element should be positioned at (software) left margin on the next line and the entire print operation retried. This can be a retry of the entire last chained operation called for by the program, rather than a retry of the last physical print function. 3. Issue a Sense I/O PCAR and retain the address. Subtract two from the address and store the result in the PCAR via a load I/O instruction. This will have repositioned the PCAR to the command in which the error occurred.	

Error	Description	Recovery	Note
		Then subtract one from the originally stored PCAR address to obtain the count address. Sense I/O status, and check the status of the "count-end" bit. If it is off, use ($\mathrm{X}=2$) in the following procedure and ($\mathrm{X}=1$) if it is on. Add (X) to the content of the count byte just determined. Sense I/O PDAR. Add (X) to determine the address of the character in error. Load I/O PDAR this address. Reposition the print elements to the right (X) print positions. At this time, if a Start I/O instruction with IR bit 7 "on" is given, the attachment will attempt to print the same character in the correct position. If desired, the complete retry procedure given in paragraph 2 may be used.	
Margin Check	The 'margin check' latch is set, and motion is terminated under the following conditions. If the count byte is not zero when the left margin switch is encountered during a horizontal left count command, or if the count byte is not zero when the right margin switch is encountered during a horizontal right command.	The element should be re-oriented to the (software) left margin. If the left margin status bit is not on, an element return command must be given.	1. A margin check will not occur on element return commands. 2. At error detection, the PCAR may be pointing at the next command or at the count byte (see Data Check error recovery).
Sync Check	A sync check can be caused by either of the following conditions. 1. Either less than seven or more than seven horizontal print gate emitter pulses were received from the printer during movement through any character position. 2. The counter keeping track of the stepper motor is not in synchronization with the counter keeping track of the print gate emitter pulses.	A programmed halt state must be entered and the operator may be given the following options: visually check the print out and continue, use a program check point to restart and reprint only the form in error, or restart the complete job. The recovery procedure may also automatically reposition the print element at (software) left margin on the next line and retry the entire last print operation as per Data Check error recovery procedure 1.	1. When a sync check is detected, it is stored in a hardware latch. The attachment corrects itself, and the operation continues until normal count end. A print command which resulted in a sync check would have been properly completed, but possibly one character may not have been properly printed. Sync checks may occur on all horizontal commands except element return. 2. If a sync check occurs on a tab command, the operator should be encouraged to continue as the recorrect function should be successful almost 100% of the time.

Error	Description	Recovery	Notes
ROS Check	A ROS check is a parity check on one of the seven bytes which make up one print character as it is being read out of the ROS module to be printed. Printing is immediately suppressed and the operation is terminated. If the character in error was not the last character to be printed, the next sequential character will also have been spaced over by the time the print element comes to rest.	Same as data check.	It is possible that the first portion of the character was printed and error recovery will continue to overprint this portion. Normally this should not cause any harm, and successful retry will complete the character
Vertical Cycle Check	A vertical cycle check occurs when no feedback response is received from the printer within 35 ms (120 ms on pin feed printers) after a vertical action command was initiated by the printer attachment. This includes primary index, primary skip, and secondary index commands.	Same as Horizontal Cycle Check.	1. If a vertical cycle check occurs during a command which had a horizontal command included in the same command byte, the horizontal command will have been attempted and completed properly if possible. In this case the recovery routine should involve only the reissuance of the vertical command. 2. Because either a primary or secondary response will imply carriage motion, it is suggested to issue primary and secondary commands separately.
Invalid Command	An invalid command was issued to the printer attachment. The invalid command will not be executed, the command chain will be broken, and the attachment immediately drops busy.	The contents of the PCAR must be decremented by 1 to point to the command issued. This address should be checked to insure that it is the expected commanded address. If it is, issue another start I/O instruction to retry.	
Data Bus Out Check	A data bus out check is a parity check on data bus out during the compute portion of a CPU cycle which is directly affecting the printer attachment. This includes I-Q, I-R, B cycles, and during printer attachment cycle steals.	None.	The CPU will be forced to a hard halt at the end of the cycle in which the DBO check was detected. The CPU processor check indicator will be turned on.

Chapter 2. Functional Units

INTRODUCTION TO FUNCTIONAL UNITS

Chapter 2 contains the functional units of the printer attachment and the
aror checking circuits.
The first page of the chapter is a board layout of the printer attachment.
It is broken down into cards and contains the following information:

1. Card locations.
2. Circuits found on that card.
3. ALD page reference numbers that describe the circuits found on the card
4. Card type number. The part number of the card changes each time that the card has an engineering change to it. The card type number, hwever, always stays the same.

The card location number appears on each page, or section of a page, that describes the circuitry on that card. For example, N2 on a page refers to the DBI assembler.

Symbols
Figures within this chapter contain the symbols: numbers in squares, and A letters in circles. These symbols refer to text marked with an dentical symbol, that describes the function of the unit marked in the
figure.

A2	B2 Printer Sense Amplifier Cable	C2 Sense Amplifier \# 1	D2		F2** Cycle 1. Cycle steal controls 2. Count end 3. LSR select 4. Chan- controls	G2** Commands 1. Com- mand controls 2. Busy 3. Drive latch 4. Manual eject 5. Invalid com-	H2** Last Line 1. Docu- ment end condition 2. LSR and cycle steal 3. Document end steal	J2	K2 Hori- zontal High Speed 1. High speed interlocks 2. Double shift controls	L2 Line Printing 1. Bi-direc- tional feature	M2 Controls 1. ROS matrix 2. ROS latch output 3. Parity checking 4. Charac-	N2 DBI 1. DBI as- sembler 2. Pre- drivers a. Print ham- mers b. Stepper motor	P2 Motor 1. Stepper motor controls 2. Printer controls 3. Stepper motor shift speed		R2 Cycle Steal 1. Cycle steal controls 2. LSR controls 3. Counter advance 4. Fire SS1 5. Fire SS2	S2 Com- 1. Com- mand register 2. Error check ing check b. Margin check	T2 Initial 1. Chan- nel instruc- tion register 2. DBO register 3. DBO decode LSR	U2 Pin Feed Carriage SS1 PR123 Card Type 3376	V2 Miscel- laneous Channel \# 1
A3		C3 Sense Amplifier \# 2	D3		5. Test I/O	mand check 6. Error checks a. Sense cell b. Alignment c. $1-0$ check d. Unit e. Drive f. Print mark		J3	ALD Pages PR821 and PR822 Card Type 3381	$\begin{array}{\|l\|} \hline \text { ALD Pages } \\ \text { PR411 } \\ \text { and } \\ \text { PR412 } \\ \text { Card Type } \\ 3379 \\ \hline \end{array}$			${ }_{\text {controls }}$		6. Fire SS3 7. Fire SSA 8. Clock pulses 9. Count end controls	c. Margin halt d. I/0 check e. Unit check f. Data check g. Ros check 3. Cycle check- ing a. Hori-	4. LSR selection 5. DBI gating 6. Diagnostic LIO controls 7. Condition register	U3 Zener Power Supply for ROS	V3 DBI Channel \#2
A4 Meter and Tape Cable	B4 Diag- nostic Tape Input Card ALD Page PR141	C4 Sense Amplifier \# 3	D4** LCD SS 1. Skip line SS1 2. Skip line SS2 3. Hold busy 4. Card alignment ALD Pages PR711 and PR712 Card Type 3366			g. Read back 7. Switch latches a. Card gate b. Card in switch c. Card out switch d. Card aligned e. Card	H4	J4	K4	L4 ROS Matrix Module ALD Page PR151 Card Type 7737				O4 Busy 1. Busy lines 2. Reset lines 3. Matrix counter 4. Vertical option		zontal b. Vertical 4. Magnet gates a. Primary motion contact b. Second- ary motion contact c. Print drivers		U4 Clock Channel \#3 (Terminator)	V4 Clock Channel \# 3
A5 Driver Cable	B5 Integrator Cable		D5** LCD SS 1. Stop 2. Drive busy ALD Pages PR721 and PR722 Card Type 3377			edgeswithf.Edge of card g. Last line index to last ALD Pages PR811 Whru PR815 Card Type 3383	H5	J5	K5	L5	ALD Pages PR271 thru PR275 Card Type 3375	ALD Pages PR251 thru PR256 Card Type 3370	ALD Pages PR241 thru PR245 Card Type 3374	ALD Pages PR261 and PR262 Card Type 3369	ALD Pages PR231 thru PR234 Card Type 3373	ALD Pages PR221 thru PR224 Card Type 3372	ALD Pages PR211 thru PR216 Card Type 3371	U5 DBO Channel \#4 (Termi- nator)	V5 DBO Channel \#4

PRINTER SINGLE SHOTS

Single Shot One (SS1)

- SS1 is active for a duration of 35 ms
- It is used to check for mechanical motion (both horizontal and vertical).
SS1 is fired during each command cycle steal. Within 35 ms after it has fired, an electrical pulse must be received from the printer. If no pulse is received from the printer, a horizontal or vertical (depending upon the command) check occurs,

Horizontal Cycle Check
The 'horiz cy inlk' latch is set during the command cycle steal for every horizontal command. At the same time, SS1 is fired. Before SS1 times out $(35 \mathrm{~ms})$, the printer must activate the line ' +6 V right integrated emitter' to reset the 'horiz cy inlk' latch. If this latch is not reset before SS1 times out, a horizontal cycle check occurs.

Vertical Cycle Check
The 'vert cy inlk' latch is set during the command cycle steal for every vertical command. At the same time, SS1 is fired. Before SS1 times out (35 ms), the printer must activate either 'SP prim motion contact' (for a vertical index command to the primary carriage) or 'SP sec motion contact'
(for a vertical in cy inlk' latch. If a skip command is issued, a primary vertical emitter signal must be received before SS1 times out. If the 'vert cy inlk' latch is not reset before SS1 times out, a vertical cycle check occurs.
If commands are given simultaneously to both the primary and secondary carriages, only one of them can reset the 'vert cy inlk' latch. Both carriages have motion contacts, but there is only one interlock latch. Therefore, if both carriages receive vertical commands simultaneously, only one of them is checked for motion.

02
Spare 5

Single Shot One-Overlap (SS1 Overlap)

- SS1 overlap is active for a duration of 120 ms .
- It is used on printers with pin feed platens.
- It is fired at the same time as SS1, and has the same function as SS1

The SS1 overlap single shot is used only on printers with pin feed platens. The mechanical action in these printers is slower and therefore more time is required to respond to electrical signals. SS1 overlap is fired at the same time as SS1. The result is a 120 ms duration pulse (instead of a 35 ms pulse) to give the printer more time to respond.

SS1 overlap checks for horizontal and vertical cycle checks the same way as SS1 does. Refer to "Single Shot One (SS1)" for a description of how it hecks for cycle checks.

BR0723

Single Shot Two (SS2

- SS2 is active for a duration of 30 ms .

It is fired at the end of each command to allow for mechanical settling down of the printer.
SS2 is fired at the end of every horizontal and vertical command to allow for mechanical settling down of the mechanics in the printer. It cannot be fired until SS1 has timed out.

Single Shot Three (SS3)

SS3 is active for a duration of $600 \mu \mathrm{~s}$.

- SS3 is used to gate the print drivers that fire the print hammers.

SS3 is print time. It gates the print drivers to fire the print hammers. It is fired seven times per character.
Spare 0

Single Shot A (SSA)

- SSA is active for a duration of 1.3 to 2.0 ms .
- It starts mechanical motion of the stepper motor by providing the first advance pulse to it.
to it

Single Shot W (SSW), Single Shot X (SSX), Single Shot Y (SSY), and Single Shot Z (SSZ)

- Settings dependent on the type of printer installed.
- These single shots are used to stop the stepper motor

SSW is active for a duration of	1.3 ms
1.45 ms	

SSX is active for a duration of $\quad 1.6 \mathrm{~ms} \quad 1.45 \mathrm{~ms}$

- SSY is active for a duration of $\quad 2.2 \mathrm{~ms} \quad 2.1 \mathrm{~ms}$
2.2
2.8 ms

These four single shots are the stop single shots. They supply the last four advance pulses to the stepper motor. They are fired in sequence (SSW, SSX, SSY and SSZ) Each one has a longer duration time than the one previously fired. As a result the stepper motor slows down and stops.

[^0]type of printer installed.

INSTRUCTION REGISTER

- The instruction register consists of eight polarity hold latches
- Latches set determine the instruction and the cycle to be taken by the attachment
- Latches have active outputs when their inputs are inactive

The four instruction lines (SIO, LIO, TIO, and SNS) indicate the presence of an instruction in the CPU register. If the printer attachment decodes its device address and a condition code acceptable to the instruction latch set the instruction will be performed in the cycle that is called for by the
instruction register.

2. DATA BUS OUT (DBO) REGISTER

- The data bus out register consists of nine polarity hold latches, eight fo data and one for parity
- All data from the CPU enters the attachment through the DBO register and sets the appropriate latches.
- Latches have active outputs if their inputs are inactive (except for the 5 bit latch which is also used for cycle steal priority

Eight data bits and one parity bit are transferred to the printer attachmen from the CPU by the data bus out (DBO) lines. These data bits are sent to the DBO parity check circuits and to the DBO latches.
The parity check circuits check each data byte sent to the attachment for odd parity.
Data sent over to the DBO lines is set into the DBO register at CPU clock 5 time. At the next CPU clock 5 time, new data is set into the registers or the registers are rese

3 LOCAL STORAGE REGISTER (LSR) SELECT

- Local storage register select selects printer attachment LSR's (located in the CPU) to obtain print and carriage information, and to modify the LSR's.
- LSR select lines 4 and 6 select the print command address register (PCAR).
- LSR select lines 5 and 6 select the print data address register (PDAR).
- LSR select lines 3 and 6 select the locate line address register.

The LSR select circuitry is used to select the appropriate LSR to obtain print data, a command or a count. After obtaining this data, the LSR is reselected for updating.

Data Bus In (DBII) Assembler

- The DBI assembler consists of nine latches and a decode circuit.
It separates all data to be sent to th CPU on DBI into data bits.

All data from the attachment that is to be sent to the CPU is assembled in the DBI assembler and gated out during Bycles (with the exception of force P bits).

 character from the ROS module to the ROS control. Since the character is printed on a seven by seven matrix, the ROS module is gated seven times by the matrix counter (advanced by the seven print emitter pulses).
6 The output of the ROS control is checked for the correct ROS parity (odd).
7 The print hammer select determines which hammers are to be fired in print position one (for the first vertical row of the character) and sends pulses to the printer to energize the selected print magnets.
8 The selected hammers are fired and another print emitter pulse is sent to the matrix counter

20 The matrix counter advances to two and gates the ROS module. This operation continues until all seven print emitter pulses have been received and the print hammers have fired seven times to complete the character.

A PRINT DATA REGISTER (PDR)

- Consists of nine flip latches, eight for the data character and one for parity.
- Retains the data character during printing.

During the data cycle steal the character to be printed is stored in the PDR. The two through seven positions are used to determine the ROS character to be printed. The data character is held in the PDR until the character is printed and is replaced with the next character to be printed during the next data cycle steal.

B READ ONLY STORAGE (ROS) MODULE

- Consists of four modules.

- Translates the output of the PDR into the character to be printed.

The ROS module translates the output of the PDR into a printable charac ter. The ROS module has an active output seven times per character (gated by the matrix counter), once for each vertical row of the seven by seven matrix that forms the character.

2. The first printemitter pulse causes SS3 to fire which advances the matrix counter to one. With matrix counter one active, 'SP ROS input 1^{\prime} is activated.
3 The decode for an ' H ' is stored in the third ROS module. Therefore, print data register latch 4 is active and decodes to select the third ROS module by activating 'SP ROS mod 3 select'. This ROS module ted for the entire character.

4 The ROS module decodes the first vertical row of the character ' H to be printed, and selects all of the print hammers.
5 All of the hammers fire at SS3 for $600 \mu \mathrm{~s}$, and the first vertical row of the character is printed. SS3 was actually fired prior to the time that the matrix counter was stepped to one, but the hammers could not respond at this time.
6. The second print emitter pulse causes SS3 to fire again. The matrix counter advances to two, and the second vertical row of the character is decoded in the ROS module. This time no hammers are selected.

7 This procedure is repeated until the matrix counter has advanced to a count of seven, and all vertical rows of the character have been printed. After the seventh print emitter pulse, the integrated emitter falls and a count cycle is requested unless the attachment has reached 'count end'.

B

Note 1: Take cycle steal o get command from PCAR.

Note 2: If required, take a cycle steal to get count from PCAR

Note 3: Take cycle steal to get print data from PDAR.
Note 4: Commands with count bytes require only one command
cycle steal. After the first command count, and data
cycle steals; the sequence is count and data count and data
cycle steals until count end is reached.

Horizontal Cycle Check

A horizontal cycle check occurs when a horizontal command (print, tab or element return) is given to the printer and no feedback response is r ceived from the printer within 35 ms (SS1 time out). The check for this condition is as follows:

- A horizontal command is given.
- SS1 is fired (it is active for 35 ms).
- The 'horiz cy inlk' latch is set.
- The printer should activate 'matrix counter tr1' indicating that mechanical motion has taken place.
- 'Matrix counter tr1' activates 'SP reset horiz cy chk inlk' to reset the 'horiz cy inlk' latch.
- If the response ('matrix counter tr1') is not received within 35 ms , SS1 times out and the 'horiz cy inlk' latch remains set causing a horizontal cycle check.

Vertical Cycle Check

A vertical cycle check occurs when a vertical command (primary index, secondary index, or skip) is given to the printer and no feedback response is received from the printer within 35 ms (SS1 time out). For printers with pin feed platens, a response time of 120 ms is allowed for primary index commands. This is because these printers have a slower mechanical response time. The procedure for checking for vertical cycle checks is as follows:
A vertical command is given

- SS1 is fired (it is active for 35 ms). If the command is a primary index command for a pin feed platen printer, SS1 overlap also is fired (it is active for 120 ms).
- The 'vert cy inlk' latch is set
- The printer should respond with a motion contact pulse. The response to a command to a primary carriage activates 'SP prim motion contact'. The response to a command to a secondary carriage activates 'SP sec motion contact'. These lines active indicate that mechanical motion has taken place.
- Either of these lines active resets the 'vert cy inik' latch. On a skip command, the carriage emitter pulse resets the 'vert cy inlk' latch.
- If these responses are not received within $35 \mathrm{~ms}(120 \mathrm{~ms}$ for pin feed platen printers), the 'vert cy inlk' latch does not reset and a vertical cycle check occurs.

INTRODUCTION TO OPERATIONS

Chapter 3 contains detailed flowcharts and timing charts of the operations performed by the printer attachment.

Flowcharts

The flowcharts contain three levels of information. By reading down the heavy dark lines, the reader can learn the major objectives of the operation. The second level of inforation is obtained by rejectives of the operation. he boxes that branch off the heavy dark line. The information that is con tained in each block in a heavy dark line is explained in the blocks that branch off from it.
The third level of information is contained in the note blocks (open ended blocks) that branch off the second level blocks. Information in these blocks is intended to explain why an action has been performed

Timing Charts

The timing charts in this chapter are to be used to supplement the information found in the flowcharts.

* M bit is 0 unless
the LCD device is
I/O is for the LCD.
** $=$ Bits tested for by the attachment.

A

-

B

1-Op Cycle
$\underbrace{1-x 1 \text { or } 1-H 1}_{\text {CPU cycles for }} \begin{gathered}\text { and } 1-1.1\end{gathered}$

Line Title				$1 . \mathrm{CCy}$	\triangle	EB-1 Cycle	EB Not 1 Cycle
		ALD Page	0123456781	01234567810		1012345678	012345678
1	Ch LIO Instruction	PR011	-				
2	SP I-O Instruction	PR211					
3	SP dbor 012Not3	PR213		-	moser		
4	Select SP Latch	PR214					
5	Ch I-O Conditions (A-B)	PR216		Note 1 !			
If N Code is 011 X :							
6	SP Control LIO E-B1 Cycle	PR215				${ }^{5 C}$	
IfIf n code is in $10 x$							
7	Ch E-B1 Cycle	PR211					
8	Ch E-B Not 1 Cycle	PR211					
9	SP E-B Cycle	PR211					
10	Ch LSR Select 5	PR215		Select	PDAR		
11	Ch LsŔS Select 6	PR215				$1 A_{1}$	
			\#.		1		
If N Code is 11 X :							
12	Ch E-b1 Cycle	PR211					
13	Ch E-B Not 1 Cycle	PR211	1				
14	SPE-B Cycle	PR211	!				
15	Ch LSR Select 4	PR215	!	Select	AR		
16	Ch LSR Select 6	PR215	!			1	
If N Code is 00X:				\qquad	\%.		
			\|				I
17	Ch E-B1 Cycle	PR211	I				I
18	Ch E-b Not 1 Cycle	PR211	I				
19	SPE-B Cycle	PR211					1
20	SP Select LLAR	PR215	I				\|
21	LD LSR Select 3	PR823	I	Select	LLAR		1 -
22	LD LSR Select 6	PR823					
Note 1. If a condition code of B is not decoded during the I-Q cycle and the load I/O is not a control load I/O, I-R back up takes place.							

2

B

B

.

B

B

$\begin{array}{ll}\text { Note 1: } & \text { Stepper rise is generated by the leading edge of the stepper emitter feedback pulse. } \\ \text { Stepper fall is generated by the triling edge of the stepper emitter feedback pulse. }\end{array}$

B

Note 1. $\begin{aligned} & \text { Stepper rise is generated by the leading edge of the stepper emitter feedback pulse } \\ & \text { Stepper fall is generated by the trailing edge of the stepper emitter feedback pulse. }\end{aligned}$

A
-

B

tab right operation

The tab right operation moves the print element to the right a number of character positions specified by the count byte. On printers with 22 inch character positions specified by the count byte. On printers with 22 inch
carriages or bi-directional printing, tabs of more than eight character pos carriages or bi-directional printing, tabs of more than eight character posi-
tions begin at high speed. Tabbing at high speed continues until a count of eight is detected in the count byte. At this time the print element is shifted down into low speed to complete the operation.
Printers with 13 inch carriages without bi-directional printing always tab right at low speed.

- During a command cycle steal the 'tab right' latch is set.
- SS1 is fired to check for a horizontal cycle check.
- SSA is fired to start the stepper motor.
- A count cycle steal is requested
- A count cycle steal is granted and the PCAR is selected.
- The PCAR addresses the count byte and it is modified -1 in the ALU and placed back in main storage.
- The stepper motor moves the print element one character position.
- Count cycles are taken until the count byte equals FF and 'SP count end' is raised in the attachment

tab Left operation
The tab left operation moves the print element to the left a number of character positions specified by the count byte. Tabs of more than eight character positions begin at high speed and continue until a count of eight is detected in the count byte. At this time the print element is shifted down into low speed to complete the operation.
- During a command cycle steal the 'tab left' latch is set.
- SS1 is fired to check for a horizontal cycle check
- SSA is fired to start the stepper motor.

A count cycle steal is requested.

- A count cycle steal is granted and the PCAR is selected.
- The PCAR addresses the count byte and it is modified -1 in the ALU and placed back in main storage.
- The stepper motor moves the print element one print position.
- Count cycle steals are taken until the count byte equals FF and 'SP count end' is raised in the attachment.

PRIMARY SKIP OPERATION

A skip operation can take place only on a primary carriage. Any number of lines from 2 to 256 may be skipped. The number of lines to be skipped is contained in the count byte in main storage (addressed by the PCAR). One count cycle steal must be taken for each line to be skipped. Count cycle steals are taken until the count byte is FF

- During a command cycle steal the 'prim skip' latch is set.
- SS1 is fired to check for a vertical cycle check.
- A count cycle steal is requested
- The count cycle steal is granted and the PCAR is selected
- The PCAR addresses the count byte and it is modified -1 in the ALU and placed back in main storage.
- The attachment generates a pulse to pick the forms magnet in the printer
- The printer advances the forms one print line
- The motion emitter in the printer sends a response to the attachment to reset attachment vertical cycle check circuitry.
- Count cycle steals are taken until the count byte equals FF and 'SP count end' is raised in the attachment.

2

The primary index
operation ad-
vances the forms
in the primary
carriage to the
next row of
print as follows:

1. Set the 'prim index' latch.
2. Fire SS 1.
3. Generate a pulse to pick the motion
magnet in the magnet
printer.
4. The magnet picks, and advances and advances
the forms to the next row to be printed.
5. A response pulse from the motion contact resets
the attachment circuitry.

2

v
3

A

BI-DIRECTIONAL PRINT OPERATION

Printing in bi-directional print mode is accomplished in the sam manner as it is in serial print mode. There are two basic require ments that must be met in bi-directional printing. These are

1. All lines to be printed should be of the same length (it is possible with some programs to vary line length.
2. When printing from right to left, the count byte must be added (by the attachment) to the PDAR so that the last character in the data field is printed first.

In order to print the last character first (printing right to left only), an initial count cycle steal and data cycle steal are taken. The procedure is as follows

- Take an initial count cycle steal and place the count byte in the print data register in the printer attachment. This count cycle steal is the same as any other count cycle steal except that the count byte is not decremented in the CPU, and that the count byte is brought over to the printer attachment.
- Take an initial data cycle steal and send the count byte from the print data register to the CPU. In the CPU it is added to the PDAR address through the ALU During this CP it is added to the PDAR address to the attachment. The PDAR is not decremented -1 , but instead the count byte is added to the contents of PDAR.
- The PDAR is now pointing at the last data character in the print field. When printing begins on a normal count and data cycle steal basis, the last character in the field is printed. The data field is decremented until the count byte goes to FF (data is taken out of storage from right to left, instead of from left to right)
It is important to remember that the above procedure (initialize lef operation) takes place only when the print element is at the right hand limit. Also, the right hand limit is variable according to the program
Printing from left to right requires no initial cycle steals.
The following flowchart of the bi-directional print operation shows only the initialize left operation. The actual printing and stepper motor operations are the same as shown in the serial print flowchart, excep that the matrix counters must be decoded so that line seven prints first in a bi-directional print operation

A

	ine Title	ALD Page	I-OP	1-Q	1-R		1-0		1-0		1-0		1-0		1-0					
	Line Titie	ALD Page	012345678	\|012345678		$012345678 \mid$	\|012345678		012345678	\|012345678		\|012345678		012345678	012345678	012345678	012345678	012345678	012345678	012345678
1	Ch SIO Instr	PR211	Clock 5																	
2	SP Selected SIO I-R Cycle	PR214					Command Steal		$\begin{aligned} & \text { Initial Count } \\ & \text { Steal } \end{aligned}$		$\begin{aligned} & \text { Initial Data } \\ & \text { Steal } \end{aligned}$		$\begin{aligned} & \text { Count } \\ & \text { Steal } \end{aligned}$		$\begin{aligned} & \text { Data } \\ & \text { Steal } \end{aligned}$					
3	SP Attach Reset	PR261																		
4	SP Attach Busy	PR261			Clock 5															
5	SP Set Cmmd Req	PR261			Clock 78															
6	Command Req Latch	PR231			$\begin{gathered} \hline \text { Clock } 78 \\ 2 \\ \hline \end{gathered}$	cil	clock 8C													
7	Ch Priority Request Bit 5	PR231				$\begin{gathered} \hline \text { Clock } 6 \\ 6 \text { 国 } \\ \hline \end{gathered}$		$\begin{gathered} \hline \text { Clock } 6 \\ 13 \text { 国 } \\ \hline \end{gathered}$		$\begin{array}{r} \hline \text { Clock } 6 \\ 15 \\ \hline \end{array}$		Clock 6 17		$\begin{gathered} \hline \text { Clock } 6 \\ 19 \\ \hline \end{gathered}$						
8	SP Cycle Steal Honored	PR231				Clock 8		Clock 8		Clock 8		Clock 8 m		Clock 8 1						
9	Command Steal Latch	PR231				$\begin{array}{\|cllcc} \hline \text { Cloc } \\ \hline \end{array}$	Clo	ck 7C												
10	Print Left Latch	PR221					$\begin{array}{r} \text { Clock } 5 \mathrm{C} \\ \hline \end{array}$													
11	Initialize Left Latch	PR411					Clock 9.10				$\begin{aligned} & \mathrm{ClO}_{2} \\ & 20 \\ & \hline 0 \end{aligned}$									
12	Init Left Inlk Latch	PR411					${ }^{\text {Clock } 7}$					${ }^{\text {Clock } 3}$								
13	Count Req Latch	PR231					$\begin{array}{r} \hline \text { Clock } 78 \\ 9 \end{array}$		$\begin{aligned} & \text { Clock 8C } \\ & 14 \end{aligned}$											
14	Count Steal (initial)	PR231						Clock 8 \qquad		ck 7 c										
15	Data Request	PR231							Clock 78		Clock 8C 16									
16	Data Steal (initial)	PR231								$\begin{gathered} \text { Clock } 8 \\ 15 \end{gathered}$	${ }_{\square}^{\text {clo }}$	lock 7 C								
17	Count Req Latch	PR231									Clock 7B 16		$\begin{aligned} & \text { Clock 8C } \\ & 18 \end{aligned}$							
18	Count Steal Latch	PR231										$\text { Clock } 8$	${ }^{\text {Clo }}$	ck 7 C						
19	Data Request Latch	PR231											Clock 78		Clock 8C 20					
20	Data Steal Latch	PR231												Clock ${ }_{19}$		7c				
21	(gate count into PDR)	PR274							$\begin{array}{r} \text { Clock 5C } \\ \hline \end{array}$		${ }^{\text {To }}$	Add Count To PD	DAR							
22	(gate count into DBI)	PR251									$\text { ck } 3$			To Decrement	DAR-					
23	SP Force Binary Subt	PRO24				Increment PCA					Decrements	S Count Byte-			Clock 5 ,	bck 7				
24	SP Force DBI Bit 7	PR024					$\text { ock } 3$		ock 3				$15^{\text {Clock }}$		ock 3 -	ments PDAR				
25	Ch Inhibit LSR Load	PR232							$\begin{gathered} \hline \text { Clock } 6 \\ 14 \\ \hline \end{gathered}$	Clock 1			${ }_{\text {Clock } 6} 18$	Clock 1						
26	Ch Store Data.	PR232						Clock 8	$\frac{\mathrm{Cl}}{14}$	$\frac{10 c k}{4} 7 \mathrm{C}$		$\begin{array}{\|c\|} \hline \text { Clock } 8 \text { I } \\ 18 \end{array}$	$\square \frac{\mathrm{Cl}}{18}$	$\frac{10 c \mathrm{ck} 70}{8}$						

LEDGER CARD DEVICE ATTACHMEN

The ledger card device (LCD) attachment contains the logic circuits to control all LCD operations. The LCD attachment responds to LCD program instructions, requests cycle steals from the CPU, controls the resulting I/O cycle, error checks, and provides status information about the LCD attach ment to the program
The LCD attachment is a standard feature for the 2222 Printer. It is and (A -A2) and shares considerable circuitry with the printer attachment.
Program instruction format and device codes (E hexadecimal) are th same for both the printer and ledger card device. The M code of an in struction determines the device selection. An M code of 0 selects the printer and an M code of 1 selects the LCD.
There are three local storage registers used by the LCD attachment, two of the three are shared with the printer.

Ledger Card Format

The ledger card format is shown in the illustration to the right. Print posi tions 215 through 220 are reserved for line finder and ID number marks. No printing other than these marks should occur beyond print position 214. Marks are printed on the card by the printer under program control. Ret to page 9-102 for further information on print marks. Each printed line
must have a line finder mark or the line will be overprinted when the card is reinserted into the LCD.

ID Number

Each digit of the ID number is encoded on the ledger card as a 8-4-2-1 bit code. Bit values are determined by the way they are arranged and printed on the card as shown.

Each digit of the ID number requires two lines to encode it.
.

LINE 1 ID NUMBER 9876543210
 20 print lines
10 digit ID nu
 (Note. Marks within this area are to show
line spaces and are for reference only.)

BR250

ndicators and Control

There is one indicator and one manual control for the LCD. The indicator is the LCD I/O attention light on the keyboard console. It lights when a ledge card can be inserted into the LCD and turns off when the LCD operation starts.
The card eject switch, located on the printer cover (to the right of the LCD input chute), is the only manual control. When the card eject switch is operated, it causes a ledger card in the LCD to be ejected. This switch is interlocked to prevent a manual eject operation if a program initiated opera tion is in progress at the printer or LCD.

ocal Storage Registers

There are three local storage registers assigned to the LCD attachment. They are the print data address register (PDAR), print command address register (PCAR), and the locate line address register (LLAR).
The PCAR and PDAR local storage registers are shared with the printer. If orinter and LCD operations are overlapped, care must be exercised to prevent changing an LSR address before an operation is complete. The PDAR contains the address of the main storage location where LCD data (ID num ber) is stored. The PCAR contains the address of the main storage
The locate line address register (LIAR) is not shared with the prind
he locate ine address register (LLAR) is not shared with the printer. and index. This register contains the main storage address of a two byte field that is used as two separate decrementing counters. This field is initial ized to 110E (hexadecimal) at the start of an LCD operation.

Program Instructions

There are four program instructions for the LCD: load I/O (LIO), test I/O TIO), sense I/O (SNS), and start I/O (SIO)
Load I/O instructions load the LSRs with an address in main storage Lhere data and control fields for the LCD are located. A control LIO in struction is available for diagnostic testing of the LCD attachment under program control.
Test I/O instructions test the LCD attachment for operation status. It also prepares the LCD to accept a ledger card before an LCD operation is started. Sense I/O instructions can store the address in an LSR at a main storage location, or sense the error and status conditions in the LCD and transfer the results into main storage.
Start I/O instructions perform only one function, to start an LCD operaion. An LCD start /O instruction does not have any control information oo determine what operation the LCD is to perform (except for diagnostic perations). The start I/O causes the LCD attachment to request a cycla teal to obtain the necessary control information from a control field located in main storage.
The format of these instructions is the same as for the printer. Refer to pages 9-105 through 9-109 for further description and format illustrations.

edger Card Device Operation

The LCD can perform the following six operations.

- Feed, read ID, and locate next print line
- Feed, read ID, and eject

Read all line finder mark

- Read back and eject
- Index
- Eject

Feed, Read ID, and Locate Next Print Line
This operation causes the LCD to:

1. Feed the ledger card into the LCD
2. Read the ID number from the ledger card and transfer it into main storage.
3. Feed the ledger card until the next available print line is positioned at the printer platen and stop the card feed

Feed, Read ID, and Eject

This operation causes the LCD to

. Feed the ledger card into the LCD
2. Read the ID number from the ledger card and transfer it into main storage.
storage.
stacker.

Read All Line Finder Marks

This operation causes the LCD to

1. Feed a ledger card into the LCD.
. Read the line finder marks (if any) printed on the ledger card. Each mark is read twice, once as it passes the lower sense station (sense cell 3) and again when it passes the upper sense station (sense cell 4).
. Generate a data byte for each two lines read from the card. By bit
 main storage.

Read Back and Eject

This operation causes the LCD to

1. Start ejecting the card from the LCD. (Note, the card was stopped with the last printed line positioned at the platen when this operation started.)
2. Read the line finder mark that was located at the platen when this operation started as it passes sense cell 4.
3. Indicate if the line finder mark was read by (1) ejecting the card from the LCD, or (2) if the line finder mark was not read, stop the LCD feed and indicate a read mark check

Index

This operation causes the LCD to move the ledger card to the next sequential print line.
Eject
This operation causes the ledger card to eject from the LCD into the LCD stacker.
A programmed eject is started when an LCD start I/O instruction is issued and the command field in core is an eject
A manual eject is started when the card eject switch is operated. This operation can not be started if a program initiated operation is in progress at the printer or LCD.
The card eject switch must be held in its operated position to eject the card. The manual eject operation will stop as soon as the switch is released.

Commands

LCD operations are not performed directly by issuing program instructions to the LCD attachment. All LCD operations are divided into one or four smaller instructions referred to as commands. Commands are one byte in length and are located in main storage. The command or group of command required to perform one operation is referred to as a command field. The
address where the first byte of the command field is located in main stora is loaded into the PCAR LSR, before the beginning of an LCD operation Some commands require an additional control byte, called a count byte. Count bytes are used as a decrementing counter and determine how long a command instruction is to be executed. If a count byte is required it must immediately follow the command byte it is associated with.
Commands are accessed by the LCD attachment by requesting cycle
steals from the CPU and addressing the LSR (PCAR) that contains the command field address. As each command enters the LCD attachment, it sets a register that gates the attachment to control the LCD and perform the command. If the command has a count byte, the LCD attachment executes the command until the count byte decrements to FF (hexadecimal). Each byte in the command field is executed, in sequence, by the LCD attachment until the end of the command field is reached.
There are eight LCD commands. Their bit codes, the function they per form, and if they require a count byte, is shown in the following illustration.

Command name	Bit code	Count byte required and if so, its value.	Function
Eject	00	No	Eject the ledger card from the LCD.
Index	01	No	Move the ledger card to the next sequential print line. If the bottom edge of the ledger card is above the lower sense station, decrement the OE byte of the 110E field 1 for each index command issued.
Read mark eject	02	Yes-08 (count of 9)	Start the LCD card feed. When the line that was positioned at the printer platen when this command was issued passes sense cell 4, see if a line finder mark was read. If a line finder mark was read, eject the card. If no mark was read, set a read mark check.
Sense amp check	03	$\begin{aligned} & \text { Yes-05 } \\ & \text { (count of 6) } \end{aligned}$	Instructs the LCD attachment to check the lower sense cells in the LCD for an operational status. If they are not functioning correctly, a sense amp check is set.
Card skew check	04	$\begin{aligned} & \text { Yes-00 } \\ & \text { (count of 1) } \end{aligned}$	Instructs the LCD attachment to check sense cells 1,2 , and 3 for an inactive condition. If any of the cells are active after the 7th line feed, set a card skew check.
$\begin{aligned} & \text { Locate } \\ & \text { ID } \end{aligned}$	05	Yes-04 (count of 5)	Instructs the LCD attachment to feed the top edge of the ledger card 6 line spaces above the lower sense station. This moves the top margin of the ledger card above the cells and in a position to start reading the first printed line where the ID number begins.
Read ID and locate	06	$\begin{aligned} & \text { Yes-13 } \\ & \text { (count of 20) } \end{aligned}$	Instructs the LCD attachment to read the 20 line ID number (10 digits) and at the same time, search for missing line finder marks. When 2 missing line finder marks are found in succession, start decrementing the 11 byte of the 110 E field at the LLAR address.
Read ID and eject	07	$\begin{aligned} & \text { Yes-13 } \\ & \text { (count of 20) } \end{aligned}$	This operation is the same as read locate except the LCD attachment does not check for line finder marks. The ledger card is ejected after reading the ID number.

Command Field Formats

The commands required for each LCD operation, their sequence and count byte relationship is shown in the following illustrations. The LCD commands for each operation are fixed and must be issued as shown.

Feed, read ID and eject

Read mark and eject

Byte

Feed, read ID, and locate next print line
Index

 Byte $\left|\begin{array}{c}\frac{1}{0} 1 \\ \hline 0 \text { 1. } 1 \\ \hline \text { Cmmd } \\ \text { Index }\end{array}\right|$

Read all line finder marks

Byte

${ }_{0}{ }^{3}$	${ }_{0}{ }^{1} 5$	${ }_{0}{ }^{1} 4$	${ }^{1} 10$	${ }^{0} 5$	${ }^{0}{ }^{1} 4$	${ }_{0}{ }^{1} 7$	${ }_{5} 5^{5}$
Cmmd Sens		Cmmd Card		Cmmd			

Eject
Byte

\section*{| 1 |
| :---: |
| $0^{1} 0$ |
| Cmmd |
| Eject |}

General Operation of the LCD

The program is responsible for:

. Generating the command field for the operation to be performed

2. Loading the LSRs.
. Loading the next printable line and the last printable line counters Loading the next printabie line and the last printable line counters
with the 110 E value if the operation is a feed, read ID, and locate. The last program instruction, before starting a feed, read ID, and locate, feed, read ID, and eject; or a read all line finder marks operation, is a TIO for card not aligned. This instruction causes the LCD to raise the card gate and light the LCD I/O attention light on the keyboard console, indicating that a ledger card can be inserted into the LCD. The program will loop on the TIO instruction until a ledger card is inserted into the LCD and is aligned at the pinch point of the first feed rolls. When the card is properly aligned within the LCD, the TIO instruction for card not aligned is onditioned and the program performs an LCD SIO instruction.
One of three operations can be issued to feed the ledger card into the ead lll line finder marks. Each of these operations synchronizes the LCD rttachment, the ledger card, and the LCD with each other when the ledger ard is aliged at the first feed rolls in the LCD. From this point on the LCD attachment is kept in step with the LCD timing pulses received from the LCD. Each timing pulse is generated on a line for line basis. The LCD attachment uses this signal to request cycle steals from the CPU, to access the command field, and to decrement the count bytes. As each count byte is command field, and to decrement the count bytes. As each count byte
is decremented to FF (hexadecimal) the next command byte is accessed. This action continues until the command field has been executed. It is important to recall the mechanical layout of the LCD and the ledger card format to understand the command field function.

Next Printable Line and Last Printable Line Detection
A two byte field, addressed by the LLAR, is used as two separate decrementing counters to detect the next printable line and the last printable line on the ledger card. The format of the field is shown below.

First byte	Second by
1	0, E
Locate line counter equals FF (hexadecimal) when next printable line is positioned at the platen.	Last printable line counter equals FF (hexadecimal) when last line is located and FE at the end of an operation.

The first byte is the locate line counter and contains the value of 11 (hexa decimal) at the start of an operation. Its purpose is to cause a feed of 18 line spaces after the LCD attachment detects the next available print line. The reason for this delay is because the lower read station, where the line stop at the printer platen. In addition the LCD attachment must sense 2 missing line finder maks in 2 next printable line Therefore the locate line counter equals 17 (decimal) to cause a 20 line lapse. (Two lines for missing line finder marks plus one timing pulse to decrement the 11 byte (hexadecimal) to FF.)
The 11 (hexadecimal) value is decremented with each LCD timing pulse, after the two missing line finder marks are detected, until the count becomes FF (hexadecimal). This value generates a control signal to stop the LCD feed. The actual value in byte one will be FE (hexadecimal) when the operation is complete.
The second byte contains the value of 0 E (hexadecimal), and is the last printable line counter. When the $O E$ byte decrements to FF (hexadecima) , it generates a signal that may be sensed with a TIO instruction. When the bottom edge of the ledger card passes the lower read station, the $0 E$ byte is decremented with each timing pulse. In this manner, when 14 line spaces have passed after the bottom of the ledger card was sensed, the last printthe lower sense station and the platen is 20 linespaces, but allowance mus the lower sense station and the platen is 20 linespaces, but allowance mu decrementing the count to $F F$.
Note, the 110 E value must not be reinitialized for an index operation because the last printable line count would be invalid.

Line Finder Mark Detection

A line finder mark is printed at the end of each printed line. The LCD at tachment uses the absence of line finder marks to detect the next printable line on the ledger card. Two conditions are checked for by the LCD attachrk detection

1. The line finder mark printed at the last printed line on the ledger card should not be late in relation to the LCD emitter pulse. If this condition is detected, an extra line space must be skipped before the ledger card is stopped at the printer platen to prevent overprinting of lines on the ledger card
2. If an extra line space is skipped because a line finder mark is detected late, the attachment checks that the last printable line has not been detected. This is to prevent the skipped line from being stopped be . If this conditio axists, the ledger card is ejected from the LCD

rror Detection

The LCD attachment checks for six error conditions during LCD operations. fany of the LCD errors are detected, the LCD card feed is stopped and a error conditions and their description, refer to page 9-523.

Chapter 5. LCD Functional Unit

This chapter divides the LCD attachment circuits into seven major units.

- LCD pulse generate and sense cell latches
- Command control, diagnostic LIO control, and LCD attachment resets
- DBI assembler and channel in controls
- Cycle steal and LSR selection
- Read ID data assembler
- LCD controls
- LCD attachment error conditions

Each unit contains second level diagrams showing the interconnection with other units and ALD references. Some units contain simplified diaSignal lines on the second level diagrams are labeled to indicate where the signal originates. $9-\mathrm{XXX}$ numbers tefer to pages widn this manual where the source of the signal is located. PRXXX references are to printer attach ment ALDs where the signal is generated but is not shown in this manual. Clock signals are not referenced
The timing charts are for instructional use only, to show overall signal relationship. For exact timing references, refer to the ALDs.
The complex units are explained in detail. Objectives only are given for units that are basically self-explanatory.
A data flow diagram is included at the beginning of this chapter. It shows Ahe relationship of the functional units and sers an page where the functional unit is described.
Printer circuits that are shared with the LCD attachment are shown in the printer chapters 2 and 3 . Refer to pages $9-202,9-204$ and $9-211$ for th
major units.
Refer to page $9-202$ for the LCD and printer attachments board layout.

LCD PULSE GENERATE AND SENSE CELL LATCHES
This functional unit

- Receives signals from the LCD.
- Synchronizes and shapes signals for the LCD attachment.
- Detects missing or late line finder marks.
- Generates timing gates.
- Contains the sense cell latches.

Pulse Shaping

Signals from the LCD to the LCD attachment, and LCD single shot output signals are passed through pulse shaping logic. Pulse shaping:

1. Insures an input signal is at least clock 3 through clock 0 time in length to distinguish between a desired signal and electrical noise on the signal line.
2. Synchronizes the input signal to the LCD attachment clock times This results in the input signal starting and ending at definite clock times.
3. Breaks input signals, that are long in duration, into pulses that indicate a change in signal status.
Each signal line that requires pulse shaping, is fed into a circuit containing two polarity holds. The manner in which the polarity holds operate to shape a signal is shown by the timing chart on this page.

LCD Emitter Pulse

This signal is generated midway between clutch ratchet teeth whenever the LCD feed clutch is energized. The first emitter pulse occurs approximately 30 ms after the feed clutch is energized and approximately 14 ms thereafter. Timing pulses are shaped by the pulse shaping circuits, and result in a signal that is clock 3 through clock 0 in duration. LCD timing pulses control the LCD attachment on a line for line basis.

Sense Cell Latche

There are four sense cell latches, one for each of the LCD sense cells. These latches are set when a sense cell detects a mark on the ledger card and are reset at the end of each LCD timing pulse.

Single Shots

Six single shots develop timing gates in the LCD attachment. The purpose of each single shot is as follows:

1. LD stop single shot produces a pulse 2 ms after each LCD timing pulse. Its output is the LD stop pulse and is the final condition to reset the LCD drive latch and stop the LCD feed clutch,
. LD skip ine single shot 1 and LD skip ine single shot 2 are used togate conditions the LCD attachment to define any line finder mark sensed after this gate is active, as late. LD skip SS1 is fired by each LCD emitter pulse; its only function is to fire LD skip SS2. Two single

shots are needed because of single shot recovery requirements.
2. $L D$ drive check single shot generates a 45 ms gate to set the drive check latch if an LCD timing pulse is not sensed at the LCD attach ued to the LCD. This issued The LD drive check single shot if fired at the start of eas issued. The
3. LD hold busy single shot is fired whenever the LCD drive latch is reset. This prevents the LCD attachment busy signal from becoming inactive until 55 ms after an LCD feed operation has ended. This delay is to allow mechanical motion to stop before another operation is issued to the LCD.
4. LD card alignment single shot is fired when a ledger card is aligned at the pinch point of the first feed rolls and transfers the card in switch. The card alignment single shot generates a gate to prevent an LCD feed operation from starting until 250 ms after the card in switch has pinch point of the first feed rolls before card feed begins.

Line Finder Mark Detection

The latches: late gate, late mark, 1st miss, 2nd miss, and skip line function together to provide line finder mark control to the LCD attachment.
Refer to the timing chart on page $9-505$ for the timing relationship of these latches.
Late gate latch conditions the late mark latch 10.5 ms after each LCD
reset, the late mark latch is set to indicate that a line finder mark was de ected late.
First and second miss latches indicate the number of line spaces on the ledger card that were read and no line finder marks were found. Two missing line finder marks in succession is a signal to the LCD attachment to stop LCD feed after feeding 18 more line spaces. (Unless the last line finder mark was late, feed 19 line spaces before stopping the card feed.) This positions the next printable line on the ledger card at the printer platen. The kip line latch is set, if the last line finder mark read was sensed late to cause the extra line feed

LCD Card Position Detectio

he card-in and card-out switches in the LCD, set latches in the LCD attach ment. After pulse shaping, these signals control the LCD attachment in regard to card position within the LCD. 250 ms after the card in switch latch is set, the card alignment latch is set to indicate that a ledger card is positioned at the pinch point of the feed rolls and a card feed operation can begin.
The card gate latch activates the LCD card gate, and controls when a ledger card can be inserted into the LCD. This latch is set by an LCD TIO instruction for card not aligned.

A

B

Note. All single shot outputs are shaped by logic
identical to the

COMMAND CONTROL, DIAGNOSTIC LIO CONTROL, AND LCD ATTACHMENT RESETS

This functional unit:

- Contains the command register and its controls.
- Contains the control LIO (diagnostic) register.
- Shows the LCD attachment reset.

Command Register

Sets during a command cycle steal when a command byte is on the DBO.

- Output is fed into a decode network to group similar commands, and set the command chained latch if there are additional commands in the command field for the specific operation.
- Gates the LCD attachment to perform one of eight commands.

Diagnostic Control Register and Reset Network

- Sets during the EB1 cycle of a control LIO instruction.
- Simulates LCD attachment signals with polarity holds set from the DBO lines during a control LIO instruction.
he LCD attachment reset network prepares the LCD attachment for an operation by conditioning the latches in the attachment to specific set or reset states.

LCD ATTACHMENT-Functional Units DBI Assembler and Channel In Controls (Part 1 of 2)

A

DBI ASSEMBLER AND CHANNEL IN CONTROLS
This functional unit:

- Gates LCD attachment data and status bytes onto the DBI.
- Generates constants for LSR address and storage modification
- Controls the I/O condition B response to SIO and TIO instructions.
- Controls the LCD I/O attention light on the keyboard console.

cyCLE STEAL AND LSR SELECTION

This functional unit:

- Requests cycle steals from the CPU
- Selects one of the three LSRs assigned to the LCD attachment.
- Controls the channel ALU binary subtract line.
- Can prevent a constant, placed on the DBI, from modifying an LSR address.
- Indicates when a count byte, or either byte of the 110 E field, has decremented to FF.
- Indicates when the last printable line on the ledger card has been de tected.
- Indicates when the last count byte of a command field has been proc essed for the operation in progress.
- Detects when the bottom edge of the ledger card is past the lower sense cells.

Cycle Steal Requests and Cycle Steal Cycles
Cycle steal requests are made by the LCD attachment to access the LCD command field, the LCD data field, and a field that contains two one-byte counters. All fields are located in CPU main storage. The need for an I/O cycle is indicated when the LCD attachment sets a request latch. When the CPU acknowledges the request, a second latch is set in the attachment to gate the use of the I/O cycle. Timing charts showing most of the LCD cycle steal functions may be found on pages $9-516$ and $9-517$. The purpose of each LCD cycle steal is as follows.

Command Requests and Command Steal Cycles
Command requests are made by the LCD attachment to access the command bytes in the command field and set the LCD attachment command register. During this cycle:

1. The PCAR LSR is selected.

When the command byte is on the DBO, set the LCD command register.
4. If the command byte is not the last one of the command field, set the command chained latch
5. Increment the PCAR address by one,

Count Requests and Count Steal Cycles
Count requests are made to decrement the count byte. During this cycle:

1. The PCAR LSR is selected
2. ALU binary subtract is conditioned to decrement the count byte
3. Inhibit LSR load is active to prevent the LSR address from incrementing until the count byte decrements to FF.
4. Count end latch is set when the count byte decrements to FF
5. When the ID field has been read into main storage, a signal is gener ated to set the condition latch and activate 'LD read ID end. (The last two conditions are dependent on the LCD operations being exe cuted.)

Data Requests and Data Steal Cycles
Data requests are made to transfer into main storage (1) an assembled digit of the ledger card ID number or, (2) during a read all line finder marks oper ation, a byte that indicates the presence of line finder marks. During this cycle:
The PDAR LSR is selected.
2. The data byte is gated onto the DBI.
3. PDAR address is incremented by one

Locate Line Requests and Locate Line Steal Cycles
Locate line requests are made to decrement the 11 byte of the 110 E field. When the 11 byte decrements to FF, stop the LCD feed clutch to position the next printable line on the ledger card at the printer platen. During this cycle:
The LLAR LSR is selected.
Decrement the 11 byte of the 110 E field by on
When the 11 byte decrements to $F F$, set the LLAR equals FF latch and if the skip line latch is not set, reset the stop latch.

LSR Plus Requests and LSR Plus Cycles, Document End Requests, and Document End Cycles
These requests are always made in sequence. Their purpose is to decremen the $O E$ byte of the 110 E field in order that the last printable line on the ledger card can be detected. During the LSR plus cycle:

1. The LLAR LSR is selected.
2. The LLAR address is incremented by one
. Request a document end steal.
During the document end steal:
3. The OE byte is decremented by one

Set the last line latch if the 0 E byte decrements to FF .
3. Decrement the LLAR address by one

LSR Selection

Cycle steals select an LAR to address one of the three LCD fields in main torage: LSR PCAR address the command field, LSR PDAR addresses the data field, LSR LLAR addresses the field that contains 110 E .

Count End Latch

This latch is set whenever a count field has decremented to FF and, depend ing upon the operation being executed, it may condition the LCD attachment to:

1. Set the last line latch.
2. Set the count stop latch. 3. LSR load' to allow the address in the selected LSR to increment.
3. Request another command cycle steal.

Inhibit LSR Load

When this signal is active, it prevents the CPU from incrementing the addres in the selected LSR. An example would be when a count byte is being decre mented, the PCAR address must not be changed until the count byte decrements to FF.

Count Stop Latc

This latch is set when the read locate, read eject, or read mark eject command count byte (byte 8 of the command field) decrements to FF. This signals the end of the command field for feed, read ID, and locate; feed, read ID, and eject; or read all line finder marks operations. The output from this latch is a gate to set the condition latch and is one condition to activate the read ID end signal.

Condition Latch

The condition latch determines when to allow LSR plus and document end requests. It is set during a feed, read ID, and locate operation when the count stop latch is set. Note that the condition latch is not reset with the LCD attachment reset signal. This is necessary to prevent the condition latch from resetting when an LCD index operation is issued to the LCD after a feed, read ID, and locate operation.

Read ID End

The 'LD read ID' end signal is active when the ID number, read from the ledger card, has been transferred into main storage. It can only be conditioned during two instructions: feed, read ID, and locate; and feed, read ID, and eject. The condition of this signal line determines the LCD attach ment response to an LCD TIO read ID busy instruction.

A

A

READ ID DATA ASSEMBLER

This functional unit:

- Assembles each digit of the ID number into an 8 bit byte.
- Decodes a blank in the ID number to 40 (hexadecimal).
- Decodes digits 0 through 9 in the ID number to F0 through F9 (hexadecimal).
- Operates in one of two modes, normal or diagnostic.

The illustration at the right shows the basic operation of the data assem bler. The upper part of the illustration shows how the data assembler func tions during feed, read ID, and locate; and feed, read ID, and eject operations. The lower part of the illustration shows the data assembler operation for the read all line finder marks operation.
In the operation shown by the upper part of the illustration

- Two lines are read from the ledger card for each digit in the ID number
- The 8 and 4 bits are read on odd lines
- The 2 and 1 bits are read on even lines.
- Marks are read from LCD sense cells 1 and 2.

In the operation shown by the lower part of the illustration

- The SIO IR cycle set the scan mode latch.
- Line finder marks are read by LCD sense cells 3 and 4 .

A

LCD CONTROLS

This functional unit

- Indicates when the LCD attachment is busy,
- Prevents a manual eject operation when the printer or LCD attachmen is busy.
- Contains the LCD feed clutch start-stop circuits.

Busy Latch

The busy latch is set at the start of an LCD start I/O instruction and remain set until after an LCD operation ends, and the hold busy single shot time out.

Manual Eject Latch

The manual eject latch prevents the manually operated card eject switch from starting a feed operation whenever the printer or LCD attachment is busy.

Manual Eject Interlock Latch

While performing a manual eject operation, the manual eject interlock latch:

1. Prevents LCD cycle steal requests from reaching the CPU.
2. Blocks the I / O condition B signal to the CPU.

Drive Latch and Stop Lat

The stop and drive latches control the LCD feed clutch magnet. The drive latch is set to activate the clutch magnet and start the LCD drive. To stop a feed operation, two signals are needed. One signal controls when the feed operation should end. The second signal is required to drop the armature into the clutch ratchet (at the proper time) to engage the next clutch rat chet tooth. If this precaution is not observed, the armature could fall too late in relation to the next clutch ratchet tooth, to stop the clutch at the desired line position
In operation, the LCD attachment resets the stop latch to signal when a feed operation is to end, and allow the next stop pulse (emitter pulse) to reset the drive latch to deactivate the clutch magnet
For an index operation, the clutch motion contact resets the drive latch, For index instruction.

A

B

LCD ATTACHMENT ERROR CONDITIONS

This functional unit:

- Detects Error conditions.
- Conditions unit check if an error is detected.
- Stops any operation in progress when any error condition is detected

The LCD attachment checks for proper operation of LCD operations and commands. If an abnormal condition occurs during an operation, one of six error latches is set. Any of the six error conditions will cause a unit check and immediately stops the LCD operation in progress. The LCD check co ditions are as follows.

1. Sense amp check. This check may be set during the first command
for: feed, read ID, and locate; feed, read ID, and eject; and read all line finder marks operations. It insures that sense cells one, two and three are not activated by the leading edge of the ledger card, after ledger card should cover the loed. Normally he leading edge of $6-1 / 2$ line spaces beyond the pinch point of the first feed rolls.
2. Card skew check This check may be
for: feed, read ID, and locate; feed, read ID, and eject; and read all line finder marks operations. It insures that the top edge of the ledger card covered the lower sense cells after the 7th line space beyond the pinch point of the first feed rolls. If any sense cell (one, two, or three) is not active, it indicates (1) that the card has not reached the lower read station at the correct time, (2) that the card is skewed in the card path, or (3) one of the sense cells is not functioning correctly,
3. Invalid command check. This check may be set during each command steal. It checks for two conditions,
a. The first byte of any command field must be $00,01,02$, or 03 . The LCD attachment sets the invalid check latch if DBO lines 0,1 . $2,3,4$, and 5 are active during the first command steal of a com mand field.
b. Command bytes 3,5 , and 7 of a command string must be coded $04,05,06$, or 07 . The LCD attachment sets the invalid check latch if DBO line 5 is not active during the 2 nd , 3rd, and 4th command steal cycles.
4. Drive check. This check indicates that mechanical motion was not started in the LCD after a feed operation was issued. To prevent this check, an LCD timing pulse must be sensed by the LCD attachment within 45 ms after a feed operation was issued to the LCD. At the start of an operation, the drive check interlock lo pulse does not rese the drive check interlock latch before the drive check single shot times out, the drive check latch is set.
5. Line finder mark check. This check can be set only during a feed, read ID, and locate next print line operation. It indicates that after two successive line finder marks were found missing (2nd miss latch is set),
another line finder mark was sensed at the lower sense station. nother line finder mark was sensed at the lower sense station.
6. Read mark check. This check can be set during a read back and eject operation. It indicates that the line positioned at the printer plate when the read back and eject operation was issued, did not have a readable line finder mark when that line passed sense cell 4 . Sense cel is located 9 ine spaces above the printer platen, therefore the che for the line finder mark must be delayed until the ledger card has moved 9 line spaces from the printer platen.

Chapter 6. Ledger Card Device Attachment Operations

his chapter explains how the LCD operations are performed. LCD instructions load I / O, test I / O, sense I / O, and start I / O are the same as for the inter and are explained in Chapter 3.
Feed,

- Index
- Read back and eject
- Eject
- Read all line finder marks (diagnostic)

All of the operations except read all line finder marks, are explained in three parts. First the objectives of the operation are given, followed by an perational data flow diagram and one or more timing chart
Ol lin lin
 boxes to the right of the heavy lines and connected by a lighter line, ex plain the details.
The timing charts show the overall relationship of the signals needed to ter 5 by listing the per . They are referenced to the functional units in Chap
 made about the marks on the card and other pertinent information

feed, read id, and locate next print line; feed, read id, AND EJECT

These operations are similar. Both operations feed the ledger card into the ledger card device and read the ID number from the card into main storage. The difference in operation occurs after the ID number is read from the ledger card.

Feed, Read ID, and Locate Next Print Line

Feed, read ID, and locate next print line checks for line finder marks while feeding the card into the LCD. When two consecutive line finder marks are found missing, the LCD attachment signals the LCD to stop feeding the ledger card when the next available print line is positioned at the platen. a line finder mark is sensed late (in a position to cause overprinting of a line), the LCD attachment signals the LCD to feed one addit
Information man stopping point, before stopping the card.
foll by lin to move the ledger card to the next sequential print line Hon can be issued ram must check for a last printable line condition (a TIO instruction) before printing to insure that the card has not moved beyond the last availabla print position on the ledger card print position on the ledger card.
mark and eject or an eject instruction the program can issue either a read these operations, see pages 9-619 and 9-623.

Feed, Read ID, and Eject

Feed, read ID, and eject does not check for line finder marks. After the CD has read the ID number from the ledger card, the card continues to feed through the LCD and into the stacker.
Before either of these operations begins, the system program must issu LIO instructions to load the local storage registers with the following ad dresses.

- PCAR with the storage address of the first byte of a command field.
- PDAR with the storage address where the first byte of the ID number is to be read into.
- LLAR with the storage address of a two byte field that contains 110 E (hexadecimal). This LSR is used only for the feed, read ID, and locate instruction.

One of the following command fields must be created at the PCAR ad dress.
For feed, read ID and locate next print line.

For feed, read ID, and eject.

\section*{| 03 | 05 | 04 | 00 | 05 | 04 | 07 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Next, a test I/O instruction is performed to check for card not aligned This causes the LCD to:

1. Block I/O condition B.
2. Light the LCD I/O attention lamp on the keyboard console.
3. Raise the card gate in thio lCD so that a

Note, the TIO instruction should also check for, not unit check, not LCD busy, and not LSR busy.
The LCD I/O attention light on is a signal to the operator to insert a leder card into the LCD.
The program does not have to wait until the operations are completely finished to examine the ID number. Even though the LCD is busy, a TIO instruction check for not read ID busy will indicate when the ID number has been transferred into main storage.

After these operations are finished, the program should check for not unit check before starting another operation. If the instruction was a feed, read ID, and locate; not last printable line condition should also be checked for If a feed, read ID, and locate next print line instruction is issued to the
 ta fierd will PDAR Wit late

B

B

INDEX
The index instruction moves the ledger card to the next sequential print
The index instruction moves the ledger card to the next sequential print
line. If the bottom edge of the ledger card is above the lower sense station,
line. If the bottom edge of the ledger card is above the lower sense station,
LSR plus and document end cycle steal requests are made to decrement the
OE byte of the 110 E field.
OE byte of the
Before starting an index operation, the program should issue TIO instructions to check for: not unit check, not LCD busy, not LSR busy, and not last printable line.
An LIO instruction is Load the
not used.
LLAR must contain the address of the 110 E field; the 110 f field must not be reinitialized.
Generate the command field 01 at the PCAR address.

Armature Starting Position

A

Assume tedger card stopped the 1 st print line positioned to the platen before

READ BACK AND EJECT

This operation is issued to eject the ledger card from the LCD and check
that the last line finder mark (the one that is positioned at the printer platen when this instruction was issued) can be read by sense cell 4 as the ledger card is ejected from the LCD.
After the ledger card feed starts, the command count byte is decremented Aith each LCD timing pulse. When the count field decrements to FF, the attachment samples sense cell 4 to see if a line finder mark was read at the th line after LCD card feed started. If sense cell 4 did not sense a lin
inder mark, the read mark check latch is set, and the card feed is stopped If sense cell 4 did read nd into the stacker.
Before starting a read back and eject operation, the program should issue TIO instructions to check for, not unit check, not LCD busy, and not LSR
busy.
An LIO instruction is issued to load the LSR PCAR with the address of the command field. LSRs PDAR and LLAR are not used for this instruc tion.
Generate the command field 0208 at the PCAR address.

A

Assume ledger card positioned with print line 1 positioned at the printer platen when this operatio
was started. A line finder mark printed at line 1 is read at sense cell 4,9 line spaces later.

EJECT

This operation is issued to eject the ledger card out of the LCD and into the stacker. This operation should only be used after an I/O check is detected Before starting an eject operation, the program should issue TIO instruc tions to check for not LCD busy and not LSR busy.
tions to check for not LCD busy and not LSR busy.
An LIO instruction is issued to load the PCAR with a command field address. LSRs LLAR and PDAR are not used during this operation.
Generate the command field 00 at the PCAR address.

READ ALL LINE FINDER MARKS

This is a diagnostic operation to read each line finder mark on the ledger card at two different sense stations. Each sense cell indicates if a line finder card at two different sense stations. Each sense cell indicates if a line finder
mark was read and at what line from the ledger card by setting bits in main mark was read and at what line from the ledger card by setting bits in main
storage. Each sense cell has specific bit assignments in order that the data storage. Each sense cell has specific bit assignments in order that the data
read from the first sense station may later be compared to the data read by the second sense station. The system program performs the compare operation.
Line finder marks are first read by sense cell 3 , located in the lower read station of the LCD. Twenty-nine line spaces later, the same mark is read at sense cell 4 , located in the upper read station. Sense cell 4 does not respond to line finder marks that produce a weak output. Therefore, after the data is in main storage and the program has compared the data (bits) read by both stations, weak output producing line finder marks can be detected.

Data Field

The illustration on this page shows how line finder marks, read from the ledger card during a read all line finder marks instruction, are indicated in ain storage
Bit positions zero through 3 will be either an F (hexadecimal) or a 4 (hexadecimal). Bit positions 4 through 7 , when set to a one bit, indicate the presence of line finder marks on the ledger card.
The numbers shown in bit positions 4 through 7 correspond to line numbers on the ledger card. Line 1 is at the top of the card, line 56 is at the bot m. Numbers within parentheses represent lines read at sense cell 3 , num ers not in parentheses are lines read at sense cell 4
Eace byt on the ledger card depending one read from the ledger card by sense cell 3. PDAR address 020 E shows lines 29 and 30 read by sense cell 3 and line 1 read by sense cell 4 . PDAR address 020 F shows lines 31 and 32 read by sense cell 3 and lines 2 and 3 read by sense cell 4 . PDAR address 022A shows line 56 read by sense cell 4

Bit positions zero through 3 will be an F (hexadecimal) for each byte that has at least one line finder mark in the lines indicated in bits 4 through 7, ine finder marks are read, bits zero through 3 will be a 4 (hexadecimal). or those lines that represent lines read by sense cells 3 and 4 , any line (hexadecimal).
(hexadecimal). The maximum length card is always read (56 lines). This requires 43 bytes of storage to contain the data from both sense cells. (Two lines per byte $=$ 28 bytes, plus 29 lines separation between sense stations $=15$ bytes for a total of 43 bytes.)

Read All Line Finder Marks Operation

This instruction is similar in operation to a feed, read ID, and eject com mand and therefore data flow diagrams and timing charts are not shown, Only the exceptions will be explained
The SIO control code for this instruction must be XXXXXXX1 to set the scan latch, shown on page $9-515$. The scan latch degates sense cell and 2 into the data assembler and gates sense cell 3 and 4 instead.
The read ID, and eject command count byte equals 55 (hexadecimal), This is to prevent setting the count end latch after reading the 20 line ID number as in hed, read ID, and eject operaton. By not setting the ount end larch, ment end cycle steal requests.

$\frac{\mathrm{PDAR} \text { star }}{02}$

operation is complete

Section 10. Data Recorder Attachment

Contents

This section of the 5406 FETMM contains the theory and maintenance diarams for the 5496 Data Recorder attachment. It consists of three chapters as follows:
Chapter 1. Introduction
Chapter 2. Functional Units
Chapter 3. Operations

Chapter 1. Introduction 10-101

Introduction to Data Recorder and Attachment 10-10 96 Column Card and Character Set 10-102 Offline Operation and Memory Organization 10-103

Flag Bits 10-104

Program Control and Data Recording 10-105
$\begin{array}{ll}\text { Online Operation } & 10-107\end{array}$
5496 Read Operation (2 Parts) 10-108, 10-109 5496 Punch Operation (2 Parts) $10-110,10-111$ Load I/O Instruction Format 10-113
Test I/O Instruction Format 10-114
Advance Program Level Instruction Format 10-115 Sense I/O Instruction Format 10-116 Start I/O Instruction Format 10-117 Data Flow 10-118

Chapter 2. Functional Units 10-201
Introduction to Functional Units 10-20
Board Layout 10-202
Interface Lines 10-203 Registers (2 Parts) 10-206, 10-207
Cycle Steal and LSR Select Controls (2 Parts) 10-208, 10-209
Error Conditions 10-210
Chapter 3. Operations 10-301
Introduction to Operations 10-30
Load I/O Instruction Flowchart 10-302
Load I/O Instruction Timing Chart 10-303
Test I/O or Advance Program Level Instruction Flowchart 10-304
Test I/O or Advance Program Level Instruction Timing Chart 10-30
Sense I/O Instruction Flowchart 10-306
Sense I/O Instruction Timing Chart 10-307
Read Operation Flowchart (2 Parts) 10-308, 10-309
Read Operation Timing Chart 10-31
Punch Operation Flowchart (2 Parts) 10-312, 10-31
Punch Operation Timing Chart 10-315
Diagnostic Data Operation 10-316
Diagnostic Cycle Steal Operation $10-317$

Chapter 1. Introduction

DATA RECORDER ATTACHMENT

The IBM 5496 Data Recorder attachment provides a means for the Model 6 o use the 5496 Data Recorder as an input-output device for reading and punching the System $/ 3$ card. The attachment provides the interface betwee the delay line memory in the data recorder and main storage in the 5406 Processing Unit. Information transferred between these two storage device is controlled by the attachment.
The attachment circuitry is MST-1 logic, physically located on gate A board B1 in the 5406 Processing Unit. The interface between the system and the data recorder is a cable consisting of data and control lines.
The communications path between the central processing unit and the data recorder attachment is through the I/O channel. Using this channel, data and control information is transferred from the central processing unit oo the attachment and data (from the delay line storage in the data recorder) is transferred from the attachment to the central processing unit. Also hrough the I/O channel, status is sent to the central processing unit under control of stored programmed instructions.
During the process of exchanging information, the attachment and central processing unit operate together in multiplexer mode. This means hat the information transfer takes place between central processing unit ycles on a priority basis with other devices.
By means of a fixed cycle steal priority, I/O cycles may be interleaved between any two central processing unit cycles to fetch or store data to and from the attachment.

Local Storage Register

The local storage register in the central processing unit assigned to the data recorder attachment is the data recorder address register (DRAR). It must contain the leftmost or starting address of the data field in main storage when issuing a read or punch command.

Priority Request

The data recorder attachment uses the cycle steal method of communicatin with main storage in the central processing unit. It is assigned priority clock wwo, request bit line four. This is twelfth in the order of priorities from highest to lowest. The select lines used by the attachment to request a cycle teal are lines five and seven.

DATA RECORDER

The IBM 5496 Model 1 Data Recorder with the online read/punch feature is used for the System/3 Model 6 . With this feature installed, the model 6 can use the data recorder to read and punch the System $/ 3$ card. The data recorder can also be operated offline as a normal data recorder.

BR0792

96 COLUMN CARD

The 96 column card is divided into two sections. The upper section of th card is the print area and the lower section is the punch area. The lower section (punch area) is divided into three horizontal sections called tiers. Each tier contains 32 vertical groups of six punch positions. Each group of six punch positions is a card column. The punch positions are B, A, 8, 4,
2 , and 1 from the top of the tier to the bottom.
The 96 card columns are arranged 32 columns in each tier as follows:
Tier 1 Columns 1-32
Tier 2 Columns 33-64
Tier 3 Columns 65-96

All of the information contained on one card (from column 1 through Alumn 96) is called a record, regardless of how many characters are punched in it.

Character Set
Any one of 64 different combinations of the six punch positions (six-bit card code) may be punched in a card column. The print area has 128 print positions numbered from 1 to $128 ; 96$ of these correspond with the numbers in the punch area. Print positions 97 to 128 are available for use by other System $/ 3$ devices.

BR0794

OFFLINE OPERATION

The two offline operations of the 5496 are data recording and verifying. The data recording operation consists of data entry by the operator, punch ing, and optional printing. The verifying operation consists of reading a previously punched card and comparing the data with corresponding (but dentical if no errors have occurred) data being reentered by the operator. cording and verfying betion. For data reco sing the buffer:

1. Allows the operator to store up to four programs for selection and use during data entry
. Allows the operator to enter a complete record (96 columns), correcting any detected errors as they are made before the card is punched.
2. Allows complete overlap of
a. Operator entry for card 3
b. Punching of card 2
or verifying, the delay line allows the characters from a previously punched card to be compared with corresponding characters as they are being reentered by the operator. First, the previously punched card is completely read into the delay line. Then, as characters are reentered they are compared to the corresponding characters on the delay line. If a noncompare occurs, the keyboard is locked and the error indicator is turned on.

MEMORY ORGANIZATION

As shown below, the delay line is divided into 96 words (corresponding to the 96 card columns) numbered 1 through 96 . Each word is made up of seven characters: P1, P2, P4 and P3, corresponding to the four levels o stored program; KBD, the area into which input data from the keyboard is entered; and P printing occur.
Each character on the delay line is made up of eight bits: bit $1,2,4,8, \mathrm{~A}$, B, C, and D . The character is sent to the delay line bit-by-bit and is continuously regenerated through the line, through an 8 -bit register (the A register) dack onto the day 1 he data is 8 placed with new data or until econd intervals. Each interval is called a bit time The character times are eight microseconds and the words are 56 microseonds long. The memory oct for 96 word record is 5376 data bits. The eight bits in the A register cycle for a 96 word record is 5376 data bits. The eight bits in the A register

FLAG BITS

The figure to the right shows all the 56 bits contained in a word in memory. The four basic functions of read, data entry, punch, and print are controlled by reserved bit locations, called flag bits, written in the delay line memory. A flag bit is a bit in memory defined by a particular bit time in a particu lar character of a word. (P3 bit time ' D ' is the flag bit for the KBD area.) Before performing one of the functions, a flag bit for that function is written into each word in memory. When the control logic for a particular function calls for that function, a search for the first flag is initiated, starting in word 1 (column 1). When the first flag is found, that column is operated on and its flag bit is erased so that when the search for the next When all flags for thared, the next word will contain the first flag bit. Due to the physical layout of the 96 column card, reading, punching, Due to thequire that and card columns: 1,33 , 5 ; $2,34,66$; etc.) must be operated on during each earch cycle, Therefore, two additional first flag scans of the delay line are started beginning in words 33 and 65 respectively, to permit operating on all three tiers at the time the card is in a position to be read, punched, or printed.

PROGRAM CONTROL

The 5496 Data Recorder can operate with or without program control. To operate with program control, the program coding is first punched int a card to define areas of data fields in the card. The program card is then read into one of the four program areas on the delay line. Program level 1 (area P1) is the home program (machine operation is returned to this program level when the program switch on the operator panel is first turned on). Only one program level is effective at a time, but program levels can be changed at any time during the entry of a record. During data entry, the active program level defines the length and type of data fields to be entered for the record. Data fields are defined as manual, auto skip, and auto duplicate. Consecutive columns that must be keyed by the operator constitute a manual field. Consecutive columns in the card that are to be skipped are auto skip fields. Consecutive columns that are to receive the same data in every card are auto duplicate fields.

DATA RECORDING

Data can be either key-entered into the KBD area of memory or duplicated from the preceding record by transferring the appropriate data from the PU area in memory. This entry of data is not synchronous to card movement and punching. Data entry is controlled only by the rate of keying and program controls. A column indicator shows the next column in memory which will receive data. This indicator has no timing relationship to punching or printing. When 96 columns of data have been entered, a blank card (skip o release causes entry of blanks) is fed from the hopper, registered, and the entered data is transferred from the KBD area in memory to the P area in 20 increments/second (effective rate of 60 columns per second) punching as required while the card is stoped after each increment After the card has moved 32 increments during punching a printing operation begins if bint switch was on when keying occurred for the record If the print switch tas on, print flags are written into memory and the recod is tranferred rom the PU are to the PR area in storage.保
of 63 characters engraved on the pusly running wheel that has three sets and is blank on the print wheel. The figure shows how the print wheal is mounted above the card and the three print hammers are mounted below the card path. The print station is 33 columns from the punch station. When column 32 is being punched in the card, column 0 is at the print station. After the card clears the punch station, another card can be fed from the hopper and punching can start on this card. This means that printing of record 1 , punching of record 2 , and data entry for record 3 can occur simultaneously.
A card is read into memory by pressing the read key. This action moves the top card in the hopper into the transport to be read. Data is read from the card into the PU area in storage enabling that card to be remade. All or portions of the card can be duplicated in the next record.
To synchronize the card movement with the circuit operations, certain controls are used. A card sensor control detects that a card has moved from

the hopper to the transport rolls. A magnetic emitter driven with the trans port mechanics provides three transport control pulses. 'Transport dwell' designates the start of dwell time, 'punch on' turns the punches on, and 'punch off' turns the punches off. These pulses also synchronize the contro logic with card location for reading, punching, and printing.
There are circuits to check for misfeed, hopper jam, or transport jam contions which are indicated by a feed check light on the operator panel. The operator panel also contains the column indicator which:

1. Indicates to the operator the next card data column to be acted upon, and
2. Is used in conjunction with the CE panel to display the bits of any storage position. The CE panel is located on the end of the electronic gate in the 5496 .
Details of the 5496 Data Recorder Model 1 are contained in the following manuals:
IBM 5496 Data Recorder Operator's Guide, Order No. GA21-9086
IBM 5496 Data Recorder Field Engineering Theory of Operations Manual, Order No. SY31-0220
BM 5496 Data Recorder Field Engineering Maintenance Diagrams Manual Order No. SY31-0221
BM 5496 Data Recorder Field Engineering Maintenance Manual,
Order No. SY31-0219

ONLINE OPERATION

Online and offline control of the data recorder is determined by the setting of the 'DATA RCRDR' switch on the CPU operator console. Setting the DATA RCRDR switch to ON LINE places the data recorder under control of the CPU program if the 5496 is otherwise ready. Conditions of the 5496 that prevent program operation are:

1. Stacker full
2. Hopper empty
3. Hopper jam
4. Transport jam
5. Punch/verify switch on VERIFY
6. Auto record release switch set to OFF

While under program control, all the keyboard keys on the 5496 are held restored to prevent accidental operator intervention. (The release key is unlocked in the event of a feed error or a card jam to permit the operator to clear the trouble from the machine.) The online/offline switch can be set to OFF LINE at any time. However, an operation in progress at the time of setting the switch is completed and the 5496 becomes an offline device after the successful completion of this operation.
The 5496, when used as an online printing punch and card reader, is ttached to the model 6 through a cable of 25 feet maximum length. cable contains the signal lines necessary for connecting the 5496 to ment controls operations of the 5496 which are initiated by the processo
 the cycle teal capabilities of the CPU The delay line buffer in the 5496 all CPU to over 1/O devices controlled by the system. The two online functions of the 5
Both functions, however, cannot be pard reading and card punching Beration. (A card punched by the performed on the same card in on CPU program must be reinserted in the card hopper to be read under program control.) In a card read operation, the CPU program issues a start I/O instruction which causes the 5496 to read data from a card into the delay line storage. The data is transferred from the delay line in the 5496 to CPU storage with 96 cycle steal cycles. This data in 6 -bit card code is translated into 8-bit EBCDIC by a translator on the data bus in (DBI) with each transfer of a data character to the CPU. The character codes figure on this page shows both the card code and EBCDIC for the 64 character set used by the 5496 .
In a card punch operation, the data is transferred from CPU storage to the 5496 delay line via cycle steal cycles until an entire record has been transferred (96 cycle steals). This data from the CPU is translated from with each transfer of a data character to the data recorder When the 96 data characters have been transferred, the data recorder circuits feed the top card from the hopper into the punch station and punch the data into the card. Printing of punched data is under control of the print switch loc ted on the operator panel of the 5496 Data Recorder. An entire card must
read or punched with each operation initiated by the CPU. Any pro grams previously entered into the 5496 delay line as a result of an offline peration are noffective when the 5496 is operas as an online device.

Ebcdic							Hex		5496 Card Code Punch Positions					Character Graphic	
	01	23	34	45	6					A	84	2			
	11	0	00	0	0		C		B	A			1		A
	11	0	00	0	1		c			A		2			B
	11	0	00	0	1	1	c		B	A		2	1		c
	11	0	00	1	0		c			A	4				D
	11	0 o	0 O	- 1	0		c			A	4		1		E
	11	0	00	- 1	1	0				A	4	2			F
	11	0	00	1	1		c			A	4	2	1		G
	11	0	01	10	0	0	c		B	A	8				н
	11	0	01	10	0		c			A	8		1		1
1	1	01	10	-	0	1	D		B				1		J
	11	01	10	0	1		D		в			2			k
	11	0	10	0	1		D		в			2	1		L
	11	01	10	1	0		D		в		4				m
	11	01	10	1	0		D		в		4		1		N
	11	0	10	1	1	0	D		B		4	2			-
	11	01	10	1	1		D		в		4	2	1		P
	11	01	11	1	0		D		в		8				-
	11	01	11	10					в		8		1		R
	11	1	00	0	1		E			A		2			s
	11	10	00	0	1	1	E			A		2	1		T
	11	1	00	1	0		E				4				u
	11	1	00	1	0		E				4		1		v
	11	1	00	1	1	0					4	2			w
	11	10	00	1	1		E				A	2	1		x
	11	10	01	0	0						8				Y
	11	10	01	0	0		E			A			1		z
	11	1	10	0	0								1		1
	11	11	10	0	1	0	F					2			2
	11	11	10	0	1		F						1		3
	11	1	10	1	0		F				4				4
	11	11	10	1	0						4		1		5
	1	11	10	1	1	0	F	6				2			6
	11	1	10	1	1		F					2			7
	11	1	11	0	0	0	F				8				8
	11	1	11	1	0		F				8		1		9
	11	11	10	0	0					A					0

Note: A blank character is represented by a column
containing no punches. There is no printed graphic representation of the blank character.

5496 READ OPERATION

To use the 5496 Data Recorder as an input-output device for the model 6 system, perform the following steps:

- Set the following switches on the data recorder (see figure on this page):

1. Program switch to OFF.
2. Verify switch to PUNCH.
3. Auto record release switch to AUTO.

- On the central processing unit console, position the data recorder online switch to ON LINE. This activates the line 'I/O switch' in the data recor der attachment which is the major control line in the attachment. In the data recorder, this line performs a record erase and holds this line active which locks out all of the keys and most of the switches on the operator console (of the data recorder). The record erase is inhibited condition exists in the 5496, the '//O ready' line is activated condition exists in the 5496, the 'I/O ready' line is activated
To read prepunched data cards, the operator loads the cards in the 5496 hopper and sets up the machine as stated above. The data recorder attachment issues the I/O read command signal. This sets the 'read op' latch and normal read operation is initiated. (Refer to \qquad n of delay line memory. Read flags P1, BT-C are used for this transfer. At the completion of the ead operation the signal 'read complete' sets the I / O read transfer latch mection to KBD section /the KBD , the punch section is used with the compare command) of memory without resing the PU section. It also writes a flag bit in P2 BTC of ery section of memory. At the end of the read transfer cycle (5.4 ms), the ' $/ / \mathrm{O}$ read transfer' latch is reset. With the ' I / O read cycle' latch set, the ' I / O read syn ' transfer latch is reset. With the $1 / \mathrm{O}$ read cycle' latch set, the 'I/O read sync'
latch can be set at Col 96, PR BT1 and CLB time. This allows the 'I/O read flag' latch to start searching for flags in P2 BTC starting in Col 1 . When a flag' latch to start searching for flags in P2 BTC starting in Col 1. When a
flag bit is found, the ' $1 / O$ read flag' latch is set at P2 BT4 and CLB time and the following sequence of events occurs:

1. The column indicator is updated to indicate the column that is being transferred to the user
2. The flag (P2 BTC) is erased.
3. The entry register is reset at P 2 time.

At KBD BT1 and CLB time the A register is transferred to the entry register, and this data appears on the I/O bus out to the user; and at KBD BT2 the I/O read data' latch is set which brings up the 'read data ready' line (refer to 2) to the attachment. At this time the I/O data is valid and the the I/O bus out (refer to he $1 / O$ bus out (refer to $\mathbf{3}$). The entry register is reset and the I/O bus out data is loaded into the entry register at KBD BTC. The data in the
entry register is then compared to the A register at PU time (via the data entry register is then compared to the A register at PU time (via the data
recorder verify circuits) and if a non compare is present, the 'read non recorder verify circuits) and if a non compare is present, the 'read non
compare' line (refer to 4) is active to the user at PU BT2. The I/O compare command is active when the data recorder is online to the System/3 Model 6.

5496 PUNCH OPERATION

To use the 5496 Data Recorder as an input-output device for the model 6 , perform the following steps.

- Set the following switches on the data recorder:

1. Program switch to OFF.
2. Verify switch to PUNC
3. Auto record release switch to AUTO

- On the central processing unit console, position the data recorder online switch to ON LINE. This activates the line 'I/O switch' in the data reco der attachment and is the major control line in the attachment. In the data recorder, this line performs a record erase and holds this line active which locks out all of the keys and most of the switches on the operator console (of the data recorder). The record erase is inhibited during a feed check condition to allow operator recovery. If no error condition exists in the 5496, the 'I/O ready' line is activated.
To punch data cards, the operator sets up the 5496 as in the read opera tion, and loads the hopper with cards to be punched. The cards can be prepunched and data added, or they can be blank cards. If printing is de sired, the operator must turn on the print switch on the 5496 console. Any number of data columns can be punched in a card up to a maximum of 96 columns. All 96 columns must be entered. The columns to be skipped are loaded with blanks.
The I/O punch operation simulates a keyboard entry operation. The attach ment puts the data to be entered on the I/O bus in lines (refer to 1 and then brings up the ' $1 / \mathrm{O}$ enter data' line (refer to 2). This sets th The following BTC resets the entry register and the next BT1 and CL loads the I/O Bta bus in the entry register. The following BT2 sets th '//O busy' latch which brings up the '//O busy' line (refer to 3 I to最 busy latch which brings up the "O busy" line (refer to 3 I) to is now available to the attachment on the I/O bus out and the attachment can do a compare to test for valid data transfer (refer to 4 The following Col 1 P2 BT4 and CLB, the ' I / O any key' latch is set. This allows a normal keyboard service cycle which starts a search for KBD flags. When a KBD flag is found, the 'KBD' latch is set and the data is entered into delay line memory at KBD time. The following PU BT8 resets the ' I / O enter data' latch, $\quad 1 / O$ sample' latch, ' I / O busy' latch, and the ' I / O any key' latch. Resetting of the ' I / O busy latch drops the ' I / O busy' line to the attachment and tells it that the 5496 is ready for the next data input. If the attachment brings up the ' I / O enter data' line before the end of the next P2 time, the next data transfer is entered into memory $56 \mu \mathrm{sec}$ after the first data transfer, which is the maximum data transfer rate. If the attachment fails to enter new data before the end of P2 time, a minimum delay of approximately 5.4 ms occurs before the next data transfer into memory. There is no minimum data transfer rate.

When the data for column 96 is entered, the signal 'set K-P transfer req I ' is generated, and this is sent to the attachment as 'operation complete 5 . Because the auto record release swal is set and print 5496 now feeds a card
If a feed check occurs and a card fails to feed from the hopper, the signal 'I/O hopper jam' is sent to the attachment. The signal ' $1 / O$ feed check' is I/O hopper jam 'is sent to the attachment. The signal ' I / O feed check' is sent to the attachment if a card jam occurs in the transport. If a feed check
occurs, the keyboard function release key is unlocked and the operator use occurs, the keyboard function release key is unlocked and the operator uses
normal feed check recovery procedures to clear the condition. A feed check Iso drops the signal ' $1 / O$ ready' until the feed check condition is cleared.
The I/O bus lines can be tested by bringing up the diagnostic command to the 5496. This allows the data on the I/O bus in lines to be gated to the /O bus out lines and allows the user to exercise the data lines for diagnostic purposes.

LOAD I/O INSTRUCTION

- The load I/O instruction consists of three or four bytes.
- The load I/O instruction selects the data recorder when the device address equals F (hexadecimal)
- Two bytes in storage addressed by the operand address, are loaded into the data recorder address register (DRAR).
The load I/O instruction is used to load the DRAR, which is located in the CPU local store register (LSR), with the starting address used for a start I/O read, or punch operation. The load I/O instruction must be executed prior to each start $1 / \mathrm{O}$ read, or punch instruction issued.

Q Byte Description
The upper four bits (bits $0-3$) specify the device address of the data recorder. Bit 4 is the M bit. This bit is not presently used, and should be zero to allow for future use. Bits 5, 6 , and 7 are the N field. In this instruction the N field is not used and should always be zero
The load I / O instruction is accepted only if the data recorder is not bus If the device addressed by the load I/O instruction is busy, the load I/O instruction shall be equivalent to a wait until the condition is no longer present. When the condition is no longer present, the load I/O instruction presell be executed.

Parity and Error Conditions
A parity error detected by the attachment results in a processor check stop and the processor check light comes on

LOAD I/O (LIO) INSTRUCTION FORMAT

BR0802

TEST I/O AND BRANCH INSTRUCTION

- The test I/O instruction consists of three or four bytes.
- The test I/O instruction selects the data recorder when the device address equals F (hexadecimal).
- The test I/O instruction tests for the following conditions:

1. Busy

I/O check or not ready
The test $1 / O$ instruction tests for a specific condition designated by its O byte. If the condition tested for exists, the test I/O causes a branch to the operand address.

Q Byte Description

The upper four bits $(0-3)$ specify the device address of the data recorder Bit 4 is the M bit. This bit is not presently used and should be zero to allow for future use. Bits 5,6 , and 7 are the N field. The N field is used to specify the condition to be tested for
The data recorder always accepts a test I/O instruction.

Parity and Error Conditions

A parity error detected by the attachment results in a processor check stop, and the processor check light comes on.

TEST I/O (TIO) INSTRUCTION FORMAT

dDVANCE PROGRAM LEVEL INSTRUCTION

- The advance program level instruction consists of three bytes.

The advance program level instruction selects the data recorder when the device address equals F (hexadecimal).

- The advance program level instruction tests the data recorder for conditions of busy, and I/O check or not ready.
The advance program level operation causes the program to loop until the ondition tested for is no loper present and then proced to exe the ext sequential instruction The uncontition advance becomes equivalent都

Q Byte Description
The upper four bits ($0-3$) specify the device address of the data recorder. Bit 4 is the M bit. This bit is not presently used and should be zero to allow or future use. Bits 5,6 , and 7 are the N field. The N field is used to specify the condition to be tested for.

Parity and Error Conditions

A parity error detected by the attachment results in a processor check stop, and the processor check light comes on.

ADVANCE PROGRAM LEVEL (APL) INSTRUCTION FORMAT

SENSE I/O INSTRUCTION

- The sense instruction consists of three or four bytes.
- The sense instruction selects the data recorder when the device address equals F (hexadecimal).
- When bit 6 of the N field equals 0 , the DRAR is stored in the storag address specified.
- When bit 6 of the N field equals 1 , two status bytes are loaded into the storage address specified.
The purpose of this instruction is to store data from an I/O attachment or an LSR assigned to the attachment into the main storage location of the effective address.

Q Byte Description

The upper four bits ($0-3$) specify the device address of the data recorder. Bit 4 is the M bit. This bit is not presently used and should be zero to allow for future use. Bits 5,6 , and 7 are the N field. Bits 5 and 7 of the N field are not used and should be zero. Bit 6 of the N field is used to determin if the LSR, or two status bytes are to be stored in the specified address. The data recorder always accepts a sense instruction.

Parity and Error Conditions

A parity error detected by the attachment results in a processor check stop and the processor check light comes on.

SENSE (SNS) INSTRUCTION FORMAT

First Byte
Bit
$\begin{array}{ll}0 & \text { Off line. } \\ 1 & \text { Transport }\end{array}$
2 Stacker full, hopper empty, or hopper jam.
3 Not used.
4 Incorrect card code.
Compare error on read or punch I/O cycle
-r failure to take 96 cycle steals.
6 Reserved for FE use.
7 Reserved for FE use.
Second Byte

diagnostic start $1 / 0$.

START I/O INSTRUCTION

- The start I/O instruction consists of three bytes
- The start I/O instruction selects the data recorder when the device address equals F (hexadecimal).
- The start I/O instruction is issued to the data recorder to read a card or punch and print a card.
- Printing is performed only if the print switch on the data recorder is on. The purpose of the start I / O instruction is to command the I / O attachmen to initiate a data transfer operation between the data recorder and the CPU main storage.

o Byte Description

The upper four bits $(0-3)$ specify the device address of the data recorder Bit 4 is the M bit. The M bit is not presently used and should be zero to allow for future use. Bits 5,6 , and 7 are the N field. Bit 5 of the N field is not used and should be zero. Bits 6 and 7 of the N field are used to specify a read or punch and print operation.
Any start I/O command issued to the data recorder when offline lights the I/O attention lamp. It may be turned off by system reset or by switch ing the online/offline switch to ON LINE. Any start I/O instruction issued to the data recorder when online and busy, is looped until busy drops.

Parity and Error Conditions

A parity error detected by the attachment results in a processor check stop and the processor check light comes on.

dIAGNOSTIC INSTRUCTIONS

Diagnostic Start I/O

Device Address: 1111 (F)

Bit: Not presently used, but should be zero to allow for future use.
Field:
$\begin{array}{llll}\text { Bit } & 5 & 6 & 7\end{array}$
X 1 1-Diagnostic (data)
This command is issued to test the punch and read logic circuitry used in communicating between the CPU and the data recorder. A byte of data is issued to the data recorder attachment during the control code cycle of the diagnostic start I/O instruction.
This byte is translated from EBCDIC to card code by the channel. It is sent to the data recorder attachment, where it is stored in the DBO and presented to the data recorder. It then returns to the attachment for comparison.

Following this instruction with a sense instruction provides the following information:

1. First byte-bit 5: This bit is on if the byte sent to the data recorder did not match the byte returned by the data recorder. The bit being on would indicate a problem in the data recorder or the interface
between the data recorder and the attachment.
2. Second byte: This byte contains the data given to the attachment on the previous diagnostic start $1 / O$ (in case of a compare error, this does not agree with the byte sent on the diagnostic start $1 / \mathrm{O}$ it would indicate a problem in either the attachment or the channel trastor
Note: The sense instruction must be issued before the next start I/O instruc tion to make the comparison valid, since the byte of data issued during th diagnostic start $1 / O$ instruction is reset by the next start I/O instruction. The data recorder is in a diagnostic mode of operation until system reset is depressed, or any or her latched up until the diagnostic mode is terminated. No card motion takes place.
$\begin{array}{llll}\text { Bit } & 5 & 6 & 7\end{array}$
$\times 0 \quad 0$-Diagnostic read (cycle steal)
This command causes the attachment to take one cycle steal and insert a blank (hexadecimal 40) into the core location specified by the current contents of the data recorder local store register. No mechanical motion takes place. As with all other start I/O instructions for the data recorder, th instruction is executed only if the data recorder is ready and not busy

START I/O (SIO) INSTRUCTION FORMAT

Chapter 2. Functional Units

INTRODUCTION TO FUNCTIONAL UNITS

Chapter 2 contains the functional units of the data recorder attachment
The first page of the chapter is a board layout of the data recorder attac
The first page of the chapter is a board layout of the data recorder attach

1. Card locations
2. Circuits found on that card
3. ALD page reference numbers that describe the circuits found on the
4. Card type number. The part number of the card changes each time that card has an engineering change to it. The card type number, however, always stays the same
The card location number appears on each page, or section of a page, that describes the circuitry on that card. For example, S 2 on a page refers to the DBI assembler

Symbols
Figures within this chapter contain the symbols: 1 numbers in square
and A letters in circles. These symbols refer to text, marked with an identical symbol, that describes or explains the function of the unit marked in the figure.

2
W

Card side)
*Board B1 also contains:

1. Channel Banks.
2. Keyboard Attachment.
3. CRT Attachment.

B

inItial selection

1 Data Bus Out (DBO) Registe

a. At clock 5 of the 10 cycle, the 10 byte is set in the DBO register.
b. Parity is checked and if invalid, condition A and B are set, and
the inverse of DBO is set in the DBO register.
c. If parity is valid, the data recorder attachment uses the IO byte to decode the device address and the N field.

2 Decode Device Addres
a. DBO register bits ($0-3$) equal to F (hexadecimal 1111), selects the data recorder.
b. Decoding the device address allows the data recorder attachment to decode the I/O instruction.

3 Decode N Field

a. DBO register bit 6 sets the bit 6 latch
b. DBO register bit 7 and the bit 6 latch are used to decode the N field according to the following table

Instruction	Bit 6 latch	DBO register bit 7	Decode
Load I/O	not used	not used	LSR select
Sense I/O	0	not used	LSR select
Test I/O or Advance Program Level	0	not used	Store status
	1	not used	Test not ready, or I/O check
Start I/O	0	not used	Test busy
	1	0	Diag read (Cycle Steal)

4 Accept or Reject Load I/O or Start I/O
a. A load I / O is rejected by setting condition A if busy is up, and accepted by setting condition B if not busy.
b. A start I / O is rejected by setting condition A if the attachment is busy, or if the data recorder is not ready, and accepted by setting condition B when these conditions are not present.
c. Start I/O resets unit check (if set) and if the attachment accepts the command, raises I/O condition B.

5 Condition A and B Latches

These latches are set according to the following table:

	1/O Attachment Condition					
					A	B
1-0 Cycle of Any I/O Instruction			correct DBO P	Parity	1	1
	Correct DBO Parity		Q Byte Not	ot Correct	0	0
		$\left\lvert\, \begin{aligned} & \text { Correc } \\ & 0 \\ & \text { Byte } \end{aligned}\right.$	Sense Instruction		0	1
			$\begin{array}{\|l\|l} \text { sıo } \\ \text { or Lto } \\ \text { or Ltruction } \end{array}$	Reject Instruction	1	0
				Accept Instruction	0	1
			$\begin{aligned} & \text { TIO } \\ & \text { or APL } \\ & \text { Instruction } \end{aligned}$	Condition Not Met	0	1
				Condition Met	1	0
$\begin{aligned} & \text { SIO I-R, } \\ & \text { LIO E-B, } \\ & \text { and } 1 / 0 \end{aligned}$Cycles	Incorrect DBO Parity				1	1
	Correct DBO Parity				0	0

BR080
6 During a Start I/O
a. The 'diag op' (data) latch is set at clock 5 of the 10 cycle, or
b. The 'diag read', 'read op', or 'punch op' latch is set at clock 7 of the IR cycle.

1 DBO REGISTER

. During each I / O instruction $I O$ cycle, the $I Q$ byte is available to the DBO register at clock 5 .
b. During start I/O IR cycle, the start I/O control code is translated, and made available to the DBO register at clock 5 .
c. During a punch cycle, a translated byte of data is available to the DBO register at clock 5.

2 MULTI-PURPOSE REGISTER

a. During a diagnostic start I/O (data) IR cycle, or a punch cycle, the multi-purpose register is loaded with the contents of the DBO register at clock 5 .
b. During a read operation, the multi-purpose register is loaded with the contents of the 5496 entry register at clock 8 of the CPU cycle, during which a cycle steal is requested.
c. Bits 0 , and 1 of the multi-purpose register are used to check for incorrect card code during a punch cycle, or a diagnostic start I/O (data).

3 DBI ASSEMBLER

a. During a 'SNS EB 1' cycle, the DBI assembler is loaded with sens During a
status information at clock 2. This status byte is placed in CPU main storage without being translated.
b. During a 'SNS EB Not 1' cycle, the DBI assembler is loaded with the contents of the multi-purpose register at clock 2. This byte of data (diagnostic byte) is translated prior to being placed in CPU main storage.
During a read operation the DBI assembler is loaded with the ontents of the multi-purpose register at clock 1 of a read I/O This byte of data is translated prior to placing in CPU main storage.

4 PARITY GENERATOR
The parity generator is used during a sense instruction, punch cycle, or read cycle to maintain correct parity in the DBI register.

5 MODIFY +1
Modify +1 sets bit 7 of the DBI register at clock 3 of an I/O cycle The DBI register is then used to modify the data recorder LSR

cycle steals
1 The data recorder attachment requests cycle steals during the follow-
ing operations:
a. Diagnostic read
b. Read

2 To request a cycle steal, the request bit 4 AND is activated which generates 'req IO cycle' to CPU. This line is activated at clock 2 of each machine cycle until the request is granted.
3. The CPU grants a cycle steal to the data recorder attachment by setting DBO bits 1 and 4

LSR SELECT

1 The data recorder LSR (DRAR) is selected during the following:
a. Load I/O, clock 2 of EB cycles
b. Sense LSR, clock 2 of EB cycles
. I/O cycle clock 4
d. Cycle steal priority granted, clock 8

To select the DRAR, activate LSR select lines 5 and 7 .

Chapter 3. Operations

INTRODUCTION TO OPERATIONS

Chapter 3 contains the detailed flowcharts and timing charts of the operations performed by the data recorder attachment

Flowcharts

The flowcharts contain three levels of information. By reading down the
heavy dark lines, the reader can learn the major objectives of the operation
The second level of information is obtained by reading the information in
the boxes that branch off the heavy dark line. The information that is co
tained in each block in a heavy dark line is explained in the blocks tha
The third level of
he third level of information is contained in the note blocks (open ended blocks) that branch off the second level blocks. Information in these blocks is intended to explain why an action has been performed.

Timing Charts

The timing charts in this chapter are to be used to supplement the informa tion found in the flowcharts.

LOAD I/O INSTRUCTION

Op Cycle. The load I/O instruction tag is available to the data recorder tachment, but no action takes place until the IO cycle,
Q Cycle. The data recorder attachment checks DBO parity, decodes the instruction address, and sets the condition latches
EB1 Cycle. The DRAR is selected and the first data byte is transferred into LSR Lo.

B Not 1 Cycle. The DRAR is selected and the second data byte is trans ferred into LSR Hi.

* For index format $1-\mathrm{H} 1$ is 1 - X 1.
** For index format $1-\mathrm{L} 1$ does not ex
** For index format - -LL do.es not exis.
- Signal up if DBO parity in error.
-

B

TEST I/O OR APL INSTRUCTIONS
I-Op Cycle. The test I/O instruction tag is available to the data recorder attachment, but no action takes place until the $I Q$ cycle.
10 Cycle. The data recorder attachment checks DBO parity, decodes the instruction address, and sets the condition latches. Setting condition A causes a program branch. Setting condition B causes the CPU to proceed to the next sequential instruction.

* For direct address format I-X1 is $1-\mathrm{H} 1$ followed by I-L1
cycle follows 10 during an APL.

SENSE INSTRUCTION

-Op Cycle. The sense instruction tag is available to the data recorder attach ment, but no action takes place until the IO cycle.
a Cycle. The data recorder attachment checks DBO parity, decodes the instruction address, and sets the condition latches.
EB1 Cycle. Either the first data byte, or the DRAR LSR Lo, is stored in the CPU main storage address specified.
EB Not 1. Either the second data byte, or the DRAR LSR Hi, is stored in the CPU main storage address specified minus one.

Abstract

A | No. | Line Title | ALD Page | 0 | 12. | 34 | 45 | 6 | 7 | | 01 | 2 | 3 | 4 | 5 | 67 | 78 | 01 | 2 | 3 | 4 | 56 | 7 | | 0 | 2 | 3 | 4 | 5 | 7 | 8. | 01 | 2 | 3 | 45 | 6 | 7 | | 01 | 2 | 3 | 4 | 6 | 7 | | 01 | 2 | 3 | 4 | 6 | |
| :---: |
| 1 | SNS Instruction | RP311 | |
| 2 | 10 Cycle | RP311 | |
| 3 | Condition B | RP211 | |
| 4 | Condition A | RP211 | |
| 5 | KPCH Address Lt | RP211 | |
| 6 | KPCH Bit 6 Lt | RP201 | | | | | | | | | | | | | | | - - | - | |
| 7 | Store Status Lt | RP301 | |
| 8 | LSR Select Lt | RP301 | |
| 9 | EB 1 Cycle | RP311 | |
| 10 | Eb Not 1 Cycle | RP311 | |
| 11 | Generate P Bit | RP301 | - | | | | | | | = | | | | | | | | | | | |
| 12 | Diag Translate In | RP301 | |
| 13 | DBI Register | RP421 | - | | | | | | | | | | | | | | | | | | |
| 14. | LSR Lines 5 and 7 | RP301 | |
| 15 | DBO Register | RP201 | | | | m | | | | | | | | | | | | | | | and | | | | | | | - | | | | | | - | | | | | | | | | | | | | | | | | - ** For index format I-H1 is I-L1.

A. Signal up if DBO parity in erro

B- Signal up for store status.

READ OPERATION
A read operation is started on the 5496 if bits 6 and 7 equal 0 and 1 respectively in the Q byte. During the CPU I-R cycle, the 'read op' latch is set for the operation and a read command is issued to the 5496 . The read command causes the 5496 to read a punched card onto the delay line. This read oper ation, which is under control of the 5496 circuits once it has been initiated 5496 in an offline operation.
The 5496 read cycle feeds a card from the hopper, reads the data from the card (placing the data in the proper word on the delay line), and stacks the card in the stacker. After the entire card has been read onto the delay line, the 5496 signals the attachment that the first column of data is ready to be sent to CPU storage.
To transfer the data from the delay line to the CPU storage, the data recorder attachment steals a machine cycle from the CPU and signals the 549 to make the next column of data available for transfer to the CPU. When This tequall This sequal (an
A Se the 'read op' latch is reset and the oper ation ends. Error conditions other than parity checks must be detected by a sense instruction.
an feration gives a more detailed description of the read operation for the data recorder attachment.

Punch operation

A punch operation is started on the 5496 if bits 6 and 7 equal 1 and 0 reApectively in the O byte During CPUI R 6 set for the operation and a cycle steal is requested from the CPU. When the ycle steal is granted by the CPU, the attachment transfers the first data byte from storage to the delay line in the 5496 (during the stolen cycle). The data recorder attachment continues transferring data bytes to the delay ine with cycle steal operations until 96 bytes have been transferred. The transfer of data bytes 2 through 96 are requested by the 5496. The 'da rec punch busy' line is active during the time the 5496 is placing the data byte on the delay line. After the byte is placed in the proper delay line word, he 5496 drops the busy line to request another data byte from the CPU.
After 96 data bytes are transferred, the 5496 feeds a card from the hopper, Aunches the data into the card, prints the graphic characters represented by the data if desired, and stacks the card in the stacker. This operation of card feeding, punching, printing, and stacking is under complete control of the 5496 circuits once the 96 data bytes have been transferred from storage to the 5496 delay line. The data recorder circuits also signal the attachment that the operation is complete when the card is stacked in the 5496. This operation complete signal (command reset) resets the 'punch op' latch and he operation ends.
Error conditions other than parity checks must be detected by a sense instruction. If at any time the EBCDIC data from CPU storage is translated ito a card code containing C or D bits (an invalid card code), the error is dicted by setting the 'status 4 ' late (by lighting l/O unit 1 light on the FE console in the CPU. The 5496 punches the translated bit code into the card (without the C and D bits) and prints the closest graphic that the 5496 can decipher from that bit configuration. The flowchart of the operation gives a more detailed description of the punch operation for the data recorder attachment.

5496 Attachment

A

B
5496 Circuits

L051
KL051
KL041
KL051
KL051
KL051
KL041

\}

- $8|0| 1|2| 3|4| 5|6| 7 \mid 8$
-

(nhibit punch cycle steal) FL

3

diagnostic data operation

A diagnostic data operation is started in the data recorder attachment if bits 6 and 7 equal 11 in the Q byte. During the I-R cycle of the CPU instruction, the data byte is sent to the 5496 attachment multi-purpose register. The data byte is then sent to the entry register of the 5496 , which returns the data to the multi-purpose register for checking. At the end of the $1-\mathrm{R}$ cycle, the data byte remains latched-up on the data bus lines so that the
field engineer can check voltage levels when searching for the cause of trouble. The data bus circuits in the attachment can also be checked through programming by issuing a sense instruction following a start I/O diagnostic data instruction. The sense instruction provides the following information

First Byte-Bit 5: This bit is on if the byte sent to the 5496 did not match the byte returned by the 5496 . Otherwise this bit is off. The bit being on would indicate a problem either in the 5496 or the interface between the 5496 and the attachment.
Second Byte: This byte contains the data given to the attachment on the previous diagnostic start I/O. (In case of a compare error, this is not the same as the byte returned by the 5496.) If this byte does not agree with the byte sent on the diagnostic start I/O, it would indicate a problem in either the attachment or the CPU translator(s)
The block diagram shows the data flow for the start I/O diagnostic data operation.

- A start I/O loads data byte onto data lines at 'I-R cycle', 'clock 5', 'phase B '. Data is static up to, but not including, data bus in assembler.
- A sense instruction puts a data byte in the core location following the status byte.
- Translate signal

Active during $\boldsymbol{\prime}$ I-R cycle' for data byte.
Forced for 'SNS EB not 1st' byte.

dIAGNOSTIC CYCLE STEAL OPERATION

Adragnostic cycle steal operation is initiated in the data recorder attachment A bits 6 and 7 equal 00 in the Q byte. At the time the diagnostic cycle steal instruction is decoded, an early priority request is made in the attachmen and the read line is activated. At clock 2 time of the following cycle (I-R cycle), a cycle steal request is made to the CPU. When the request is granted, bit 7 of the data bus in assembler is set on so that the contents of the data ecorder attachment LSR are incremented by +1 . Following the cycle steal peration, the programmer can compare the contents of the LSR with its contents prior to the stolen cycle. (The programmer should load a known This dianostic operation check the ISR the data recorder atachent The block diagram LSR co col block diagram shows the data flow for the diagnostic cycle steal operation.
Start I/O diagnostic cycle steal decodes at clock 5 of I-Q cycle.

- Diagnostic cycle steal decode latch (RP311)

Set at ‘ Q cycle sample’ (decode time),
Reset at 'rd I / O cycle', ‘clock 1 '.
Note: 'rd I/O cy' latch operates as in a normal read cycle steal due to read gate being forced on.

Section 11. CRT Attachment

Contents

This section of the 5406 FETMM contains the theory and maintenance diagrams for the 2265 Display Station Model 2 attachment. It consists of three chapters as follows
Chapter 1. Introduction
Chapter 2. Functional Units
Chapter 3. Operations

Chapter 1. Introduction 11-101
CRT Attachment (2 Parts) 11-101, 11-10
2265 Display Station Model 2 11-103 Load I/O Instruction Format 11-104 Test I/O Instruction Format 11-105 Sense I/O Instruction Format 11-10 Start I/O Instruction Format 11-107

Chapter 2. Functional Units 11-201
Introduction to Functional Units 11-20 Board Layout 11-202
Card 1 (2 Parts) 11-204, 11 -205 Card 2 (2 Parts) $\quad 11-206,11-207$ Card 3 (2 Parts) 11-208, 11-209

Chapter 3. Operations 11-301
Introduction to Operations 11-301
Load I/O Instruction Flowchart 11-302
Load I/O Instruction Timing Chart 11-303 Test I/O Instruction Flowchart 11-304 Sene I/O Instrictio Flow 11306 Sense I/O Instruction Timing Chart 11-307
Start I/O Instruction Flowchart (2 Parts) 11-308, 11-309 Start I/O Instruction Timing Chart (3 Parts) 11-310, 11-311, 11-313 CRT Display Flowchart 11-314 CRT Display Timing Cor 11-31

CRT ATTACHMENT

The IBM 2265 Display Station attachment is the interface between the display station and the CPU. It provides a means for the display station to use he facilities of the CPU to commuricate with main storage The attachment is located in the main gate of the CPU in position A-B1 and uses three, four wide cards.
Instructions and data from the CPU are sent to the attachment via the data bus out (DBO) lines. Attachment information is returned to the CPU via the data bus in (DBI) lines. Control and timing signals not under program control are sent and received via control lines between the attachmen and CPU

The CRT attachment contains logic to

Decode program instruction

Detect error conditions
Enerate cycle steal requests (CSR)
Address the LSR assigned to the CRT (CRTAR)
Modify the LSR address (generate constants)
heck the LSR address to detect when 960 characters have been

displayed

. Giserate timing signals required by the display station for a
display operation
8. Indicate attachment and display station status (operating and error conditions)

Program Instructions

The CRT uses four program instructions. Each instruction is decoded by the CRT attachment to develop gate signals to initiate and control the specific operation as defined in the instruction Q and R bytes. Only instructions with the CRT address in the device address are accepted by the CRT attachment. The CRT address is 1001 (9)
The program instructions are as follows:

1. Load I/O (LIO)
2. Test I/O (TIO)
3. Sense I/O (SNS)
4. Start I/O (SIO)

Load I/O addresses the LSR assigned to the CRT to (1) load a core storage address of the CRT data field into the LSR, (2) gate the CRT attachment to retain the address where the data field began, and (3) reset the display station CRT beam to the upper left corner of the screen.
Test I/O is used by the program to test operating or error conditions of the CRT attachment and display station. Program branching may result from the indications returned from the test $1 / 0$ instruction.
Sense I/O transfers CRT status information or the address in the CRT LSR into main storage to be used by the program.
Start I/O initiates or halts a CRT display operation. The start I/O halt may be used in diagnostic programs to check the operational status of the CRT attachment.

Error Detection

The CRT attachment checks for the following error conditions:

1. Data parity
2. Display station not ready

Data parity is checked at the DBO at all times. On each cycle steal granted to the CRT, parity is checked within the CRT attachment at the data regis ter. (The data register stores the data byte received from the CPU.) Any parity error condition forces the CPU to a hard halt at the end of the cycle in which the parity check was detected. All parity checks are latched (retained) in the attachment in order to be checked by program instructions (test I/O or sense I/O). Parity check conditions are reset by:

1. System reset
2. Check reset
3. The CRT attachment accepting a SIO instruction

A CRT not ready condition occurs when a start I/O instruction is issued oo the CRT device and the display station power is not on. Not ready condition is indicated at the operator's console by lighting the CRT I/O attention lamp. The lamp remains lit until the CRT is made ready (power is restored to the display unit).

Cycle Steal Requests
Cycle steal requests are generated by the CRT attachment to signal the CPU o transfer data to the CRT or to modify the CRTAR (LSR) address. The CRTAR is selected during a cycle steal request to locate the main storage address of the data field (it may be a byte within the data field) or to modify the CRTAR address. CRT attachment cycle steal requests are thirteenth in priority of the cycle steal I/O devices. The CRT cycle steal request may be overridden by a higher priority I/O device and requires the CRT to keep issuing its cycle steal request until the CPU acknowledges the request by returning DBO bits 1 and 5 . This signals the CRT attachment that the next machine cycle is granted to the CRT and is referred to as an I/O cycle.

Local Storage Addressing

Local storage register CRTAR is addressed by the CRT attachment by selecting LSR select lines 3 and 6 , without ledger card device (with ledger card device installed on the printer, CRTAR is addressed with LSR select ines 6 and 7). The CRTAR is addressed during:

1. Cycle steal requests (CSR)
2. A load I/O instruction cycle
3. A sense I/O instruction

Cycle steal cycles address the CRTAR to locate the data field address and to modify the LSR address.
Load I/O instruction addresses CRTAR to load the LSR with the main torage address of the first byte of the data field.
Sense I/O instructions address the CRTAR to sense the address presently in the LSR and transfer the information into main storage.

Constants

Constants are generated by the CRT attachment to increment or decremen he CRTAR address, Constants are returned to the CPU during a cycle steal equest, by activating DBI lines that represent the binary value of the desired constant. The constants generated are

1. +1 (DBI line 7 during the modify lo cycle)
2. -192 (DBI lines 0 and 1 during the modify lo cycle)
3. $\quad-768$ (DBI lines 6 and 7 during the modify hi cycle)

Modify plus one is generated each data transfer cycle steal to increment the LSR address to the next data byte in the data field. The LSR address is incremented by one until the LSR address is 960 above the starting address of the data field which indicates the end of the data field. A cycle steal request is then made to subtract 960 from the incremented address in a display the de subtrat be broken into two times, LSR address contains two bytes. During the modify lo cycle 192 is sub LS from LSR lo byte, duing the 1 dify hi cycle 768 is subtracted from the LSR hi byte.

ocal Storage Register Address Increment Checking

The LSR address must be checked for each increment of 64 or 960 above he starting address of the data field address.
Each increment of 64 of the LSR address indicates that the display station has displayed 64 characters (one line on the CRT screen) and the display station needs a retrace signal (to move the CRT beam back to the left side has displayed 15 lines and a restore signal is needed (to move the CRT beam le CRT screen in positio to star play cycle).
Attachment lo
and develops the Ad develops the signals to initiate a retrace or restore cycle in the display station.
Note: The data field starts on a XX01 boundary: therefore the 64th or 960th character is indicated when the LSR address is 65 or 961 respectively.

CRT Attachment Timing

CRT attachment logic provides the following timing signals to the display station:

1. Step display
2. Start character generator
3. Reset display

Step display indexes the CRT beam to the next character position on the CRT screen. The 65 th step display signal, which indicates the end of a line display, causes the display station to move the CRT beam to the left edge of the CRT screen, and the CRT attachment to generate a time-out signal (approximately $288 \mu \mathrm{~s}$) to allow the display station time to complete the display cycle and are $4.5 \mu \mathrm{~s}$ in duration.

Start character generator signals the display station to start displaying a character. This signal is active 6μ s after the beginning of step display and is $1.5 \mu \mathrm{~s}$ in duration
Reset display initiates a restore cycle in the display station (moves the CRT beam to the upper left corner of the CRT screen) and starts a dela the CRI LSR LSR address has incremented 960 .

CRT Attachment Status

A sense I/O instruction causes the CRT attachment to gate the CRT attachment error latch and signal ine conditions (status) onto the DBI and the information transferred to main storage. A test I/O instruction tests the CRT attachment for error or busy conditions and causes the attachment to return an indication about the result of the test to the CPU (I/O condition A and I / O condition B signals).

IBM 2265 DISPLAY STATION MODEL

The 2265 Display Station Model 2 provides visual access to data in main storage. Data is displayed on a cathode ray tube (CRT) in the display station in 15 lines of 64 characters in each line (960 characters). A character position marker (cursor) may be displayed at each character position either with or without the character. The cursor and character display are under program control.

System Console
There are no controls for the display station on the system console, only an indicator that lights when a program instruction is issued to the CRT and the CRT is not ready (power is off at the display station). The CRT I/O attention indicator remains lit until the CRT is made ready (power is turned on at the display station) or a system or check reset is performed. A system reset stops a display operation if one is in progress.

Data

The character set for the display station consists of 64 characters, each character is encoded in a 6 bit EBCDIC sub-set. The seventh bit is for cursor control. Format of the data byte for the CRT is as shown

Each character may have a cursor displayed with it if bit 1 equals 0 . No cursor is displayed if bit 1 equals 1 .

The following table shows the characters the CRT can display and the 6 bit code for each.

Code	Character	Code	Character
$\begin{gathered} \text { Bit } \\ 01234567 \end{gathered}$		$\begin{gathered} \text { Bit } \\ 01234567 \end{gathered}$	
000000	Blank	100000	-
000001	${ }_{\text {A }}$	${ }_{100001}^{10001}$	\%
O000010	${ }_{\text {B }}^{\text {C }}$	100010 100011	${ }_{T}$
000100	D	100100	u
000101	E	100101	v
000110	F	100110	w
000171	G	100111	x
001000	${ }_{1}$	101000	z
001001 001010	1	101001 101010	${ }_{\text {Blank }}$
001011		101011	
001100	<	101100	\%
001101 001110	$\stackrel{1}{+}$	101101 101110	$\overline{5}$
001111	1	101111	?
010000	\&	110000	0
010001	J	110001	1
010010	${ }_{1}$	110010	2
010011 01000	M	110011	4
010101	N	110101	5
010110	P	110110	${ }^{6}$
010111 011000	P	1110111	8
011001	R	111001	9
011010	\uparrow	111010	
011011 0111100	*	111011	$\stackrel{\#}{\text { @ }}$
011101	1	111101	
011111	\neg	111111	$\stackrel{\square}{\ddagger}$

Bit 1 is the cursor bit.
BR0814A
The data to be displayed is located in the display field in main storage.
If bit $1=0$ a cursor is displayed with the character
ff bit $1=1$ the cursor is not displayed.
If bit $1=0$ and bits 2 through $7=0$, only a cursor is displayed

Local Storage Register

A local storage register (LSR), located in the CPU, is assigned to the CRT display station. This register (CRTAR) contains the address of the CRT display field in main storage. The display field contains the data to be displayed on the CRT display station screen. Before the start of a display operation the CRTAR must be loaded with the main storage address of the first dat byte in the display field. As each data byte is displayed, the LSR (CRTAR) address is updated by one so the next data byte is addressed when the LSR is addressed again
The display field is a sequential 960 byte area in core that may start a any XX01 address. (XX is any hexadecimal address that is 960 bytes le than maximum core capacity) The entire field (960 bytes) is displayed.

LOAD I/O (LIO) INSTRUCTION FORMAT

This instruction is issued to the CRT attachment to load the LSR (CRTAR) assigned to the CRT with the starting address of the display field in core storage. The format of the load I/O instruction is:

A display station CRT beam reset occurs during a load I/O instruction. (CRT beam is moved to the upper left corner of the CRT screen.) The CRT attachment starts a $288 \mu \mathrm{~s}$ delay to allow time for the display station to complete the reset. This delay interlocks the attachment so that other instructions (except sense and test I / O) cannot start until the delay times out. structions (except sense and test I / O cannot start until the delay times out.
A ready condition in the display station is not needed for the load I/O Anstruction execution. If the CRT attachment is busy (in a display operation), the load I/O instruction is rejected by the CRT attachment and causes the CPU to reissue the load I/O instruction. (The CRT attachment is always busy when executing a SIO display instruction, therefore the CPU will hang in a loop (iR backup) until the system power is turned
off or a system reset is performed.)
The CRT attachment must retain where the display field was started in main storage in order to check the LSR address for each increment of 64 EB 1 cycle to set the required latches in the attachment.

TEST I/O (TIO) INSTRUCTION FORMAT

The test I/O and branch instruction test the CRT attachment for error or busy conditions and branches the CPU to a specific address if the condition tested for is met. The format of the test I/O instruction is:

Conditions that can be tested in the CRT are:

1. CRT busy
2. CRT check

CRT Busy (N Field Code $=\mathbf{X 1 X}$)
A busy condition exists when the attachment is executing a start I/O displa instruction.

CRT Check (N Field Code $=\mathrm{XOX}$)

The following conditions cause a CRT check

1. A parity error in the data register of the CRT attachment. (The data register contains the data byte for the CRT display.)
2. CRT display station not ready. This indicates that power to the display station is off. (Power on indicator on the 2265 is not lit.) the display station is made ready by restoring power to it.
The test I/O instruction is always executed.

SENSE I/O (SNS) INSTRUCTION FORMAT

A sense instruction is issued to the CRT attachment to transfer the attach ment status or LSR (CRTAR) information into main storage.
The format of the SNS instruction is:

Store Status (N Field Code $=\mathrm{X1X}$)

Two bytes of attachment status are transferred into main storage at the address specified by the storage address of the instruction. Status byte one is placed in the address as specified in the sense operand one address, status byte two is placed in storage at the operand one address minus one.
The status bytes are as follows:
Status Byte One
First E-B Cycle (Operand 1 Address)
Bit 0 Write op (diagnostic only
Bit 1 Start char gen (diagnostic only)
Bit 2 Step-display (diagnostic only)
Bit 3 Cycle steal request (diagnostic only)
Bit 4 Display reset (diagnostic only)
Bit 5 Data register parity check
Bit 6 Display not ready
Bit 7 Cycle steal acknowledged (diagnostic only)

Status Byte Two

E-B Not First Cycle (Operand 1 Address Minus One)
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
B
Bit 4
the data
Bit 6
Bit 7
Bit P (regenerated)
Status bits 0 through 4, and bit 7 of status byte one and status byte two e used for diagnostic programs only. The diagnostic bits in status byte on re CRT attachment signal lines of the same name, The bits of status byte wo are the data register outputs 0 through 7 .

tore LSR (N Field Code $=$ X0X)

The LSR address is stored at the operand one address specified in the instruction.
A sense instruction is always executed

START I/O (SIO) INSTRUCTION FORMAT

Anstruction is issued to the display station to start or halt a display operation. The halt instruction may also be used for diagnostic

The format of the start I/O instruction is:

Display (N Field $=\mathrm{X} 1 \mathrm{X}$)

The CRT attachment decodes the start I/O instruction when the device address in the Q byte equals nine (hexadecimal 1001). If the N field of the Q byte equals X1X (X may be either a one or zero) the CRT attachment is conditioned to start a display of the characters in the display field on the CRT screen. After he start $/ O_{1 \cdot Q}$ and 1 -R cycles are complete, the CRT attachment generates cycle steal requests. Each I/O cycle addresses the CRTAR (LSR) for the location of the display field and increments the LSR address by one so that the next selection of the CRTAR addresses the next sequential character in the display field. A data character is sent to the CRT attachment during the $1 / O$ cycle and this character is displayed on the CRT screen. As soon as the character is displayed, another cycle steal request is made for the next character in the display field. This action is repeated starting address of the display field. Each increment of 64 in the LSR
address indicates that 64 characters have been displayed and a retrace is needed in the display station. A retrace delay of approximately 273 to 288 microseconds is started to allow time for the CRT beam to move to the left edge of the CRT screen in position for the next line of display. No cycle steal requests are made during the delay time-out. Cycle steal equests are started again when the retrace delay times out.
When the LSR address has incremented 960 above the starting address of the display field (actual address in the LSR is 961 because the display field of frame) to return the CRT beam to the upper left corner in position to tra from of display acai. The same delay described for retrace is sta for beam repositioning The LSR address is decremented by -960 during re restore cycle so that the CRT begin its display bock at the start of the display field. Cycle steal requests are made after each character display to display field. Cycle steal requests are made after each character display to If a new load I/O instruction is not issued to a new start I/O display instruction, the attachment begins its display with the character located at the current address in the CRTAR. The start I/O display instruction is accepted by the CRT attachment only when it is not busy and the display station is ready.
The CRT attachment is always busy when executing a SIO instruction If a SIO instruction is issued to a busy CRT attachment, the CPU will operate in IR backup mode until the system power is turned off or a system reset is performed.

Halt (N Field = X0X)

A start I/O halt instruction is issued to the CRT to:
. Stop a display operation
Determine if data flow to the CRT attachment is correct
A start $1 / O$ halt stops the display on the CRT and ends further cycle steal requests. A start I/O display instruction must be reissued to the CRT before display operation starts again.
For diagnostic purposes, a start I/O halt loads the data register in the CRT ttachment with a data character during the I-R cycle of the instruction. The data register may then be sensed with a sense instruction and compare ser to determine if the data was transferred the CRT attachment correctly,
The CRT attachment accepts a start I/O halt instruction at any time.

Chapter 2. Functional Units

NTRODUCTION TO FUNCTIONAL UNITS

Chapter 2 contains the functional units of the CRT attachment and the errer checking circuits.
The first page of the chapter is a board layout of the CRT attachment
It is broken down into cards and contains the following information:

1. Card locations.
2. Circuits found on that card.
card. time that the card has an engineering change to it. The card type number, however, will always stay the same.
The card location number appears on each page, or section of a page, that describes the circuitry on that card. For example, O 2 on a page refers to LSR select.

Symbols
Figures within this chapter contain the symbols: numbers in squares,
igures within this chapter contain the symbols: numbers in square and letters in circles. These symbols refer to text, marked with
identical symbol, that describes or explains the function of the unit marked in the figure.

A

B

CRT DISPLAY STATION TIMING

CRT display station basic timing is provided with the trigger ring counter and its decoding logic. The counter is indexed at the trailing edge of each clock 6 time when the 'counter run' latch is set. During a display operation a cycle steal is requested whenever 'counter run' is not active.Twelve microsecond decode ANDed with a 'D register' one bit position gates the turn off of the 'character control' latch when the counter indexes to 8 . This is the time required by the CRT to display a charac if a cursor is not to be displayed with this character If a cursor is to be displayed, the ' D register' input prevents the turn off of the 'charac be displayed, the ' D register input prevents the turn off of the 'charac off the 'character control' latch at counter 10 time and provides the timing to the CRT when a cursor is displayed with the character.
C. 'Character control' latch is set at the start of each character display cycle. It remains set for either 12 or 15 microseconds depending on which turn off decode block gates its reset at clock 8 time. ‘Character control' is active for the length of time to display one character (with or without a cursor) and includes the time to index the CRT beam to the next position. 'Character control' ANDed with another counter decode condition, ' 6 microsecond', activates the CRT interface line 'start character generator'.

D 'Step display' latch is set at the same time that 'character control' is set. 'Step display' remains set until counter four time. The 'step display' latch generates a CRT interface signal of the same name and is used to index the CRT beam to the next character position on the CRT screen. 'Step display' is active for 4.5 microseconds.
E The 'retrace' latch is active to generate a timing delay in the CR attachment to allow time for a CRT beam retrace or restore operation 'Retrace' latch active prevents character control' from generating of 192. The time of the delay generated may vary due to the actual count in the counter at the time 'retrace' is active but is 273 to 288 microseconds 'Retrace' latch is reset when the counter reaches 192 and during load I/O commands.

65 trigger' and ' 65 step' latch are set at the end of a line display (64th character) to delay the step display signal to the CRT unit The 65th step display signal resets a counter in the display unit to move the CRT beam back to the left side of the CRT screen to begin another line of display. Without delaying the step display signa, the CRT may distort (cut off) the trailing portion of character or cursor strokes for the 64th character, due to an early retrace signal.

2 CRT ATTACHMENT SELECTION
'CRT select' is set during the $\mathrm{I}-\mathrm{Q}$ cycle of an I/O instruction and is the gate to indicate that the information on the DBO is for the CRT. A gate to set the condition register is generated at this time.

3. RESET FOR LOAD I/O INSTRUCTION

LIO reset' is generated at 'EB not 1 ' cycle to indicate the last machine ycle of a load I/O instruction.

DBO PARITY ERROR

DBO parity latch' is set whenever an error (parity) is detected on DBO at clock 5 time in an I/O instruction, or clock 1,5 , or 7 time during a cycle steal cycle.

5. STATUS GATES FOR SENSE INSTRUCTION

Gate status one and gate status two are generated to gate the sense bytes onto DBI at 'EB-1' and 'EB not 1 ' respectively. The parity of he sense bytes may not be odd, therefore a parity generate signal gate sense parity' is provided at each sense byte time.

1 cycle steal reouest

A The 'write' latch is set when a CRT start I/O display instruction is decoded. The 'write' latch is turned off by a start I/O halt instruction or by the CRT display station going to a (not) ready condition (power off).

B Cycle steal requests are made when: (1) the CRT 'write' latch is on, (2) 'counter run' is inactive, (3) the display station is not timing ou for a restore or retrace delay, and (4) 'processor run' is active.

C 'Set LSR address' gates the 'not 6 ' and 'not 7 ' latches during the 2 nd cycle of a load I/O instruction. LSR hi address is on the DBO at this time.
'I/O meter run' is on if the 'write' latch is on and conditions for 'process run' are met.

2 ERRor detection

A 'Command reject' and 'I/O attention' indicate conditions of the CRT display unit and CRT attachment status. 'Command reject' latch is set if:

1. The 'write' latch is set and a load I / O instruction attempted. 2. The 'write latch is set and a start I/O (display) is attempted. Start I/O halt instruction is always executed.
2. A start $1 / O$ display instruction is attempted and the display station is not ready (power off).

B ' I / O attention' latch is set if a start $1 / O$ instruction is attempted and the display station is not ready.
C The 'CRT ready' line from the 2265 is sampled with clock zero. The 'display ready' latch is set if the ready line is active. A single shot stabilizes the turn on of the 'display ready' latch if the ready line is

3 I/O INSTRUCTION
This logic is active when the CRT attachment is decoding an I/O instruction.

B 'Gate parity check' is a condition to set the 'parity error' latch if the DBO parity is even during the following times:

1. An I/O instruction I.O cycle
2. A start I/O instruction I-R cycle
3. An I/O cycle
4. A load I / O instruction during EB not 1 cycle

LSR SELECT

A. The CRTAR (LSR) is addressed with LSR select lines 3 and 6 if the
ledger card device is not installed on the system printer. If ledger card is installed, CRTAR is selected with LSR select lines 6 and 7. The LSR is selected for

1. A load I / O instruction to load the starting address of the data field into the LSR.
2. An I/O cycle to modify the LSR address plus 1 for each I/O
cycle or to subtract 960 from the updated address.
3. A sense instruction to sense the address in the LSR and transfer the information into core storage.

B 'Pri select' latch is set when the CPU acknowledges a CRT I/O cycle re quest by returning DBO 1 and 5 active at clock 8 time. 'Ack'd' is set at clock O time to extend LSR selection into the next adjacent CPU cycle for LSR address increment checking and to modify the LSR address.
'Ack'd' ANDed with clock 6 starts the CRT timing cycle.

5

O CONDITION A AND B CONTROL

$1 / O$ condition A and B are used together to indicate to the CPU
(1) the status of the CRT attachment when an instruction is issued
to it, and (2) error conditions during an operation.

	1/O Attachment Condition				1/0	dition	CPU Reation
					A	B	CPU Reactio
I-Q Cycle of Any I/O instruction	Incorrect DBO Parity				1	1	Processor Check Stop
	Correct PBO Parity		Q Byte Not	Correct	0	0	Processor Check Stop
		$\begin{array}{\|l\|} \hline \text { Correct } \\ \text { Byte } \\ \hline \end{array}$	Sense Instruction		0	1	Proceed to Next Sequential Instruction
			SIO Instruction	Reject Instruction	1	0	Retry I/O Instruction
				Accept Instruction	0	1	Proceed to Next Sequential Instruction
			Test I/O	Condition Not Met	0	1	Proceed to Next Sequential Instruction
				Condition Met	1	0	Branch to Effective Address
SIO I-R,LIOE-B, and I/O Cycles	Incorrect DBO Parity				1	1	Processor Check Stop
	Correct DBO Parity				0	0	Continue as Normal

dBo register

Format of the bit value assignment of the LSR address:
The conditions needed to set the 961 signal are as shown:

- Receives data and control information from DBO.
- Output is parity checked
- Latches up (retains its status) when a DBO register parity error is detected.
- Output is gated into other CRT attachment logic.

2 DATA REGISTER (D REGISTER)

- Is set during a start I/O I-R cycle or during an I/O cycle.
- Status may be sensed with a sense instruction.
- Positions 1 through 7 are gated to the display station and contain data for the CRT display. Position 1 is the cursor bit, 2 through 7 are data.
- Output is parity checked. If an error is detected, unit check latch is set.

3 DBI REGISTER

- Output is parity checked. A parity bit is generated if one is needed.
- Is reset at sample DBO time during clock $0,2,4$, and 6 time The 'parity bit' latch is reset at each phase C time.
- Input may be from three sources: (1) ‘D register’ output, (2) CRT status, and (3) constants generator, modify $+1,-192$ and -768 .

4 LSR ADDRESS 64 and 960 INCREMENT CHECK

The data field for the CRT display station may start at any hexadecimal XX01 address. (XX is any core address that is 960 bytes less than maximum core capacity.) The CRT attachment must retain an indication of where the data field was started in order to check for each increment of 960 above the starting address. Thi sica
 po 960 requires more bit positions than a h. A therefore the two least significant bits of the LSR hi address are used to extend the count to include 960. to extend the count to include 960 .

Note: The data field starts on a XX01 boundary, therefore the LSR address indicates 65 for an increment of 64 or 961 for an increment of 960 .
During a load I/O instruction when the LSR is loaded with the address of the display data field, two latches ('not 6 ' and 'not 7 ') are set or reset together to retain the binary boundary (256 or 512) at which the data field address started. The 'not 6', 'not 7' latches are set during the second cycle of the load I/O EB cycles when the LSR hi portion of the address is on DBO.
The conditions to set-reset the 'not 6', 'not 7' latches are as shown:

DBo	Bits	Not	Not
6 and	7	6	7
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	1

$\begin{aligned} & 0=\text { latch reset or inactive condition } \\ & 1=\text { latch set or active condition. }\end{aligned}$

The 960 count is spread across two LSR address bytes. Each byte is on the DBO at separate times. As a result, the 960 increment check must be made at two different times. During the time the LSR lo address byte is on DBO, it is checked for an increment of 192 . If the 192 check is positive, the the latch is set to gate a check for 768 in DBO, gated by the ' 193 ' latch, the DBO lines are exclusive O Red (OE) with the 'not 6 ', and 'not 7' latches to check for an increment of 961 .

During the time the LSR lo address is on DBO, DBO lines 2 through 6 are checked for zero and line 7 is checked for 1 . If lines 2 through 6 are zero and line 7 is 1 , this indicates an increment of 64 . The " 65 latch is set to gate the CRT attachment for a retrace operation.

5 CRT ADDRESS-CONDITION 6 REGISTER

These lines are conditioned from the DBO register. The CRT address is indicated when DBO bits 0 through 3 equal 1001 (9). 'Condition 6^{\prime} register is set when bit 6 of the Q byte of an $1 / O$ instruction equals a 1 (active state). I/O instructions for the CRT have only two options (i.e.: start I/O display or halt). 'Condition 6' register gates the attachment logic for one option when it is set and the other option when it is reset.

6 constants

This logic:

- Provides constants to increment or decrement the LSR address. +1 is generated each $1 / O$ cycle to increment the LSR address to the next data character in the display field. -192 and -768 decrement the LSR address when the end of the data field is indicated. -192 and -768 modify the LSR lo and hi respectively.
- 'Binary subtract' is active during the time -192 and -768 ar generated to cause the ALU (in the CPU) to subtract.

RESET DISPLAY

This logic:

- Is part of an interface to the 2265 II
- Resets the display unit beam to the upper left corner of the CRT
- Starts a 288 (approximately) microsecond delay within the CRT attachment to allow time for the CRT beam to restore or retrace
- Starts a reset display when

1. A load I/O operation is issued to the CRT.
2. A load I/O operation is
3.

'System reset' is active
2. The LSR address has incremented 960,

Chapter 3. Operation

INTRODUCTION TO OPERATIONS

Chapter 3 contains detailed flowcharts and timing charts of the operation performed by the CRT display station attachment.

Flowcharts

The flowcharts contain three levels of information. By reading down the heavy dark lines, the reader can learn the major objectives of the operation. The second level of information is obtained by reading the information in the boxes that branch off the heavy dark line. The information that is con tained in each block in a heavy dark line is explained in the blocks that branch off from it. The third level of information is contained in the note
blocks (open ended blocks) that branch off the second level blocks, Inforblocks open ender bel blocks. In block is intended to explain why an action has been performed.

Timing Charts

The timing charts in this chapter are to be used to supplement the information found in the flowcharts.

B

-

B

- Start 1/O Write Operation and First Cycle Steal Request

A

I/O Cycle - Modify CRTAR Address Plus One

B

B

-

B

A Register Controls $4-040$
A/B Register Parity 2-090
Access Panels 1-601
Add Characters Timing Chart 5-084
Add Decimal Diagram 5-104
Add Logical Characters Diagram $5-082$
Add Logical Characters Flowchart 5-080
Add to Register Diagram 5-062
Add to Register Flowchart $5-060$
Add to Register Timing Chart 5-064
Add Zoned Decimal Dagram $5-100$
Add Zoned Dechal 1048
Address Marks 8-104, 8-224
Advance Program Level-CPU
Advance Program Level Flowchart 5
Advance Program Level-Data Recorder
Description 10-115
Error Conditions 10-115
Flowchart 10-304
Instruction Format 10-115
Parity 10-115
Q Byte 10-115
Timing Chart 10-305
Advance Program Level-Disk 8-108
Advance Program Level-Keyboard-Console 7-117
I Advance Program Level-Printer and LCD
Application 9-106B
Error Conditions 9-106B
Description ${ }^{\text {Flowchart }} 9$ 9-304
Flowchart 9-304
Instruction Format 9-106B
$\begin{array}{ll}\text { Parity } & 9-106 \mathrm{~B} \\ \text { Q Byte } & 9-106 \mathrm{~B}\end{array}$
Timing Chart $9-305$
Alter SAR Diagram 5-232
$\begin{array}{lll}\text { Alter SAR Diagram } & 5-232 \\ \text { Alter SAR Flowchart } & 5-230\end{array}$
$\begin{array}{ll}\text { Alter SAR Flowchart } & 5-230 \\ \text { Alter SAR Timing Chart } & 5-234\end{array}$
$\begin{array}{ll}\text { Alter SAR Timing Chart } & \text { 5-234 } \\ \text { Altorage Diagram } & 5-242\end{array}$
$\begin{array}{ll}\text { Alter Storage Diagram } & \text { 5-242 } \\ \text { Alter Storage Flowchart } & 5-240\end{array}$
Alter Storage from Keyboard 1-207
Alter Storage from Keyboard Flowchart 7-314
Alter Storage Operation-Keyboard-Console 7-313
Alter Storage Procedure 1-207
Alter Storage Timing Chart $\quad 5-244$

Alternate Program Load Device 1-210
Interface Circuits 1-210
Maintenance 1-211
Programs 1-210
Bootstrap Loader 1-210
$\begin{array}{lll}\text { Diagnostic Control Program } & 1-210\end{array}$
Tape Loader 1-210
$\begin{array}{ll}\text { Setup } & \text { 1-211 } \\ \text { Tapes } \\ 1-210\end{array}$
$\begin{array}{cc}\text { Tapes } \\ \text { Alternate Track } & \text { 8-104 }\end{array}$
ALU 4-010
ALU Control
ALU P Bitrols 4-014, 4-016
ALU Parity $2-100$
LU Parity $\quad 2-100$
APL (see Advance Program Level)
APLD (see Alternate Program Load Device)
$\begin{array}{ll}\text { Attachment Timing, CRT } & \text { 11-102 }\end{array}$

B Register Controls 4-044
Bi-directional Print Operation 9-342
Bi-directional Print Operation Flowchart 9-343, 9-344
Bi-directional Print Operation Timing Chart 9-345
Bi-directional Printing 9-102
Bit Count Appendage (BCA) 8-101, 8-104
Bit Ring, Disk 8-224
Board Layout, CRT 11-202
Board Layout, Data Recorder 10-202
Board Layout, Disk 8-203
Board Layout, Keyboard-Console 7-202
Board Layout, Printer and Ledger Card Device
Attachment 9-202
Branch on Condition Flowchart 5-130
(see Storice Module Maine Mainten
see Storage Mo

C Byte 8-104
Cable Channel 1-605
Card Extender 1-209
Card Skew Check, LCD 9-522
Card, System/3 10-102
Carriage, Dual Feed 9-102

Carry Check 2-070
Cassette, Tape (see Alternate Program Load Device)
CE Diagnostic Probe 1-208
CE Panel Register Display Unit 1-204
CE Track, Disk 8 -104
Chaining Print Commands $9-103$
Channel P Check $\quad 2-140$
Character Codes, Data Recorder 10-107
Character Set, Data Recorder
Check Counter Check Disk 8.236
Checks, Disk 8-228, 8-232
Checks, Disk 8-228, 8-2
$\begin{array}{ll}\text { Clock, CPU } & 4-020 \\ \text { Clock, Disk } & 8-244\end{array}$
Code Conversion Chart 1-116, 1-117
Command Byte Structure, Printer 9-103, 9-109
Command Chaining, Printer 9-103
Command Field Format, LCD 9-403
Command Field, LCD 9-403
Commands, LCD 9-403
Compare Logical Characters Diagram 5-082
Compare Logical Characters Flowchart $5-080$
Compare Logical Characters Timing Chart 5-084
Compare Logical Immediate Diagram $5-090$
Compare Logical Immediate Flowchart 5-092
Condition Code, CRT 11-207
Condtion Code Response Fowchart 1-111
Condition Register $4-050$
Condition Register Settings Chart 1-112
Condition 6 Register, CRT 11-209
Console 1-202
Console Lamp Replacement 1-409
Console Lights Diagram-Keyboard-Console 7-205
Constants, CRT 11-102
Constants Diagram, CRT 11-208, 11-209
Control Counter, Disk 8-222
Control Latches Diagram-Keyboard-Console 7-207 Controls, CRT 11-103
I Count Byte, LCD 9-402
Count Byte, Printer 9-104
Cover, Locations 1-601
Cover and Panel Removal \quad 1-60
CPU Cycle Pattern 1-115
CPU Data Flow 3-010
CPU Timing 1-113

CRT Address Decode 11-209
CRT Address Register 11-103
CRT Attachment 11-101
CRT Attachment Timing 11-10
CRT Card Diagrams
Card $1 \quad 11-204$
$\begin{array}{ll}\text { Card } 2 & 11-206\end{array}$
Card 3 11-208
CRT Character Codes 11-103
CRT Code Conversion Chart 1-118
CRT Console Indicator 11-103
CRT Constants 11-102
CRT Control Data Flow 11-208
CRT Cycle Steal Requests 11-101
CRT Data 11-103
CRT Display Flowchart 11-314
$\begin{array}{ll}\text { CRT Display Station Timing } & \text { 11-205 } \\ \text { CRT Display Timing Chart } & 11-315\end{array}$
CRT Error Detection 11-101
CRT Local Stocia Reiter
CRT Program Instructions 11-101
CRT Select 11-205

CRT Select	$11-205$

CRTAR 11-103
Cursor CRT 11-103
Cycle Control Ring, Disk 8-220
Cycle Controls 4-030, 4-032
Cycle Pattern, CPU 1-115
Cycle Steal Controls Diagram, Data Recorder 10-208
Cycle Steal Controls Diagram, Printer 9-211
Cycle Steal Request, CRT 11-207
ycle Steal Request Priority $4-064$
ycle Steal Requests, CRT 11-101
Cycle Steal Requests, Disk 8-210, 8-240
Cycle Steal Requests, LCD $9-513$
Cycle Steals, Data Recorder 10-209
Cyclic Code Characters, Disk $\quad 8-101,8-104$
Cylinder 8-104
ylinder Address 8 -104

Data Assembler, LCD 9.518 Data Bus In 4-060 Data Bus In Assembler, CRT 11-209
| Data Bus In Assembler, LCD 9-510 Data Bus In Assembler, Printer 9-207
Data Bus Out $4-065$
Data Bus Out Register, Printer
Data Check, Printer 9-110
Data Field, Disk 8-105
Data Field, LCD 9-402, 9-626

Data Flow
CPU 3-010
CRT 11-208
Data Recorder 10-118
Disk 8-116, 8-204
Keyboard Attachment 7-120
Keyboard Operations 7-120
| Ledger Card Device Attachment 9-502 Printer 9-201
Data Recorder 10-101
Data Recorder Attachment 10-101
Cycle Steals 10-101
Description 10-101
Local Storage Register 10-101
Priority Request 10-101
Data Recorder FE Latch 1-412
Data Recorder Interface Lines 10-203
Dacorder Punch Operation 1011
Data Recorder Punch Operation 10-111
Data Recorder Read Operation 10-109
Data Recorder Read Operation 10-109
Data Recorder Read Operation Diagram 10-108
Data Recorder Registers 10-206
Data Recording, Data Recorder 10-103, 10-105
Data Register, CRT 11-209
Data Separator 8-208
Adjustment 8-208, 1-411
Data Storage, Disk 8-103
DBI Assembler, Data Recorder 10-207
DBI Assembler-Keyboard-Console 7-204
DBI Parity 2-080
DBI Translator $4-060$
DBO Parity 2-110
DBO Register, CRT 11-209
DBO Register, Data Recorder 10-205, 10-207
DBO Translator $4-065$
DCP (see Diagnostic Control Program)
Decimal Conversion Chart 1-112
Decimal Data Storage Chart 1-115
Decode Device Address, Data Recorder 10-205
Delay Line, Data Recorder 10-103
Delay Line Flag Bits 10-104
Device Status, Disk 8-109
Device Status, 1
DFCR
$8-105$
$\begin{array}{ll}\text { DFCR } & 8-105 \\ \text { DFDR } & 8-105\end{array}$
Diagnostic, CE, Disk 8-107
Diagnostic Control Program 1-201
Diagnostic Cycle Steal Operation Diagram, Data Recorder 10-317
Diagnostic Data Operation Diagram, Data Recorder 10-317
Diagnostic Programs 1-20
Diagnostic Start I/O, Data Recorder 10-117

Difference Counter, Disk 8-21
Disk Attachment
Busy 8-108
Cycle Steal Requests
8-210, 8-240
Error Detection 8-228, 8-232
File Control Unit (FCU) 8-10
Local Storage Registers 8-105
Parity Error 8-101
Program Instructions $8-101,8-107,8-108,8-109,8-11$
Serializer De-serializer (SER-DES) 8-248
Timing 8-101
Disk Control Field 8-105
Disk File Control Register (DFCR) 8-105
Disk File Data Register (DFDR) 8-105
Disk Instructions
$\begin{array}{ll}\text { oad I/O (LIO) } & 8-107\end{array}$
Diagnostic CE $8-107$
Sense I/O (SNS) $8-109$
Start I/O (SIO) 8 8-111
Read Data Diagnostic 8-111
Read Identifier $8-111$
Read Verify $8-111$
Scan High or Equal
$\begin{array}{lll}\text { Scan Low or Equal } & 8-111\end{array}$
Seek 8-111
Write Data 8-111
Write Identifier 8-111
Test I/O (TIO) 8-108 Not Ready or Error 8-108
Disk Storage Drive Maintenance 1-411
Display Station, 2265 Model 2 11-103
Display Storage Diagram 5-252
Display Storage Flowchart 5-250
Display Storage Timing Chart 5-254
$\begin{array}{ll}\text { | Drive Check, LCD } & 9-522 \\ \text { Dual Feed Carriage } & 9-10\end{array}$
Dual Program Feature $4073,4-074$

Edit Diagram 5-112
Edit Flowchart 5-110
Edit Timing Chart 5-114
Eject, LCD 9-623
Element Return Command, Printer 9-103
Element Return Flowchart, Printer 9-314, 9-315, 9-317
Element Return Timing Chart, Printer 9-318, 9-319
Encode Board 7-203
Encode Board Maintenance 1-409
End of Forms, Printer 9-104

Environmental Recording 1-207
Error Checking Diagram, Printer 9-212, 9-213
Error Conditions Diagram, Data Recorder 10-210
Error Conditions, Disk 8-228, 8-232
Error Detection, CRT 11-101
Error Detection, LCD 9-404
Error Recovery, Printer 9-110, 9-111
Extenders
Card 1-209
Pin 1-209

F Byte, Disk 8-104
FCU (File Control Unit) 8-101
FE Console Panel-System Maintenance 1-204
FE Control Panel Indicators 1-204
Address Compare 1-205
Clock 1-205
I/O Check 1-205
Machine Cycles 1-20
$\begin{array}{ll}\text { Machine Cycles } & 1-205 \\ \text { Register Display } & 1-204\end{array}$
$\begin{array}{ll}\text { Register Display } & 1-204 \\ \text { Rotary Display } & 1-204\end{array}$
FE Control Panel Switches 1-205
Address Compare 1-206
Address/Data 1-205
Address Increment 1-206
BSCA 1-205
CE Mode Selector 1-207
Check Reset 7-111, 1-206
File Write 1-205
$\begin{array}{ll}\text { I/O Check Switch } & 1-205 \\ \text { I/O Overlap } & 1-205\end{array}$
I/O Overlap 1-205
LSR Display Selector 1-206
Parity 1-205
Program Load 1-207
Stort/Stop Test 1-206
System Reset $1-206$
FE Lath Rata Recorder 1-412
Feed, Read ID, and Eject (LCD) 9-613
Feed, Read ID, and Locate (LCD) 9-613 Field/Operation Lights Code 7-106 File Drawer Interlock Adjustment 1-411

File Drawer Service Position 1-411
Flag Bits, Data Recorder 10-104
Flag Bits, Disk 8-104
$\begin{array}{ll}\text { Flag Bits, Disk } & 8-104 \\ \text { Forms Control } & 9-101\end{array}$
Forms Recognition, Printer 9-104
Function Keys 7-106, 7-107
Functional Units Index, Disk 8-202
| Functional Units, LCD 9-501

Gaps, Disk 8-104
Gate Locations, CPU 1-602
$\begin{array}{ll}\text { Gate Locations, CPU } & \text { 1-602 } \\ \text { | General Operation, LCD } & 9-404\end{array}$

Halt Program Level Flowchart 5-210
Head Register, Disk 8-212
Head Settle Counter, Disk 8-210
Hexadecimal Addition Chart 1-113
Hexadecimal Conversion Chart 1-112
Horizontal Cycle Check, Printer 9-110

IBM 5444 Disk Storage Drive
Alternate Track 8-104
CE Track 8-104
Configurations 8-102
Cylinder 8-104
Data Storage 8-103
Double Frequency Recording 8-103
Models 8-102
Operator's Console 8-102, 8-103
Sector 8-104
Track Format 8-104
Address Marks (AM) 8-104
Bit Count Appendage (BCA) 8-104
Cyclic Code Characters 8 -10
$\begin{array}{ll}\text { Data Field } & \text { 8-104 } \\ \text { Flag Bits } & 8-104\end{array}$
Gaps 8-104
$\begin{array}{ll}\text { Gaps } & 8-104 \\ \text { dentifier Field }\end{array}$
dentifier Field (ID) 8-104
Sector Address
$\begin{array}{lll}\text { Sector Address } & 8-104 \\ \text { Number, LCD } & 9-401\end{array}$
Identifier Field (ID), Disk 8-104

I-H Cycle Diagram 5-032
I-H Cycle Flowchart 5-030
I-H Cycle Timing Chart 5-03
I-L Cycle Diagram 5-032
I-L Cycle Flowchart 5-030
I-L Cycle Timing Chart 5-034
IMP (see Integrated Maintenance Package)
Increment Checking, CRT LSR 11-102
Index, LCD 9-615
Indicators (see System Indicator Lights)
Indicators and Controls, LCD 9-402
Initial Program Load
Disk 8-111
Flowchart 8-307
Initial Selection Diagram, Data Recorder 10-204
Initial Selection Diagram, Keyboard-Console 7-206
Insert and Test Characters Diagram 5-124
Insert and Test Characters Flowchart 5-122
Insert and Test Characters Timing Chart 5-120
Instruction Code Table 1-102
$\begin{array}{lll}\text { Instruction Code Table } & \text { 1-102 } \\ \text { Instruction Cycle Table } & 1-103\end{array}$
$\begin{array}{ll}\text { Instruction Cycle Table } \\ \text { Instruction Decode, CRT } & 11-207\end{array}$
Instruction/Functional Signal Reference 5-005
Instruction Register, Printer 9-205
Instruction Table 1-101
Integrated Maintenance Package 1-201
Interface, Disk 8-205
Interface Lines, Data Recorder 10-203
Interrupt Diagram 5-262
Interrupt Flowchart 5-260
Interrupt Level, Keyboard 7-115
Interrupt Request Diagram, Keyboard 7-311
Invalid Address Diagram 2-050
Invalid Command Check, LCD 9-522
hvelid Device Address Diagram 2-150
valid Op Code Diagram $2.130-15$
I/O Condition A, Disk 8 -252
$\begin{array}{ll}\text { /O Condition B, Disk } & 8-252\end{array}$
I/O Control Fields $1-110$
Disk Control Dield 1-110
Ledger Card Device 9-403
Printer Command Byte 1-110

I/O Interface Lines Diagram	$4-100$

I/O LSR Select Check Diagram 2-020
I-Op Cycle Diagram 5-012
I-Op Cycle Flowchart $5-010$
I-Op Cycle Timing Chart 5-014
IPL (see Initial Program Load)
IQ Cycle Flowchart 5010
I-0 Cycle Timing Chart 5-014
I-R Cycle Diagram 5-022
I-R Cycle Flowchart 5 -020
Isolation of ac and dc Ground 1-504
I-X Cycle Diagram 5-044
I-X Cycle Flowchart 5-042
I-X Cycle Timing Chart 5-040

Jack Plug, APLD 1-207
Jump on Condition Flowchart 5-140
Jumper Wires 1-208

Key Identification System 7-103
Key Operation, Programmed Flowchart 7-310 Keyboard 7-102
$\begin{array}{ll}\text { Back Space Key } & 7-107\end{array}$
$\begin{array}{ll}\text { Command Keys } & \text { 7.107 } \\ \text { Enter }+ \text { Key } & \text { 7-107 }\end{array}$
$\begin{array}{lll}\text { Enter + Key } & 7-107 \\ \text { Enter - Key } & 7-107\end{array}$
Erase Key 7-107
Function Keys 7-106
Inquiry Request Switch 7-107
Key Functions 7-106
Key Functions 7.106
Key Identification System
Key Identification Syste
Key Operation
$7-103$
Numeric Keyboard Keys 7-106
Program Start Key $\quad 7-107$
Return Key 7-107
Shift Key 7-107
Space Bar 7-107
Tab Key 7-107
Weighted Codes 7-104, 7-105, 7-106
Keyboard Attachment 7-115
$\begin{array}{ll}\text { Keyboard to CPU Interface } & 7-11 \\ \text { Keyboard Encode Board } & 7-203\end{array}$
Keyboard Encode Board 7-203
Keyboard Interrupt Request Diagram 7-311
Keyboard Maintenance 1-409
Keyboard Removal 1-409

Last Printable Line 9-404
Last Printable Line Counter 9-404

Ledger Card Device 9-102
Ledger Card Device Attachment (LCD) 9-401
Ledger Card Device Single Shot Locations $\quad 1-410$
Ledger Card Format 9-40

Lights, Console	
Line Finder Mark	

$\begin{array}{ll}\text { Line Finder Mark } \\ \text { Line Finder Mark Check } & 9-522\end{array}$

| | |
| :--- | :--- | :--- |
| Line Finder Mark Deck | 9-522 |

LIO (see Load I/O)
LLAR (see Local Storage Registers, Printer)
Load I/O-CPU
Diagram 5-162
$\begin{array}{ll}\text { Diagram } & \text { 5-162 } \\ \text { Flowhart } & 5-160\end{array}$
Load I/O-CRT
$\begin{array}{ll}\text { Description } & \text { 11-104 } \\ \text { Flowchart } & 11-302\end{array}$
Instruction Format 11-104
Timing Chart 11-303
Load I/O-Data Recorder
Description 10-113
Error Conditions 10-113
Flowchart 10-302
Instruction Format 10-113
Parity 10-113
Q Byte 10-113
Timing Chart $10-303$
Load I/O-Disk
Description 8-107
Diagnostic 8-107
Instruction Format 8-107
Load I/O-Keyboard-Console
Description 7-116
Field/Operation Lights 7-117
Flowchart 7-302, 7-303
Instruction Format 7-116
Timing Chart 7-305
Turn off Command Lights 7-117
Turn on Command Lights 7-116
\| Load I/O-Printer and LCD
Control Bits $9-105$
Description 9-105
Error Conditions 9-105
Flowchart 9-302
$\begin{array}{ll}\text { Instruction Format } & \text { 9-105 } \\ \text { Operand Address } & 9-105\end{array}$
Operand Address 9-105
$\begin{array}{ll}\text { Parity } & 9-105 \\ \text { Q Byte } & 9-105\end{array}$
Q Byte 9-105
Timing Chart
$9-303$
oad I/O Reference Table 1-105
Load Register Diagram 5-062
Load Register Flowchart \quad 5-060

Load Register Timing Chart 5-060
Local Storage Register Chart 1-11
Local Storage Register Control Diagram 4-073
Local Storage Register (Dual Programming Feature) Diagram 4-074
$\begin{array}{ll}\text { Local Storage Register Parity Diagram } & 2-030 \\ \text { Local Storage Register Select Diagram } & 4-072\end{array}$
Local Storage Register Select (I/O) Diagram 4-076
Local Storage Registers 4-070
Local Storage Registers (LSR), Disk
Disk File Control Register (DFCR) 8-105
$\begin{array}{ll}\text { Disk File Control Register (DFCR) } & 8-105 \\ \text { Disk File Data Register (DFDR) } & 8-105\end{array}$
| Local Storage Registers, LCD 9-402
Local Storage Registers, Printer 9-102
Locate Line Address Register $\quad 9-102,9-402$
Print Command Address Register 9-102, 9-402
Print Data Address Registers 9-102, 9-402
Shared Registers 9-102
| Locate Line Counter, LCD 9-404
Locations 1-601
Logic Gate Locations 1-602
LSR (see Locate Storage Register)
LSR Address 65 and 961 Increment Check, CRT 11-209
LSR Addressing, CRT 11-101
LSR Select, CRT 11-207
LSR Select, Data Recorder 10-209
LSR Select Dagram, Data Recorder 10-208
LSR Select, LCD 9-SIS

Machine Cycle Table 1-103
Maintenance Analysis Procedure Charts 1-201
Maintenance, Scheduled $\quad 1-301$
MAP Charts (see Maintenance Analysis Procedure Charts)
Margin Check, Printer 9-110
Matrix Counter, Printer 9-209
Matrix Printing Principle 9-101
Memory Organization, Data Recorder 10-103
Monolithic System Technology Maintenance 1-401
Monolithic Technology Cards 1-401
Move Characters Diagram 5-082
Move Characters Flowchart 5-080
Move Characters Timing Chart \quad 5-084
Move Hex Character Diagram 5-072
Move Hex Character Flowchart $5-070$
Move Logical Immediate Diagram 5-094
MST Card Maintenance 1-401
MST Cards 1-401
MST Voltage Levels 1207
Multi-function Register, Data Recorder

Next Printable Line, LCD 9-404
N Byte, Disk 8-105
Numeric Keyboard Keys 7-106

Offline Operation, Data Recorder 10-103
Online Operation, Data Recorder 10-107
Op and Q Register Decode Diagram 4-105 Op and Q Register Parity Diagram 2-120 Operations, Disk
tial Program Load 8-307
Read Data 8-335
$\begin{array}{ll}\text { Read Identifier } & 8-348\end{array}$
$\begin{array}{lll}\text { Seek } & 8-313 \\ \text { Start I/O } & 8-3\end{array}$
$\begin{array}{lll}\text { Stite Data } & 8-326\end{array}$
Write Identifier $8-317$
Operations, LCD 9-402, 9-60
Operator's Console, Disk 8-102, 8-103
Operator's Controls (see Console)

P Bit Generation Diagram $4-012$
Panel, Locations 1-601
Parallel Parity Check, Disk 8-228
PCAR (see Local Storage Registers, Printer) PDAR (see Local Storage Registers, Printer)
Phase Generator Disk
$8-244$
Piase Generator, Disk
PM Chart 1-301
Power Box Locatio
Power Box Locations $\quad 1-604$
$\begin{array}{ll}\text { Power Cannel } & 1-605 \\ \text { Power Chart } & 1-503\end{array}$
Power Controls Location 1-604
Power On/Off Sequence Flowchart 6-010 Power Requirements 1-501
Power Sequencing $1-501,6-010,6-011$ Power Supply Adjustments $1-501,1-502$ Power Supply Locations 1-603
Power Supply Outputs 1-501
Power Supply Test Points 1-503
Preventive Maintenance 1-301
Primary Index Flowchart, Printer 9-334
Primary Skip Flowchart, Printer 9-332, 9-333
Primary Vertical Index Command, Printer 9-103
Primary Vertical Skip Command, Printer 9-103
Print Controls Diagram 9-209
Print Data Register 9-209
Print Element Positioning 9-104
Pin Marks Lem Canam 9-210
Print Maks, Ledg Ca Derice 9-102

Print Mechanism, Data Recorder 10-105
Print Operation Flowchart 9-336, 9-337, 9-33
Print Operation Timing Chart 9-340, 9-341
Printer Attachment 9-101
Printer Character Set 9-102
Printer Commands 9-103
Printer Commands Diagram 9-206
Printer Configurations
Printer Configurations 9-101
$\begin{array}{lll}\text { Printer Data Bus Out Check } & 9-111 \\ \text { Printer Error Recovery } & 9-110 & 9-11\end{array}$
Printer Error Recovery $9-10,9-1$
Printer Functions 9-101

- 9 -11

Bit Structure 9-103
Command Chaining 9-103
Command Chaining $9-1$
Element Positioning 9-104
Forms Recognition 9-104
Line Printing 9-104
Overlapping Commands 9-103
Performing Operations 9-103
Printer Commands 9-103
Requirements $9-104$
Restrictions 9-104
Printer Single Shot Locations 1-410
Printer Single Shots 9-203
Printing Principle $9-100$
Priority, Cycle Steal 4-064
Probe, Diagnostic 1-208
Processor Check 2-010
A/B Register Parity 2-090
ALU Parity $\quad 2-100$
$\begin{array}{ll}\text { Carry Check } \\ \text { Channel P Check } & 2-140\end{array}$
DBI Parity 2-080
DBO Parity 2-110
Invalid Address $2-050$
$\begin{array}{lll}\text { Invalid Address } & 2-050 \\ \text { Invere Address } & 2-150\end{array}$
$\begin{array}{ll}\text { Invalid Device Address } \\ \text { Invalid Op Code } & 2-130\end{array}$
I/O LSR Select Check 2-020
Op and Q Register Parity $\quad 2-120$
SAR Parity $2-040$
SDR Parity 2-060
Program Control, Data Recorder 10-105
Program Instructions, LCD 9-402
Programmed Key Operation Flowchart 7-310
Punch Operation, Data Recorder 10-111
Punch Operation Diagram, (5496) 10-110
Punch Operation Diagram, Data Recorder 10-312
Punch Operation Flowchart, Data Recorder 10-313
Punch Operation Timing Chart, Data Recorder 10-315

```
Read All Line Finder Marks, LCD 9-626
Read Back and Eject, LCD 9-619
Read Mark Check, LCD 9-522
Read Only Storage Module 9-209
Read Operation, (5496) 10-109
Read Operation Diagram, (5496) 10-108
Read Operation Diagram, Data Recorder 10-308
Read Operation Flowchart, Data Recorder 10-309
Din
Diagram, Data Recorder 10-206
\(\begin{array}{ll}\text { k Location } & \text { 1-603 }\end{array}\)
Regulators, MST 1-501
Reset Display, CRT 11-209
Run Controls \(4-035,4-036,4-037,4-038\)
ROS Check, Printer 9-111
ROS Module Decoding 9-210
S Byte, Disk 8-104
Scheduled Maintenance 1-301
Secondary Index Flowchart \(9-335\)
Secondary Vertical Index Command, Printer 9-103
Sector, Disk 8-104
Seek Time Out Counter 8-210, 8-21
Sense Amp Check, LCD 9-522
Sense I/O-CPU
CPU Sense
CPU Sense
Diagram
\(5-172\)
\(\begin{array}{ll}\text { Diagram } & \text { 5-172 } \\ \text { Flowchart } \\ 5-170\end{array}\)
Flowchart 5-
Description
\(\begin{array}{ll}\text { Description } & \text { 11-106 }\end{array}\)
lowchart 11-306
Instruction Format 11-106
Status Bytes 11-106
Sense I/O-Data Recorder
Description 10-116
Error Conditions 10-116
Flowchart 10-306
Instruction Format 10-116
Parity 10-116
Q Byte 10-116
Sense Bytes 10-116
Timing Chart \(\quad 10-307\)
Sense I/O-Disk
Description 8-109
Instruction Format 8-109
Status Bits 8-109, 8-110
```

Sense I/O-Keyboard-Console
Description 7-118
Flowchart 7-306
Instruction Format 7-118
Response to Instruction 7-118
Timing Chart 7-307
Sense I/O-Printer and LCD
Description 9-108
Diagnostic Signals 9-108
Error Conditions 9-108
Flowchart 9-306
Instruction Format 9-108
LCD Sense Bits 9-108
Operand Address 9-108
$\begin{array}{ll}\text { Parity } & 9-108\end{array}$
Q Byte 9-108
Status Bytes
Timing Chart
$9-108$
Timing Chart 9-307
Sense I/O Reference Table 1-107, 1-108, 1-109
SER-DES 8-248
SER-DES Check 8 -228
$\begin{array}{lll}\text { Set Bits On/Off Masked Diagram } & 5-052\end{array}$
Set Bits On/Off Masked Flowchart $\quad 5-050$
Set Bits On/Off Masked Flowchart 5-050
Simplified Data Flow, Disk
$\begin{array}{cc}\text { Simplified Data Flow, Disk } \\ \text { Compare/Scan } & 8-114\end{array}$
$\begin{array}{ll}\text { Compare/Scan } & 8-1 \\ \text { Read Data } & 8-113\end{array}$
$\begin{array}{lll}\text { Read Data } & 8-113 \\ \text { Sense Operation } & 8-111\end{array}$
$\begin{array}{ll}\text { Sense Operation } & 8-115 \\ \text { Write Operation } & 8-112\end{array}$
Single Shot Adjustments $1-410$
Single Shot Locations $\quad 1-410$
Single Shots, Printer 9-203
SIO (see Start I/O)
SLD Voltage Levels 1-207
SNS (see Sense I/O)
Special Tools 1-208
Start I/O-CPU
Flowchart 5-150
Start I/O-CRT
Description 11-107
Display 11-107
Flowchart 11-308, 11-309
Halt 11-107
Instruction Format 11-107
Start I/O-Data 11-310
Description 10-117
Diagnostic 10-117
Diagnostic Cycle Steal Operation 10-317
Diagnostic Data Operation 10-316

Start I/O-Data Recorder (Continued)
Error Conditions 10-117
Instruction Format 10-117
Parity 10-117
$\begin{array}{ll}\text { Punch Operation } & 10-312,10-313 \\ \text { Q Byte }\end{array}$
Q Byte 10-117
Read Operation 10-308, 10-309
Start I/O-Disk
Description
Instruction
Instruction Format 8-111
Read Data 8-111
$\begin{array}{ll}\text { Read Diagnostic } & 8-111 \\ \text { Read Identifier } & 8-111\end{array}$
Read IPL $8-111$
Read IPL
Read Verify
$8-111$
$\begin{array}{ll}\text { Read Verify } & 8-111 \\ \text { Scan Equal } & 8-111\end{array}$
Scan High or Equal 8 -111
$\begin{array}{ll}\text { Scan Low or Equal } & 8-111\end{array}$
$\begin{array}{ll}\text { Scan Low or } \\ \text { Seek } & 8-111\end{array}$
Write Data 8-111
Write Identifier 8-111
Start I/O-Keyboard-Console
Description 7-119
Flowchart 7-308
Instruction Format 7-119
Timing Chart $\quad 7-309$
| Start I/O-Printer and LCD
Command Byte 9-10
Description 9-109
Elror Conditions 9-109
Instruction Format
Instruction Format 9-109
$\begin{array}{ll}\text { I-R Byte } \\ \text { Parity } & 9-109\end{array}$
$\begin{array}{ll}\text { Parity } & \text { 9-109 } \\ \text { Q Byte } & 9-109\end{array}$
$\begin{array}{ll}\text { Q Byte } & \text { 9-109 } \\ \text { Timing Chart } & \text { 9-309 }\end{array}$

Start I/O Reference Table 1-10

Stepper Motor Controls Diagram, Printer 9-208
Stepper Motor Start-Move Right Flowchart, Printer 9-310, 9-31
Stepper Motor Start Timing Chart, Printer 9-313
Stepper Motor Stopping Flowchart, Printer 9-320, 9-321
Stepper Motor Stopping Timing Chart, Printer 9-322, 9-323 Storage Data Flow 3-020
Storage Delay Clock and Timing Diagram 4082
Storage Module Maintenance 1-401
Array Failures 1-404
Crray Replacement 1-404, 1-405
Circtinuity Cheaterns 1-403
Continivy Check of XY Drive Lines 1-404
Drive Line Shorts 1-405

Storage Module Maintenance (Continued)
Fault Location 1-402
Intermittent Failures 1-406
$\begin{array}{ll}\text { Locating an Open Diode } & 1-404 \\ \text { Replacing an Open Diode } & 1-405\end{array}$
Replacing an Open Diode 1-405
Scope Pictures 1 -406 through 1-408C
Strobe Setting Reoptimiz
YYZ Dive Voltas R
YZ Drive Voltage Reoptimization 1-406
30 V Power Supply $1-40$
Store Register Diagram 5-062
$\begin{array}{lll} & \\ \text { Store Register Diagram } & \text { 5-062 } \\ \text { Store Register Flowchart } & 5-060\end{array}$
$\begin{array}{ll}\text { Store Register Flowchart } & \text { 5-060 } \\ \text { Store Register Timing Chart }\end{array}$ 5-064
Subtract Logical Characters Diagram 5-082
Subtract Logical Characters Flowchart 5-080
Subtract Logical Characters Timing Chart 5-084 Subtract Zoned Decimal Diagram 5-104
Subtract Zoned Decimal Flowchart 5-100
Subtract Zoned Decimal Timing Chart 5-106
Switches, System (see System Control Switches)
Sync Check, Printer 9-111
Sync Detection, Disk $\quad 8-226$
System Control Switches-Keyboard-Console 7-108
Data Recorder 7-108
Disk Drive 1 and Disk Drive 2 7-108
Disk Select 7-108
Inquiry Request 7-108
Power 7-108
$\begin{array}{ll}\text { Program Load } & 7-108\end{array}$
System Start $7-108$
ystem Control Switches-System Maintenance
Data Recorder 1-203
Disk Drive 1-203
$\begin{array}{ll}\text { Disk Select } & 1-203 \\ \text { nquiry Request } & 1-203\end{array}$
Lamp Test 1-202
$\begin{array}{ll}\text { Power On/Off } & 1-203\end{array}$
Program Load 1-203
System Start 1-203
System Indicator Lights-Keyboard-Console 7-108
Command Key 7-109
Field/Operation 7-109
Halt Code 7-109
I/O Attention 7-109
eyboard Ready 7-10
$\begin{array}{ll}\text { Power On } & 7-109\end{array}$
ssor Check 7-109
Stop 7-109

System Indicator Lights-System Maintenance
Command Key 1-202
ield/Operation
IO Attention 1-202
$\begin{array}{lll} \\ \text { Keyboard Ready } & \text { 1-202 }\end{array}$
Keyboard Ready
Power On 1-202
Power On 1-202
Processor Chec
Stop $1-202$
System Reset Diagram 5-222
System Reset Flowchart 5-220
System Reset Timing Chart 5-224
System/3 Data Flow 1-114

Tab Command, Printer 9-103
Tab Left Flowchart, Printer 9-328, 9-329, 9-331
Tab Right Flowchart, Printer 9-324, 9-325, 9-327
Tape Cassette (see Alternate Program Load Device)
Test Bits On/Off Masked Diagram 5-052
Test Bits On/Off Masked Flowchart 5-050
Test I/O-CPU
Flowchart 5-180
Test I/O-CRT
$\begin{array}{ll}\text { CRT Busy } & 11-105 \\ \text { CRT Check } & 11-105\end{array}$

RT Check	$11-105$
escription	$11-105$

Description 11-105
Instruction Format 11-105
Timing Chart 11-305

Test I/O-Data Recorder
Description 10-114
Error Conditions 10-114
Flowchart 10-304
Instruction Format 10-114
Parity 10-114
Timing Chart 10-305
Test I/O-Disk
Busy 8-108
Description 8-108
Error Conditions 8-108
Instruction Format 8-108
Not Read or Error $\quad 8-108$
Test I/O-Keyboard-Console 7-117
Test I/O-Printer and LCD
Branch to Address 9-106
Description 9-106
Error Conditions 9-106
Flowchart 9-304
Instruction Format 9-106
Parity 9-106
$\begin{array}{ll}\text { Q Byte } \\ \text { Timing Chart } & \text { 9-305 }\end{array}$
$\begin{array}{lll}\text { Timing Chart } & 9-305 \\ & \\ \text { Test I/O Reference Table } & 1-104\end{array}$
Tie Down List 1-119
CPU 1-119.
1-119
Disk 1-119
Timing, CPU 1-113

Timing Signals, CRT 11-102
Reset Display 11-102
Start Character Generator 11-102
Step Display
TIO (see Test I/O)
Translator, DBI

Translator, DBO	$4-060$

Translator, DBO
Typamatic Operation
$7-316$

Use Meter Single Shot 1-410

Vertical Cycle Check, Printer 9-11
Vertical Forms Control 9-101
Voltage Regulator Cards 1-502

Weighted Codes, Keyboard 7-104, 7-105, 7-106

Zero and Add Zoned Diagram 5-104
Zero and Add Zoned Flowchart 5-100
Zero and Add Zoned Timing Chart 5-106
2222 Model 1 Printer 9-101
2222 Model 2 Printer 9-101
5213 Model 1 Printer 9-101
$\begin{array}{ll}5213 \text { Model } 1 \text { Printer } & 9-101 \\ 5213 \text { Model } 2 \text { Printer } & 9-101\end{array}$
5213 Model 3 Printer 9-101

READER'S COMMENT FORM

READER'S COMMENT FORM

System/3 Model 6
5406 Processing Unit and Attachments

- Your comments, accompanied by answers to the following questions, help us produce better publications for your use. If your answer to a question is "No" or requires qualification, please explain in the space provided below. Comments and suggestions become the property of івм.
- Does this publication meet your needs?

Yes
\square
No
\square

- Did you find the material Easy to read and understand? Organized for convenient use? Complete?
Well illustrated?
Written for your technical level?

What is your occupation?
How do you use this publication?
As an introduction to the subject?
For advanced knowledge of the subject?
For information about operating procedures?

$$
\begin{aligned}
& \text { As an instructor in a class? } \\
& \text { As a student in a class? } \\
& \text { As a reference manual? }
\end{aligned}
$$

Other

- Please give specific page and line references with your comments when appropriate. If you wish a reply, be sure to include your name and address.

COMMENTS:

System/3 Model 6
5406 Processing Unit and Attachments

Order No. S Y34-0022-1

- Your comments, accompanied by answers to the following questions, help us produce better publications for your use. If your answer to a question is "No" or requires qualification, please explain in the space provided below. Comments and suggestions become the property

Does this publication meet your needs?
Did you find the material:
Easy to read and understand? Complete?
Well illustrated
Written for your technical level?
hat is your occupation?
How do you use this publicatio
As an introduction to the subject?
For advanced knowledge of the subject?
For information about operating procedures?
As an instructor in a class?
As a student in a class?
\square

Other

- Please give specific page and line references with your comments when appropriate. If you wish a reply, be sure to include your name and address.

COMMENTS:

Y34-0022-1

YOUR COMMENTS, PLEASE. .

Your answers to the questions on the back of this form, together with your comments, will help us produce better publications for your use. Each reply will be carefully reviewed by he persons responsible for writing and publishing this material. All comments and sug. gestions become the property of IBM.

Note: Please direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.

Boca Raton, Florida 33432

Attention: Systems Publications, Department 707
Fold
Fold

Tivis

International Business Machines Corporation
Data Processing Division
ter Avenue, White Plains, New York 10604
IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017 [International]

SY34-0022-1

YOUR COMMENTS, PLĖASE. .

Your answers to the questions on the back of this form, together with your comments, will help us produce better publications for your use. Each reply will be carefully reviewed by the persons responsible for writing and publishing this material. All comments.and sug gestions become the property of IBM

Note: Please direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch of fice serving your locality.

Fold

POSTAGE WILL BE PAID BY
IBM Corporation
General Systems Division
Boca Raton, Florida 33432

Attention: Systems Publications, Department 707
Fold

[ig

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]
IBM World Trade Corporation
[Internationial

[^0]: Note. Single shot timing depends on the

